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DUALITY IN THE THEORY OF
CROSSED PRODUCTS

LUTGARDE VAN HEESWIJCK

Abstract.

If A is a von Neumann algebra, G a locally compact abelian group and « a
continuous action of G on 4, it was shown by Takesaki that it is possible to
define a continuous action & of the dual group G on the crossed product
A®, G such that the repeated crossed product (4 ®, G) ®; G is isomorphic to
A®AB(L,(G)), where %(L,(G)) denotes the von Neumann algebra of all
bounded linear operators on L, (G). The duality theorem was used by Takesaki
to obtain an important structure theorem for type III von Neumann algebras.
Takesaki’s duality theorem has been extended to the non-abelian case by
Landstad and Nakagami. Because of the lack of symmetry between the group
and its dual object in the non-commutative case, the extended theorem in fact
consists of two versions, a direct result and a dual one.

In this paper we will show that both the direct theorem and the dual one are
essentially two forms of one result. Moreover it turns out that all together our
approach is both simpler and shorter.

1. Introduction.

We shall give a new proof of the duality theorems for locally compact groups,
which one finds in the papers of Landstad [2] and Nakagami [3]. First we
remark that the covariance algebra, (respectively the dual covariance algebra)
defined by Landstad in [2] describes the same notion as the crossed product
(respectively the crossed dual product) of Nakagami in [3]. In this paper we
will use the terminology of Nakagami. Let us now formulate the most
important definitions and results of the duality theorem of Landstad and
Nakagami.

If G is a locally compact group, equipped with a left invariant Haar measure,
we consider L (G) as the von Neumann algebra on L,(G) generated by the
multiplication operators, while L(G) is the von Neumann algebra generated by
the left regular representation on L,(G), ie. {4,,t € G}".
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DEFINITION 1.1. Let 4, be a von Neumann algebra acting on #,. Then r, is
an action of G on Ay, if n, is a normal injective *-homomorphism of 4, into
A;®L(G) such that the following diagram is commutative:

Ay —F—— 4,®L,(G)
) } m®1
A; QL (G) 18% 4 ®L, (G)®L,(G)

Here 6, is defined on L, (G) by 6,(x)=U¥(x®1)U, with U, the unitary
operator on L,(G)®L,(G) such that (U, f)(s,t)=f(t " 's,t) for fa continuous
function with compact support from G x G to C (i.e. f € K(G x G)). We remark
that we use the fact that L,(G)®L,(G) and L,(G x G) are isomorphic. We
denote by 1 the identity operator both on #, and L,(G).

The von Neumann algebra generated by =, (A4,) and 1®L(G) is denoted by
A;®y, L(G) and is called the crossed product of A; and G by the action .

DEFINITION 1.2. Let 4, be a von Neumann algebra on 5 ,. Then , is a dual
action of G on A4,, if n, is a normal injective *-homomorphism of A, into
A, ®L(G) such that the following diagram is commutative:

A, —"— 4,®QL(G)
7, | ‘ n,®1
A,®L(G) 122 4,QL(G)®L(G)

Here 6, is defined on L(G) by 6,(x)=U%(x®1)U, with U, the operator on
L,(G)®L,(G) such that (U,f)(s,t)=f(s,st) for fe K(G x G).

The von Neumann algebra generated by n,(4,) and 1®L (G) is denoted by
A3®;, L, (G) and is called the crossed dual product of 4, and G by the action
T,.

Let us now consider the von Neumann algebra A, ®p, L(G). Then it is
possible to find a dual action #, on A;®, L(G) such that the crossed dual
product (4, ®,, L(G))®;, L, (G) is isomorphic to A, ®#(L,(G)) (see [2] and
[3]). This is the duality theorem for crossed products and can be formulated in
the following way:

THEOREM 1.3. If m, is an action of a locally compact group G on a von
Neumann algebra A,, then
(4, @1, L(G)®4, Lo (G) = 4, ®A(L,(G))
where #, is the mapping of A, ®; L(G) into (A;®,, L(G)®L(G) defined by

1 (x) = 1QUH(x®)(I®U,)  for all x € A, ®, L(G).
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Besides this direct theorem there exists also a duality theorem for crossed dual
products. Indeed, Landstad and Nakagami have shown in [2] and [3] that
there exists an action #, on A,®;,, L, (G) such that the crossed product
(4,®4, L(G))®4, L(G) is isomorphic to 4, ®%#(L,(G)).

In the commutative case there is no difference between the two duality
theorems because of the isomorphism between L (G) and L(G), where G is the
dual group of G. So the two duality theorems reduce to one theorem namely
that of Takesaki [5]. Both the direct theorem and the dual one in the non-
commutative case have many aspects in common. Indeed, we can prove
Theorem 1.3 by using some special properties of L, (G), L(G) and U, while we
need analogous properties of L(G), L, (G) and U, for the dual theorem. So, in
order to obtain a general duality theorem, we shall study two von Neumann
algebras M, and M,, acting on the same Hilbert space /£ and a unitary
operator W, on 4 ®, which are related to each other in a particular way.
Furthermore the most important part of the proof of the duality theorem is to
show the equation

A1®n,£(L2(G)) = A1®Q(Lz(6))
and the equation

A;®5, B(L,(G)) = 4,@%(L,(G))

in the dual case.

Especially for the second theorem this is a difficult problem (see for example
[2] and [3]). We shall treat this situation by introducing the concept of a non-
degenerate action. This means that we define an action in such a way that it is
a generalization of the action =, of Definition 1.1 and also of the dual action =,
of Definition 1.2. The non-degeneracy property refers to the two equations

A, ®;, B(L,(G) = 4,Q4(L,(G))

and
A;®,, B(L,(G) = A,@B(L,(G)) .

In this way we are able to formulate and prove a general duality theorem at the
end of section 2. At last we shall show, in section 3, that the direct and dual
theorem for locally compact groups are indeed special cases of the general one.

We also remark that the proofs given in this paper are much simpler than
those of Nakagami and Landstad in [2] and [3]. We mention that Enock and
Schwarz have also generalized the duality theory by introducing the concept of
Katz-algebras (see [1]). In the preprint [4] of Stratila, Voiculescu and Zsido
one can also find a different treatment of this subject.

We should like to thank Prof. A. Van Daele, who has suggested the problem
and who has followed our efforts with great interest.
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2. The general duality theorem.

In this section we shall prove a duality theorem having both the direct
theorem and the dual theorem of Landstad and Nakagami as a special case.

Norartions 2.1. Let G be a locally compact group, and let L (G), L(G), U,
and U, be as in the introduction. Then we define J, on L,(G) by J, f(s)=1(s)
and J; on L,(G) by J,f(s)=4(s) " ¥f(s™}).

S is an operator on L,(G)®L,(G) such that S(f®g)=g® f for g and f

belonging to L,(G).

With these definitions we have the following relation between U, and U,:
U, = SU®JJ)U(1®J,J,)S .

This gives a relation between an action n, of G on a von Neumann algebra A4,
and its dual action #,. Indeed, by Definition 1.1

(my®Dm; = (1®6,)m,

with
0,(x) = UF(x®1U,

while 7, is defined by
#,(x) = 1QUHx®(1®U,) for x € 4,®,, L(G)

(see Theorem 1.3). Considering now the 5-tuple (L, (G),L(G),U,,J,,J,), we
can prove the following interesting properties:

ProposiTioN 2.2. i) L(G)NL(G)=Cl, Ji=Ji=1 and J,J,=J,J,

i) J\L(G)J,=L(G)=J,L..(G)J, and
J,L(G)J,=L(G)=J,L(G)J,

i) (1@S)(U,;@D(1®S)(U;®1)=(1@UH(U,@1)(1®U,)

v) U¥=(J,®J,)U,(J,®J,)

V) Uy € L(G)®L(G)

Vi) SUF(Lo(G)®@DU,;S=(J,®J,)UH (L (G)®N)U,(J,®J,)

vii) SUF(1®L(G))U,5=(J,®J,)U¥(1®L(G))U,(J,®J,)

Proor. Since these equations can be found by straightforward calculations,
we omit the proof (for the relations i) to v) see for example [6]. Property vi)
and vii) will be proved by similar computations).

In this way by studying the duality theorem for crossed products, we can
derive Proposition 2.2 for the 5-tuple (L. (G),L(G),U,,J,,J,) and the
important formula
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U, = S1®JJ,)U,(1®JJ,)S,

which gives a relation between 7, and n,. Now, we want to prove a general
duality theorem, which means also a generalization of the duality theorem for
crossed dual products. Therefore we shall look for a 5-tuple with properties
analogous to those of Proposition 2.2 and we shall find a formula, which gives
a relation between 7, and 7,. For this let us recall the formulation of the dual
duality theorem as given by Landstad and Nakagami in [2] and [3]:

If n, is a dual action of a locally compact group G on a von Neumann
algebra A,, then there exists an action 7, of G on the crossed dual product
A, ®4, L (G) such that

(4;®7, L (G) ®4, L(G) = 4,®%(L,(G)) .

Here ) is the mapping of 4,®,, L, (G) into (4,®;,, Ly (G))®L,(G) defined
by

(x) = AQV*)(x@1)(1®V) for all x € 4,®; L,(G),
with ¥ an operator on L,(G)®L,(G) such that Vf(s,t)=4(t)*f(st,t) for
fe K(G xG). As =, is a dual action,
(@, = (1®0,)n,
with d,(x)=U¥(x®1)U, and U, as in Definition 1.2.

Computing S(1®J,J,)U,(1®J,J,)S, we do not get V, but an operator U,
=(1®J,J,)V(1®J,J,). Furthermore we have that J,J,L(G)J,J,=L(G) by
Proposition 2.2. Hence

(1®1®J,J,)((4;®r, Lo(G) ®4, LIG)(1Q1®J,J,)
= (A, ®, Ly, (G) @4, L(GY
where
,(x) = (1QUH(x®1)(1®U,;) for all x € 4,®,,L,(G).

Because of the symmetry with the direct Duality Theorem 1.3 we will formulate
the dual one as follows:

THEOREM 2.3. If , is a dual action of a locally compact group G on a von
Neumann algebra A,, then there exists an injective normal *-homomorphism 7,
of the crossed dual product A, ®;, L (G) into (A, ®,, Lo (G))® L (G) such that

>

(4, ®r, Lo (G) @4, L(G) = A,@%4(L,(0)) .

Here 7, is defined by 7,(x)=(1@UF)(x®@1)(1@U,).
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Considering the S-tuple (L(G),L(G), U, J2,J,) we get the following
properties.

PROPOSITION 24. i) L, (GYNL(G)=Cl, J2=J?=1 and JyJ=J,J,

i) JoL(GM,=L(GY =J,L(G)J, and J,L(G)J,=L.(G)=J,L(G)J,
i) (1®S)(V,@1)(1®8)(U,®1)= (1@ U (U,1)(1QU,)

iv) UF=(J,®J)U,(J,®J,)

V) U, € L(GY®L(G)

vi) SUF(L(GO)®U,S=(J;®J)UF(LIG® 1)U, (J,®J,)
Vi) SUF(1® Lo (G)U,S = (J,®J,)UF(1Q L, (G)U,(J,®J,).

The proof is similar to the one of Proposition 2.2.

Comparing Proposition 2.2 and 2.4, we see that we get the same results for
the 5-tuple (L, (G),L(G),U,,J,,J,) and (L(G), L (GY,U,,J5,J,). Moreover it
turns out that the results for (L(G),L,,(G),U,,J,,J,) can be derived from
those of (L (G),L(G),U,,J,,J,), only by using the relation

U, = SU®J,JH)U,(1®J,J,)S .
We will generalize this situation in the following theorem.

THEOREM 2.5. Let M, and M, be von Neumann algebras on a H ilbertspace X,
W, a unitary operator on X" @4 and K, and K, self-adjoint conjugate linear
operators on X', satisfying the following properties:

) M,NM,;=Cl, Ki=Ki=1and K,K,=K,K,

i) KM K, =M =K,M' K, and K,M;K,=M,=K,M,K,
iii) (1@S)(W, @1 (W, ®1)=(1QWH(W,®1)(1QW,)

iv) W= (K,®K,)W,(K,®K,)

v) Wie M,®M,

vi) SWHM, @)W, S = (K,QK )W} M, @)W, (K,®K,)
vii) SWH(1@MYW,S= (K,QK )W 1@M,)W, (K,®K,).

Then the same properties hold if we replace M, M,, W, K,,K, by
My, M1, Wy, K,, K, respectively where W, is defined by

(viii) W, = SIQK,K)W,(1QK,K,)S .

Proor. The properties i) and ii) and also iv) to vii) for the S-tuple
(M3, M}, W,,K,,K,) can be proved as a consequence of the corresponding
relations for the 5-tuple (M,, M,, W,, K,, K,). Since this can be done by an easy
calculation, we shall only show the difficult relation iii). From iv) and (viii) we
have
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(ix) W, = S(K;®K)WF(K;®K,)S .
But
(x) (1S W¥R®N(1®S) = (SRNURWH(S®1) .

From (ix) and (x) we get that
xi)  (1®S)(W, @)1 (W,®1)
= (K;®K;®K,)(1®)(S®)(1®S)(SRN1W)(S®1)
1@WHE®N1®(S®(K,®K, ®K,) .
From iii) and (x)
(xii) ERNARWHE®HUR/WY) = (W, )(1@WH(WF®1)
and (xi) and (xii) give
(1®S)(W,®1)(1®)(W,®1)
= (K,®K;®K,)(1®S)(S®N(1®S)(W,@)(1QW ) (W ®]1)
(SRR (SO)(K,®K,®K,) .
Using (x) again, we get
(1) (W, ®)(1®S)(W,®1)
= (K, ®K;®K,)(1®S)(1@W,)(1®S)(S®1)(Wi®1)
SRNARSHIRWH(1®S)(K,®K,®K,),
and so, using (ix),
(1®S)(W,@)(1®8)(W,®1)= 1@ W (W,®1)(1®W,) .
Before we can state the duality theorem, we have to generalize the concepts of

action, dual action, crossed product and crossed dual product:

DEFINITION 2.6. If # = (M|, M,, W, K, K,) is the 5-tuple of Theorem 2.5 and
A is a von Neumann algebra acting on 3¢, then an action of .# on A is an
injective normal *-homomorphism n: 4 - A®M, such that the following
diagram is commutative:

A—2 AQM,
) {1
A®M, €%, 4@M,®@M,

Here ¢ is defined on M, by §(x)=W¥(x®@1)W,.
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Let us first show that § maps M, into M; ® M, so that this definition makes
sense. Indeed, W, € M,®M, implies that

WM, @)W, < B(L,(G)®M, ,
which, together with
SW M, @OWW,S = (K,Q@K,))W¥ (M, @)W, (K,®K})

and K,M,K,=M,, gives WM, @)W, =M, @M.

We can see immediately that an action of a locally compact group on a
von Neumann algebra A as defined in 1.1 is the same as an action of
M= (Lo(G),L(G),U,,J;,J,) on A as defined above. A dual action of a lo-
cally compact group G (see Definition 1.2) agrees with an action of
M= (L(G), Lo (G), Uy, J3,J,)

DEFINITION 2.7. If 7 is an action of 4 = (M, M,, W;,K,K,) on A, then m is
called non-degenerate if the von Neumann algebra A ®,%#(X’) generated by
n(4) and 1®%(X) is equal to AQH(X).

In section 3 we will show that both an action of a locally compact group and
a dual action are non-degenerate.

DEeFINITION 2.8. If 7 is an action of .# = (M,,M,, W,,K,,K,) on A, then the
von Neumann algebra generated by n(4) and 1®M, is called the -product of
A and # by = and is denoted by A®, M,.

Comparing the definitions of crossed product and crossed dual product with
2.8, we see that a crossed product is a §-product where 4 = (L (G)), L(G),
U,,J,,J,) and a crossed dual product is a 6-product where .# = (L(G)), L (G),
Uy dzdy).

DEFINITION 2.9. If A®, M, is a §-product of A and M = (M, M,, W, J,,J>)
by =, then 7 is called the dual action of = if

filx) = 1IQWHER)(1®W,) forall xe AR, M,
with
W, = SI®K,K,)W,(1QK,K,)S .
Then, the dual &-product is the von Neumann algebra generated by

(1QWH(AR, M, Q1) (1®W,) and 1®1®M; and will be denoted by
(A®,. M) ®; M.
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Now we come to the main theorem of this paper, namely the general duality
theorem.

THEOREM 2.10. If 7 is a non-degenerate action of M =(M,M,, W,,J,,J,) on
the von Neumann algebra A, then the dual d-product (A®,M,)®;M); is
isomorphic to AQ%(X') and the isomorphism is given by

(A®, M)®: M; = (1QW)(n@1)(AQA (X)) (1®WY).

Proor. (A®,M,)®;M] is the von Neumann algebra generated by
#(A®,M,) and 1Q1 QM.

But #(A®,M,) is generated by (1@W3)(n(A)®1)(1®W,) and #(1QM,).
Because of the definition of an action of # on A, n(4)c A®M,. But
W, € M|, ®M, because of Theorem 2.5. Hence

(1@W3H(n(AR)(1®W,) = n(4)®1 .
By the same theorem W, € M,®M,. Hence
1®1QM) = (1QW)(1®1QM)(1®WT).

By the definition of W, we have

WM, @)W,

= SI®K,K,)W§{(1®K,K,)S(M,®1)S(1®K,K,)W,(1®K,K,)S
and by Theorem 2.5

K K,M,K,K;, = KM3,K, = M,

and also

Wik(1®M'2)W1 = (K2®Kz)SWT(1®M’2)W1S(K2®K2) .

So we get

WM, @)W, = S(K,®@K,K,K,)SWF(1®@M)W;S(K,®K,K,K,)S
= (K1®K2)WT(1®M/2)W1(K1®K2)

or

WE"(M2®1)W2 = W1 (1®M2)Wik

because of the fact that

W¥ = (K,®K,)W,;(K,®K,) and K,M}K, =M,.

Math. Scand. 44 — 21
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Hence
(A® . M;)®: M| = {n(A)®1, 1®W,))(1®I1OM,)(1®WY),
1QW)(1Q1@M,)(1® W)
= (1W){(1®WH(n(4)R)(1®W)),
IQI®M,, 1IQ1QM }'(1QW}).
By Theorem 2.5, M, UM} =2%(X") and by the definition of an action
1@WH(n(AR)(1®W,) = (a®@1)n(4) .
Hence
(A® . M))®; My = (1@W)(n®1){n(4), 1QB(X)}" (1QW?) .
But 7 is non-degenerate, so
{n(A),1QB(X)}" = AQR(X)
and

(A®M)®;: My = (1QW,)(n®@1)(ARB (A )N1®WY) .

3. Non-degeneracy for actions and dual actions of locally compact groups.

In this section we shall show that the duality theorem of Landstad and
Nakagami are special cases of the general one of section 2. In the first part we
prove the duality theorem for crossed products, where we use the fact that a
crossed product is a é-product and that the action defined in this case is non-

degenerate.

THEOREM 3.1. If =, is an action of M = (L, (G),L(G),U,,J,J;) on a von
Neumann algebra A, then m, is non-degenerate.

Proor. We have to prove that
A @y, B(L2(G)) = A, @%(L,(G)) -

The inclusion A;®, #(L,(G)<=A,®%(L,(G)) is a consequence of the
definition of an action, because n,(4,)c 4, ®L(G). For the other inclusion
must show that A, ®1cA4,®, #(L,(G)). But by definition (n,®1)r,
= (1®4d,)r, with §, as in Definition 1.1. So this is equivalent to

m(4)®1 < (n1®1)(A1®,,‘Q(L2(G))) = 7‘1(A1)®1®6,Q(L2(G))-
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For this it is sufficient to prove that
x®1 e {(1QUNHEx@NIRU,), 1Q1QA(L,(G)}”  if x € B(H,QL,(G)).

Let fx be an element of K(G), the set of the functions with compact support,
such that [|f|*ds=1, where K denotes the support of fx. Let 4, act-on #,
then we have for & € #,®L,(G)

11®U)E® fx) - E® fx* = Jlfx(t)lzll(i,—l)zllzdt

because
U N0 = fe7ts,t)  if fe K(GXG).

But 4 is a strongly continuous representation of G, so Ve>0 there exists a
neighbourhood V of e such that |(4,—1)&| <e if t € V. Take K< V. Then

11®U)E® fx) - E® fkI* < & ~[Ifx(t)lzfilt =¢.

Furthermore, if & and 7j € #,®L,(G), we get

KUQUHx®)(1®U)E®f) i®fx> —<x& i

= Kx®D(1®U)E® fx), (1®U )R fx)> — <x&, )|

< KEx@DIQU)E® fx), 1QU)H® fx)>
—<{(x®DARU)(E® fx), i® fy)l
+KE@DIQU)ER fx), i® fk>— < (x@1)(E® fx), i® fi)l
< IxIEN & ITA®U)G® fx) — (R fi)l
+x 11®U)E®Sk) — E®f)I 14l Il fx] -

But we know that |[(1QU,)(® fx)— (A® fx)| — 0 if K decreases and also
11®U)E® fx)— E® fx) — 0 if K decreases.
Therefore if we put wg(y)=<{yfx, fk> for y € L (G), we get

(1®1Ruw)((1®UHNx®1)(1®U,)) — x in the weak sense .
Let
y®1 e B(H#,QL,(G)®1 N (1QUH(x@)(1®U,).
Then since

(1I®1@wk)(Yy®1) =y
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we have
Y(I®1®wg)(1UHKx®)(1®U,))
= (1®1®wk)(1RUHEx@NURU,))y .
But
(1R1Rw)((1QUH(x®1)(1®U,)) - x in the weak sense .
Hence

yx=xy or x®1e{(1®UNRNIQU,), 191®B(L,(G)}" .

We shall now prove the duality theorem for crossed products:

THeOREM 3.2. If A, is a von Neumann algebra on #,, G a locally compact
group and m, an action of G on A, then

(41 ®1, L(G) ®4, Lo (G) = (1®@Uy)(m; ®1)(4, @%(L,(G) 1QUY) .

Proor. This theorem is an immediate consequence of the general duality
Theorem 2.10. Indeed, because of the definition #; (see Theorem 1.3) and the
fact that L, (G)=L(G), (4;®; L(G)®; L,(G) is a dual é-product.
Furthermore =, is a non-degenerate action by Theorem 3.1.

Now we shall show that also the duality theorem for crossed dual products
is a consequence of the general one. For this we must prove that a dual action
of a locally compact group is non-degenerate.

Let us first consider the case where G is a compact group. We define w on
L(G) by w(x)=<x1,1) where 1 denotes the L,-function such that 1(¢)=1 for all
teG.

If f and g are elements of L,(G) we have that

(A®w)(U,)fg> = (U ,(f®1),g®1)

= f S (9)1(st)g(s)1(t)ds dt

= f f(s)g(s)dsdt

= <{f®1,8®1) = {f,g)<1,1)
= (1®w)(1)f,g>
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So, if x € #(#,®L,(G)), because w is multiplicative on L(G), we have
(1®1®w)((1eU)(xR@D(1R®U,)) = x
and we get that ‘
,(4,) @195, B(Ly(G)) = 7,(4,) ®AB(L,(G))
with 8, as in Definition 1.2. which means that the action n, on A4, is non-
degenerate.
It is clear that we can not do the same thing for a non-compact group. But
we will do something similar in the following lemmas.
LEMMA 3.3. There exists a net {wg} in L(G), such that
wg(4,) = wg(4,) and wg(i,) — 1 for all pin G, when K — G .

PrOOF. Let f; be an element of K(G) such that fo=0 and [ fo(s)ds=1.
Put gK(t)=j'K fo(ts)ds for any compact subset K of G. So

gk = (J esA(S)‘*dS>f .
K

gk () — Jfo(ts)ds = Jfo(s)ds =1

If K — G, we have

so by Dini’s theorem gk converges to 1 uniformly on compact sets. Then define
wg by

wk(x) = {xfo,gx> for x € L(G).
Then

wk(4,) = Jfo(P'lS)gK(S)dS - jfo(l’_ls)ds = ffo(S)dS =1.

Furthermore,

wg(4,) = wg(Ay) = A7 fo.8k> = {8k: A7 So?

_ j QA5 fon 3t fo ds

- fa,,fo,as-,A(sr*fods

= {4, fo, 8> = wk(4y) -
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In the next lemma we identify 5#,®L,(G) with the completion of K(G, #,),
ie. the continuous functions of G to #, with compact support.
LEMMA 3.4. Let x € B(#,®L,(G)) and ¢ € K(G,#,). Put
Pk (x) = (1Q1®wk)(1®UH(x®1)(1QU,))

with wk as in Lemma 3.3.
Then there is a number M such that

Kok ()&, m = 1x®@DA®U)(ERL)I InIlM
Jor all K, n € #,®L,(G) and with f, as in Lemma 3.3.

ProoF. By the definition of U, we have

(AIRUL)ER f) . 9) = £(p)fo(pq) -

As ¢ and f, have compact support, g must belong to a compact set. Choose
h € K(G) such that h>0 and h=1 on this compact set. Then

(1®18m)(1QU,)(¢® f) = (1QU,)(¢R® f,)
and
Kok (x)ém] = KU®1@m)(x@1)(1®U,)(E® fp), (1 U,) (1®gx)|
S [@DARUYE® ) 1 (1@1@m)(1RU,)(n®gx)|l -
But
11®@1®@m)(1®U,)(n®gk)|?

= _U h(@?n(p)I*Igk (pg)l* dpdq < '[ h(g)*dq|in|?

for gx<1. So put M=h(g)?dg and we get the desired result.
LemMMA 3.5. If x € B(#,®L,(G)) and ¢ € #,®L,(G) with compact support,
then
ok (X)&,n> = x&n)  for all ne #,BL,(G) .
In particular, if x € B(H# ,®L,(G)), then
x € {¢x(x) ; K=K~' and K is compact}" .

Proor. Let
C = {y®mgi, ye B(K,), fe K(G), peG}.
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By a simple computation we see that
U(4,®1D)U, = 4,04, and UFm @)U, = m;®1.
Therefore, with wg defined as in Lemma 3.3
((1®1®w)((1®U®i,m @)1 U)))E, 1>
= {((1R1@uK)(y®4,m @4,)E,n>
= {0®4,m)E, <Ay 0,8x> = (Y®4,mfE, 1)
because of Lemma 3.3. Hence

Lo WEny — Y&y il yeC.

Here ¢k is defined as in Lemma 3.4.
We also know that C spans a o-weakly dense subset in 2(#,®L,(G)). So

¥V e>0 there exists a x, € C such that

[Kxo&omd—<x&m)l < & and  [[((x—x0)®)(IQU)E®NI < &

But by Lemma 3.4 we have
Kok (¥)E,1) —<x&ml < [((x=x0)@)ARU)ERNI [N M+
+ K@k (x0)&, 1> — {xo&, M|+ [Kxo&, ) — <x&, M)

Therefore for K — G
<@k (X0)&, > — {xo&, )| — 0
and consequently
Kok ()¢, 1> —<x&,n>] — 0
since we can find a x, € C such that
1(x = x) ®DA®U)E® 1)l 1] M +[<xo8 0y = <xE, 1)

becomes arbitrarily small.
Now let y commute with @ (x) for all compact sets K such that K =K1,
Take ¢ and n with compact support. Then

yxény

I

lim {@g(X)¢,y*nd>
K—G

lim <y¢, @k (x*)n>
K—-G

{xyé,ny .



328 LUTGARDE VAN HEESWIICK

Here we used that {pg(x)¢,n> — (x&n) and the fact that @g(x)*=@g(x*)
which is a consequence of Lemma 3.3. Hence

xy = yx for all y e {pg(x) ; K=K~ ! and K is compact}’ .
Before we come to the duality theorem for crossed dual products, we shall

show that a dual action of a locally compact group G on a von Neumann
algebra A4, is non-degenerate.

THEOREM 3.6. If =, is an action of M =(L(G),L(G),U,,J,,J,) on a von
Neumann algebra A, acting on # ,, then

A, ®n2'@(L2(G)) = A2®'@(L2(G)) .

PRrROOF. As m, is an injective mapping it is sufficient to prove that
(n,®1)(4, ®,, B(L,(G)) = 7,(4,)@B(L,(G)) .
But
(M@ 1), (Az) = (1®0,)m,(A4;)
with J, as in Definition 1.2. So we have to show that
2(42) @195, B(L2(G)) = 7,(4) ®B(L,(G)) .
As
(m2(A4) ® 195, B(LL(G)
= {(1®U)(n,(4,)@1)(1®U,), I®1®B(L,(G))}
= (1®U$)(n,(4,) ®B(L,(G)(1®U,) N (B(H#,®L,(G)®1)
there exists a von Neumann algebra A« #(#,®L,(G)) such that
m,(A4,) @105, B(L,(G) = ARRB(L,(G)) .
Because
(1®6)1,(4,) = (1,@V,(4,) = (1,®1)(4,®L(G))
< m,(4,)®L(G),
we have that
A < m,(4,).
The other inclusion follows from Lemma 3.5. Indeed, let y € 4’, then

y®1 e B(H,RL,(G)®1 N (1QUF)(m,(A)®1) (1QU,) .
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Since (1®1®@wg)(y®1)=y we have for x € n,(4,)
yI®1®wk)((1®UF)x@(1®U,))
= (191w ((1IRUH(x®)(1RU,))y .
But by Lemma 3.5 we have that
x € {(1®1Rwg)((1®UNx®1)(1®U,)) ; K=K~ ' and K is compact}” .
Hence xy=yx and A’'<n,(A4,), and so n,(4,)=A.

THEOREM 3.7. If A, is a von Neumann algebra on 3 ,, G is a locally compact
group and m, a dual action of G on A,, then

(A2 @4, Lo (G) ®:,L(G) = (1QU,)(m,®1)(4,®%(L,(G)(1®U3) .

Proor. This theorem is also a consequence of the general duality Theorem
2.10. Indeed, because of the definition of %, (see Theorem 2.3), it follows that
A;®,, L (G) is a d-product and 4, ®,, L,(G)®;, L(G) is a dual é-product,
where A = (L(G), L (GY,U,,J5,Jy).

Furthermore n, is non-degenerate because of Theorem 3.7.
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