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EVEN GENERATORS IN
THE Mod2 COHOMOLOGY OF A
FINITE H-SPACE

JAMES P. LIN*

Introduction.
The following conjecture has been attacked by many mathematicians:

ConsecTure. If X is a simply connected finite H-space then H,(QX; Z) is
two torsion free.

The author has shown H_(2X;Z) has no odd torsion [8]. The
corresponding theorem for X, a Lie group was proven by Bott [2]. Recently,
R. Kane proved the following theorems:

THEOREM A (Kane) [6]. H, (22X ; Z) is two torsion free if and only if there are
no even generators in H*(X; Z,).

THEOREM B (Kane) [5]. There are no even generators of H*(X ; Z,) of degree
congruent to zero mod four.

Progress has been slow in eliminating generators of degree congruent to two
mod four. One of the difficulties is the existence of odd degree elements of
H*(X; Z,) whose cup product square is nonzero. This feature of the
cohomology does not occur for odd primes. Another difficulty is that Theorem
A is not true for non-simply connected H-spaces X. This is shown in the
cohomology of the Lie group AdE;:

H*(AAE,; Z)) = Z,[x,,xs, xg]/(x‘f, x‘;, x‘;) ® A(Xg, X155 X17, X23, X27)

which has a six dimensional generator.

The purpose of this paper is to study the module of even indecomposables
QH®*(X; Z,) as a module over the Steenrod algebra. Throughout the paper
we will assume H,(X;Z,) is associative. It will soon become evident that this
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assumption considerably simplifies the coalgebra structure of H *(X; Z,). Let
4(2)" be the subalgebra of 4(2) generated by elements of the form Sq?* for [>0.

We will prove that as a module over 4(2)*, QH®*"(X; Z,) is generated by
elements of degree 2"—2 for n>1. Furthermore, we will exhibit explicit
Steenrod squares that connect all even generators to generators of degree 2" —2
for n>1. Theorem A therefore implies, if %, QH* ~2(X; Z,) is trivial, then
H,(QX; Z) is two torsion free.

The contents of this paper has been partly joint work with John Harper.
Much of the flavor is taken from a previous incorrect version, which showed us
that the Z, cohomology of a finite H-space is really an order of magnitude
more complicated than the mod p cohomology. The techniques used in this
paper rely heavily on ideas of Zabrodsky. It might be said that Zabrodsky’s
ideas have pervaded everyone’s work on the theory of finite H-spaces in the last
ten years. This paper is no exception. Finally, I would like to thank David
Kraines for several helpful discussions.

1. Hopf algebras over the Steenrod algebra.

To begin our study we first need to gather information about the coproducts
of generators of the cohomology of a finite H-space X. We assume throughout
that X is a finite H-space with associative mod 2 homology ring.

There are two theorems already proven that will be used:

THeorem 1.1 (Browder) [3]. If t and u are odd homology primitives of
H, (X; Z,) then

(1) =0
@) [t,u]=0.

Proor. By Browder [3] there are no even integral primitives in H «(X5 Zy).
This implies t'=up'=0 for all i. By induction using the fact that §' is a
derivation, we get (1?)f'=[r,u]p'=0. Hence t* and [t,u] are even integral
primitives. It follows that they both vanish.

CoroLiary 1.2. If AcH,(X;Z,) is the subHopf algebra generated by
PH44(X; Z,) then A is an exterior algebra over the Steenrod algebra.

Proor. By Browder A is an exterior algebra and for t € P(A), tp' =0.

Tueorem 1.3 (Kane) [5]. There exists a subHopf algebra B H*(X ; Z,) over
the Steenrod algebra with the following properties
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(1) B is concentrated in even degrees
(2) The induced map

QBCVen — QHCVCI] (X; ZZ)

is an epimorphism.

Proor. Let A be the homology Hopf algebra described in Corollary 1.2. We
will show A is normal in H_(X; Z,). Let A(n) be the subHopf algebra of A
generated by primitives of degree greater than or equal to n. Because
H,(X; Z,) is finite dimensional, A(n) is finite, and vanishes for large n.

Suppose the highest odd primitive occurs in degree m. Then A(m) is normal
in H,(X; Z,). To see this, it suffices to show A(m) is central in H (X; Z,).
Because H (X ; Z,) is associative, we can test the centrality on generators of
H, (X; Z,). Let t € A(m) be a generator and suppose that t commutes with all
generators of degree less than I Then if u is a generator of degree I, [t,u] has
coproduct

Alt,u] = [Lul®1+1Q[t,u]+Y [t,u]Qu; +
+Y u®t,u)] if du =Y ui®u;,

but by induction [t,u;]=0=[t,u;].

Therefore [t,u] is primitive. Now if u is of even degree [t,u] has degree
greater than m. Hence by construction [t,u]=0. If u has odd degree it may be
chosen to be primitive because the map

PH 44(X; Z;) = QH 44(X; Z,)

is an epimorphism. Therefore by Corollary 1.2, [t,u] =0. Hence A(m) is central
in H (X; Z,).

Assume by induction that A(n+1) is normal in H,(X; Z,). We will show
that A(n) is normal. We have A(n)//A(n+1) is a subHopf algebra of
H,(X; Z,)//A(n+1) and is exterior on generators of degree n. Furthermore the
highest odd degree primitives of H,(X; Z,)//A(n+1) occur in degree n. By
exactly the same argument as above, A(n)//A(n+1) is central in
H,(X; Z,)//A(n+1).

It follows that A(n) is normal in H, (X ; Z,). By induction it follows that 4(0)
=Ais normal in H (X; Z,). If we define B=(H (X ; Z,)//A)* then B satisfies
the requirements of the theorem.

CoROLLARY 1.4. H*(X; Z,)//B is a primitively generated exterior algebra.

Proor. We have A*=H*(X; Z,)//B. Consider £A*. If £4* is nontrivial then
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P(£A*) is nontrivial. Dually, there would be an even generator in A. This is
impossible. Then A* is exterior and by the Samelson Leray theorem, A* is
primitively generated.

We can now prove an important theorem about the coproduct of generators
of H*(X; Z,):

THEOREM 1.5. There is a choice of representatives for QH®Y(X ; Z,) with the
property that they have reduced coproduct in BQ H *(X; Zy).

ProoF. Let n: 4 — C be an epimorphism of connected Hopf algebras and
let n: C — I(C) be the projection onto the augmentation ideal. We may define
amap g: A > A®I(C) by

g: A— A®4 %% A®C 18, 4R1(C).
Let T=kernelg. Baum and Browder [1] prove the following:

(1.1) If C is primitively generated and T is a Hopf algebra then there is a
module R< A with the property that the sequence

0-T—->R—->PC)—-0
is exact and A(I(R))<1(T)®I(R).

To apply this result to C=H*(X; Z,)//B we have to check that T is a Hopf
algebra. Consider the dual of g.

g8+ Ho(X; Z)®I(A) > H,(X; Z,)®4 —» H, (X; Z,)®H,(X; Z,)
— H (X;Z,).

We have image g, =H _(X; Z,)I(A). Hence. T = cokernel g, is B. Hence (1.1}
applies. There is an exact sequence

0— B— R— P(H*(X; Z,)//B) > 0,
with A(I(R))<IB®I(R), REH*(X; Z,). Now since there is an extension
Z,—>B— H*(X;Z,)> H*(X; Z,)//B— Z,
there is an isomorphism
QHM(X; Z,) = QH*(X; Z,)//B*® = P(H*(X; Z,)//B)%
by 1.3 and 1.4. This completes the proof.

PROPOSITION 1.6. Suppose an element x € A is decomposable and has reduced
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coproduct in B® B where B is a subHopf algebra that contains ¢A. Then we may
write x=y*+d where d € B and d is decomposable in B.

Proor. Consider {x} € A4//B. {x} is decomposable primitive hence {x}
={y}?. Therefore x—y* € I(B)A and since (A< B, A(x—y*) e B®B. The
Milnor-Moore isomorphism A~B®A//B is the map '

0: 44 A®A 22", BRA//B

where g is a B-module splitting. Under this isomorphism B is identified with
B®1. Applying 6 (x—y*)=(x—y*>)®1. Hence x—y* € B.

Now consider the subHopf algebra of B generated by all elements of degree
less than or equal to half the degree of x —y?. Call this Hopf algebra B,. Then
the residue class {x—y*} in A//B, is primitive decomposable. Hence {x —y*}
={z}% So {x— (y+2)*} =0 in A//B,. Consider the induced map

0 — P(B//B,) — P(A//By)
{x—(@y+2?}—>0.

It follows that x — (y+z)? € 1(B,)B. Now since QB, is bounded by half the
degree of x— (y+2z)? it follows that x— (y+z)? is decomposable in B.

2. Secondary operations.

In this section, we will describe a secondary operation that detects the
square of a homology class. The ideas are described in detail in [8]. The
following theorem is a slight variation of the theorem described in [8].

THEOREM 2.1. Let x be a 2n dimensional cohomology generator with coproduct
in C®C where C is an (1(2) subHopf algebra of H*(X ; Z,). Suppose x=8q'y
where Ay € CQC, y ¢ C. Furthermore suppose Sq*"*'Sq' =Y ab; and byy is
decomposable in C. Then there is a secondary operation ¢ defined on x and

dp(x) = x@x+) ima;+I1(C)H*@H*+ H*®I(C))H* .
Ift € PH,,(X; Z,) satisfies {t,x) +0, {t®t, Y ima,>=0, and {t,C) =0 then
*0.

Proor. The proof is exactly the same as Main Theorem 1.3 of [8] with the
exception that the K in the Toda Bracket diagram becomes K(Z,,2n—1) and
represents .

The following theorem is due to Kane [5]:
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THEOREM 2.2 (Kane). Let X be a finite H-space. Then QH**(X ; Z,)=0 for all
k=1.

Now let 4(2)* be the subalgebra of 4(2) generated by elements of the form
Sq*"for n=1,2,. ... Let Q°*" be the submodule of QH(X; Z,) concentrated in
even degrees. Then Q" admits an 4(2)* action. Our next theorem describes
the degrees of the 4(2)* module generators of Q¢¥en,

THEOREM 2.3. Z, ®(;2)+) Q%" is concentrated in degrees of the form 2" —2 for
n=2.

Proor. Define inductively Q,=Sq', Q, =[Sq',Sq?],... 0,=[0,_,,Sq*"].
Applying formulas in the Milnor basis [9], we obtain

(2.1.1) The Qs generate a primitively generated exterior subHopf algebra of
4(2).

(2.1.2) 089" = 89'Q;+Q;,,8q' 2"
where the last term is omitted if /<2'*!.

Let v(s)=2°*'—1. Then applying (2.1.2)

(2.1.3) Sq**t = ¥ Sq e,

s=-1
(2.1.3) implies

(2.1.4) If 2n+1+v(s) for any s, then Sq*"*! belongs to the right ideal
generated by 4(2)* and the left ideal generated by the Q)’s.

Returning to the theorem, suppose x € Q°°" has nonzero projection in
Z,®1u*)2°" and is not of degree 2"—2=2v(n—1). We will show this leads
to a contradiction. Let degree x=2I. By Theorem 2.2, | is odd. By Theorem 1.3
X has a representative x € B where B is an even 4(2) subHopf algebra of
H*(X; Z,).

Filter B by B(s)< B where B(s) is the 4(2) subHopf algebra of B generated by
elements of degree less than or equal to s. Suppose x € B(m+1), x ¢ B(m).
Then Ax € B(m)®B(m) and Q,x=0. Now 2/+1 F0(s) so

21+1 Z Sq2l 2v(s) Qs

where 2/—2v(s)=+0 for all s.
Applying the Main Theorem 1.3 of [8] we get a class o(x)cH*(X; Zz) with

2.1.5) Ap(x) = x®x+Y imSq¥~2® + [Bm)H*@H* +
+H*®IB(mH* .
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Lett € PH,,(X; Z,) satisfy {t,x)> #0, {t, B(m)» =0. Then if {t®t,im Sq* ~2*)}
=0 for all s, (2.1.5) would imply

to(x)) £ 0.
This would imply Q*' 40 which contradicts Theorem 2.2. Therefore
(®t, imSq¥ "2*®y & 0 for some s .

Now since X has nonzero projection in Z,®;;+Q%" we may assume
t,im(2)* > =0. Therefore the only possible way <{t®t, im Sq* =" %0 for
some s is if x=Sq'y for some y.

We conclude x=Sq’ y for some y. Now consider x in QH*(X; Z,). We have
just shown that x is in the image of Steenrod operations of odd degree. By
(2.1.3) and (2.1.4), the only odd degree Steenrod operations that can hit X are of
degree v(i) for some i and we may write

1 1
(2.1.6) x= 3 8qVz = Y Q7
i=1 i=1
where we may assume
2.1.7) %, and Sq"? z, are not in the image of 4(2)* .
Consider the largest of all terms appearing in (2.1.6)

l -
Sq"?Pz, .

According to Theorem 1.5 we may assume Z, has representative z, with
Az, € BQH*(X; Z,). Pick representatives wy,. . ., w; for all odd generators of
degree less than degree of z, with the property Aw; € B H*(X ; Z,). Define C
to be the 4(2) subHopf algebra generated by B(2/—1) and wy,. .., w,. Finally,
let y=Sq?**~ 1z, so that Sq'y=Sq"?z. Then

(2.1.8) dye C®C and y¢C.

The first statement follows by construction. If y € C that would imply Sq"" z, is
in the image of 4(2)* which contradicts (2.1.7). We now apply Theorem 2.1. By
assumption, 2/=degree Sq'! y+2"—2 hence

Sq**t = ¥ Sq¥"?"Q,,, where 21>2v(r) for all r.

r=-1

Hence

Sq21+1 Sql = Sq21—2v(r) Sql Qr+1 .

r=0

Here we used Sq'Sq!=0 and Sq'Q,,,=0,.,Sq'. Now, by Theorem 2.2
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(2.19) Q, .,y is decomposable of degree =0 mod 4 and 4Q,.,ye C®C.

Proposition 1.6 implies Q, .,y =z%+d where d is decomposable in C. Now if z
is decomposable then z? is decomposable in C because C contains EH*(X; Z,)
up to dimension 2/—2. If z is indecomposable, we may assume z=2z,+d, where
z; € Bby Theorem 1.3. Hence z? is always decomposable in C and hence Q,+1y
is decomposable in C.

Now since Sq'y is not in the image of 4(2)* (by 2.1.7), there is a
t € PH,,(X; Z,) with

(2.1.10) <t,Sq'y>+0 and <{t,C+ima(2)*> = 0.
It follows that

(2.1.11) <{t®t, Sq*~2""8q'» =0 by the Cartan Formula and the result that ¢
is annihilated by any Steenrod operation involving two Sqls (by
Browder [3]).

By Theorem 2.1 ¢*#0. This implies Q* %0 which contradicts Theorem 2.2 We
conclude that Sq"" Z, must be in the image of 4(2)* which implies  is in the
image of 4(2)*. This completes the proof.

3. Action of 4(2)* on Q%*2,

In Section 2 it was shown that elements of degree not equal to 2"—2 for
some n belong in the image of Steenrod operations 4(2)*. One drawback to
this result is that we do not know which Steenrod operations connect the even
generators. In this section, we use Main Theorem 1.3 of [8] to specify certain
Steenrod algebra connections.

Oour first task will be to describe the even subHopf algebra B in more precise
terms. Recall that B H*(X; Z,) satisfies QB — QH®*"(X ; Z,) epimorphic
and B is concentrated in even degrees.

ProposiTioN 3.1. B//EB is an exterior algebra on generators of degree
congruent to two mod four.

PROOF. Let x be a generator of B//¢B of degree 2I. Let B, be the subHopf
algebra of B//¢B generated by elements of degree less than 2I. Then we have
an exact sequence

0 — P(B//(B)//B, % P(H*//¢B)//B, .

Now if degree x=0 mod4, then by Theorem 2.2 6{x}=0 so {x}=0 and x
belongs to the ideal generated by B,. But then x could not be a generator of
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B//¢B. We conclude that all generators of B//¢B are concentrated in degrees
congruent to two mod 4.

ProposiTION 3.2. B//EB is primitively generated.

Proor. It suffices to show by Milnor-Moore [10] that (B//EB), is
commutative, associative and has no squares. By hypothesis (B//EB), is
associative. Hence we may test commutativity on generators. Given the lowest
degree commutator say [f,u], we may assume t,u are algebra generators.
Hence they are dual to primitives. The only primitives of B//éB occur in
degrees congruent to 2mod4. Therefore degree [t,u] is congruent to zero
mod 4. This contradicts the fact that Q(B//¢B) is concentrated in degrees
congruent to zero mod4. Hence (B//¢B), is commutative and associative.
Therefore the squaring map is a map of Hopf algebras. Once again, if there are
squares, there must be primitive squares of generators. But all such squares
occur in degrees congruent to zero modd4. Hence B//(B is primitively
generated.

We now apply the technique of Baum and Browder [1] to select

representatives for QB:

THEOREM 3.3. There is a choice of representatives for QB with reduced
coproduct in EB®B.
Proor. There is an extension of Hopf algebras
Z,—»¢(B— B— B//(B— Z,.
By Proposition 3.2 B//{B is primitively generated. Consider the map
g: B— B®B -12%, B®B//:B — BQI(B//¢B).

We have kernel g=¢B.
Following equation (1.1) we have a choice of representatives for QB
= Q(B//¢B) that have the desired coproduct.

ProposITION 3.4. Q*B=0 for all I>1.

Proor. This follows from Proposition 3.1 and

OB = Q(B//¢B) .

LEMMA 3.5. Suppose x, y belong to B have Ax € ¢ B®B, Ay € EB® B, degree x
=degreey=2mod 4 and x—y is decomposable in B. Then x—y=0.
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Proor. {x—y} € B//¢B is decomposable primitive. Since degree x—y=2
mod 4, {x—y}=0. Therefore x—y e I(¢{B)B.

Applying the isomorphism B=~¢B®B//EB shows x—y e £B. But ¢B is
concentrated in degrees congruent to zero mod 4. Hence x—y=0.

We now prove a theorem about generators of QB. We consider this theorem
as a starting point for more general theorems which will be proved later. It is
important to take note of the techniques used in the proof.

THEOREM 3.6. For all k=1
QBSk+2 — Sq4QBBk—2+Sq4kQB4k+2
and
Sq4QBSk+2 =0.

Furthermore if X € QB®*2 has representative x € B8 "2 with Ax € EB®B
and x indecomposable in H¥*2(X ; Z,), then x=Sq*y+ Sq**z for some y, z with
reduced coproduct in EB®B and Sq* x=0.

Proor. Note that it is possible that QB®%**? is not isomorphic to
QH®*%(X; Z,). In fact if x € B®*?, x=w? where w is a generator, then
x e QB%*2  In this case we may choose w with coproduct
Aw e BQH*(X; Z,). Then

w? = Sq**'w = Sq**Sq' w+Sq*Sq! Sq** " w .

Sq' Sq**~2w is decomposable in B. Hence x=Sq* Sq'w in QB.

Now consider the case when k=1, 8k+2=10.

Theorem 2.3 implies QH®(X ; Z,) is in the image of 4(2)*. By the above, w2
=Sq*js in QB. We have QH'°(X; Z,) must come from QH®(X; Z,) by
Steenrod operations. Because Sq2 Sq% =Sq> Sq’, the only possible operation is
Sq*. Therefore

(3.1.1) QB'°=Sq*QB®, and Sq*QB!°=Sq*Sq*QB®=0. Hence if
Adx € EB®B, Ay € EB®B, and x=Sq*y mod decomposables, then by
Lemma 3.5 x=Sq*y and Sq*x=0.

Henceforth we will assume k>1, and x w2

Now B is a finite Hopf algebra, so we may apply downward induction.
Assume that the theorem is true for all QB®¢*? where k'>k, and let
X € QB®*2, Pick a representative x € B for x with Ax e ¢B®B. Since k>1
there is a factorisation
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(3.12)  Sq'Sq™** = 8q**?Sq' +59™ Q, + (Q, +Sq"?) Sq®*~* .

I claim Sq*~*x=0. To see this, by the Adem relations

(3.1.3) Sq**™* = Sq*Sq**"® +8q®~5Sq! +Sq® " 6Sq? .

Now Sq'x=0 and Sq2x € ¢B by Proposition 3.4 and Lemma 3.5. Hence
Sq**7®Sq*x=0. It remains to show Sq*Sq®*~®x=0. By induction, and
Lemma 3.5, either Sq® "% x=0 or Sq® % x=Sq*y+ Sq*~*zmod decompos-
ables in B. But if 4y and Az belong to éB®B then

8k—8 8k—4

Sq** % x = Sq*y+Sq®*z.

Hence by the Adem relations
Sq*Sq* 8 x = Sq°Sq%y+Sq7Sq' y+Sq**28q%z+Sq®* " !Sq'z = 0
by Lemma 3.5. This shows Sq® 4 x=0.
We now show % € im Sq* +im Sq**. If not, we can assume x € B(m+ 1), and
x ¢ B(m)+im Sq*+im Sq**

where B(m)< B is the 4(2) subHopf algebra generated by elements of degree
less than or equal to m. Therefore there is a primitive ¢ € B, with {t,x>=+0 and
{t, B(m)+im Sq* +im Sq**» =0.

Also, since PB,,=0 we have <t,Sq?)>=0. I claim

t®t, imSq**2+im Sq®* +im Q, +Sq"?®> = 0.

If this is true, Main Theorem 1.3 of [8] would imply 0+ t? € PB,, ;4 which is
a contradiction. We proceed:

If (t®t, Sq®**2)+0 = x=w? which is not possible.
If (t®t, im Sq®) 0 that would imply x=Sq*y.
If t®t, im Q,+Sq"®)+0, then

0,+5q"® = Sq°Sq*+Sq*Q, and Sq* =tSq* =0

implies some t0+0 where 6 belongs to the algebra generated by elements
having 2 Sq' factors. This is impossible by Browder [3]. Hence we get the
required contradiction. This completes the inductive proof. The rest of the
theorem follows from Lemma 3.5.

4. General formulas for QcVen,

By analyzing the proof of Theorem 3.6 it should become clear that the
Steenrod algebra obeys certain rules that restrict the structure of Q¢¥*" as an
4(2)* module. In this section we generalize Theorem 3.6 to obtain information

Math. Scand. 44 — 20
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about Steenrod algebra actions on even generators of all degrees. Our starting
point is a collection of facts about the Steenrod algebra.
The following ideals of 4(2) will appear often in the discussion.

DEFINITION. Let I, be the two-sided ideal of 4(2) generated by Sq'. Let I, be
the two-sided ideal generated by I,I,.

Let J, be the right ideal generated by Sq2 Sq*,...,Sq* for r21.

Let K, be the right ideal generated by J,+1,.

The Adem relations imply the following lemma:

LemMaA 4.1. For k=21, r=1

(@) Sq*" k+2'=Sq* mod K, _;.
(b) Sq?'Sq* =0 mod K, _;,.
© Sq¥ Sq* *=1Sq"*"** mod K,_,, A€ Z,.

It will be useful to know when Steenrod operations belong to K, for some r.
LemMa 4.2. Suppose a>0 is an integer with a=v(s) for any s. Then if a has
dyadic expansion
a =v()+2vk)+R, i>j+1, k> -1
where R=0 mod 2'***2 then Sq° € K; 44
Proor. The proof is by induction on a. If a=2 then Sq?e J,and j=—1,k
=0, i=1, R=0. By induction assume the lemma is true for all allowable

integers less than a.
If a is odd, the Adem relations imply

j+1 j+1 2]
Sq° =5q”"8q" """ + 3, «5q"7'Sq".
t=1

a—t is an allowable integer. Therefore Sq*™* € K, ;.
If a is even, then j= —1 and if a+2' then

2[—1

Sq* = Sq¥Sq* ¥+ Y «,Sq**Sq" .
t=1

For even t, a—t is allowable and for odd ¢ Sq*~*Sq' € I,. Therefore Sq° € K 4,
for all allowable a.

The following lemmas were used in Theorem 3.6:



Mod2 COHOMOLOGY OF A FINITE H-SPACE 307

LeMMA 4.3. (a) Qj+.Sq"U’Wc—‘ ‘lf, for j=1.
(b) Sq°?(Sq* " *"¥)=0 for k21.

Proor. For j=1, @, +Sq*=Sq?Sq’ € J,.

Assume the lemma is true for all integers j'<j. Then
Q;+8q"" = 897 Q;_,+(Q;-1 +54"")Sa* e J;

by induction. Part (b) follows from the Adem relations.

DeriniToN. If K is an ideal in 4(2), define

AnnK = {te H, (X;Z,)| t0=0 for 6 € K} .

LEMMA 4.4. Let t € PH,,(X; Z,). If t € AnnK,, r21 then (t®1)(Q,+Sq"")
=0.
Proor. For r=1, tSq?>=0 implies
(t®1)Sq2Sq! = (¢Sq'®tSq')Sq! = 0.
Now let r=1 we prove by induction that
(t®1)Sq"™ = tSq""®t+t@RtSq""” if t € AnnK, .
Suppose the above formula is true for ' <r. Then Sq""” =8q"" "1 8q* so
(t®1)Sq"” = (1Sq*" V@t +t®tSq"" 1) Sq¥
tSq""®t+ Y tSq*" VSq‘®tSq”

b1
a+b=2"

+symmetric terms .

If b is even, Lemma 4.2 implies t Sq®=0.
If a is odd Sq"""VSq € I, so tSq"*~VSq*=0.

We conclude
(t®1)Sq"” = tSq"" Rt +t®tSq*" .
Now tQ,=tSq"" by induction. So t®t € kernel (Q,+5q"") if t € Ann K.

We can now generalize Theorem 3.6.

DEFINITION. Let

a(s,k) = 2**2k+2v(s—1)
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b(s, k) = 25*2k+20(s)

Note that a(s, k) =b(s— 1, 2k), and every even integer congruent to two mod 4 is
expressible in the form a(s, k) for unique s and k.

THEOREM 4.5. Let s, and k be greater than or equal to one. Then

(as) QBa(s,k)=Sq2‘“k QBb(s—l,k)+Sq

(b) Sq*""' QB**¥=0.

(c) If t € PBy ) then t € Ann K, or dually
QBN K . ,0B=0.

23+l

QBb(s—l,Zk—-l)

COROLLARY 4.6. If % € QB*® has representative x with x+w? and
Ax € EB®B, then there are elements y,z € B with Ay e EB®B, Az € (BB
with

x — Sq2:+lky+sq25+lz
and

Sq¢¥"'x =0.
Proor. This follows from (a,) and (b, and Lemma 3.5, and Theorem 3.3.

Proof oF THEOREM 4.5. The proof is by induction on s. We will prove

(1) (c,) implies (a,).

(2) (c,_,) implies (a,).

(3) (cs-y) and (ay) imply (by).

(4) (cs-,), (a) and (by) imply (c,).

First note that (c,) holds. We must show if t € PB,,,, then t € Ann K. But
tSq? € PB,,=0. Hence (c,) is true.

Now (a,) is precisely Theorem 3.6, hence (c,) implies (a,).

SteP 2. (c,.,) implies (ay).

We must show QB*0=8q 'kQBts~1.0 4 gq2" QRrs—1.2k=1)  ep’s

consider two preliminary cases.

CasE 1. % € QB> is represented by x=w?. Then w has degree a(s —1,k)+ 1.
If k=1 then

s—1
— — s+1_
Sqa(s 1,kh+1 _ ): Squ(s 2)+2 Zv(I)QH_l .
1=-1

Lemma 4.2 implies Sq?*¢~2+2"-20 ¢ K for all I Therefore w?
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=S8q*~1h+1y belongs to K,,;Q0B* But (c,_,) implies w? ¢ K,OB*.
Therefore w?>=Sq>""' 7 for some z € QB** 12~V If k>1 then

s—3
Sqa(s—l,k)+l — 2 Sqa(s—l,k)—ZD(l)Ql+1+Sq2’“st_1+
1=—1
+(Q,+8q°¥)Sq7
By Lemma 4.3(b), Q,+Sq"® € J, and Sq**~ P~ 2P e K ., by Lemma 4.2.
Therefore c,_, implies w? € Sq*"'* QB ~ 1%, This completes Case 1.

CaSE 2. X € QB*Y, x+w? By Theorem 2.3 x e I4(2)"QB. But (c,-,)
implies x ¢ K,QB. Since 4(2)" is generated by Sq?, x=Sq?'j for some i. For
degree reasons we must have i=s+ 1. This completes Case 2.

We may now assume

CaSE 3. X € QB*>®, k>1 and x+w?. By induction we may assume the
theorem holds for all QB***) where k' > k.
Choose x so that Ax € EB®B and x € B(m+ 1), and suppose

x ¢ B(m)+imSq¥ *+imSq*"" .

We will show this leads to a contradiction. There is a primitive t € PB, \, with
{t,x>=*0 and

(4.1.1) (t,B(m)+imSq¥ *+imSq* "'y = 0.
(cs—y) and (4.1.1) imply

(4.1.2) te AnmnK ., .
Consider the factorization
s—2
(413) Sql Sqa(s,k) - Z SqZ‘”k+2u(s— 1)—2uv(l) Ql+ . +Sq2”2k Qs+

1=-1
+(Qus1 +5QC V) SQFTHTI
Since k>1, Lemma 4.1(c) implies
(4.1.4) Sq¥ 2" = §q¥"' Sq¥"* "1 mod K, .
Sq2 "k~ x ¢ Bs2k=1) where 2k — 1>k because k> 1. By induction there are
generators X,,%, € QB with

s+20p - s+1 _ — s+l _
S kD5 = Sq¥ '@ Vg +8q7"' %, .

If x, and x, are chosen so that Ax; € £B®B then by Lemma 3.5 we may
assume
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s+2. s+1 —_ s+1
qu (k l)x = qu @k-1) xl + qu x2 .
Hence

s+1

Sq¥ '@~V x 4+85¢7" 8q% " x,

s+1

qunl Sqr“‘""”x - qu
=0

by Lemma 3.5 and (c,_,).

Equation (4.1.4), ¢,_, and Lemma 3.5 imply
(4.1.5) Sq¥ 2" x = 0.
We also have Q;x =0 because x € B. Hence Main Theorem 1.3 of [8] applies. If
we show
(4.1.6) t®t € kernel [}, Sq2""*+20e=1-20 4 §q2""*k | (0 | 4 8q”¢* V)]

this would imply 240 which is a contradiction. We proceed to prove (4.1.6).
It will be convenient to use the notation

quaiu — tSqa—u®tSqa+u+tsqa+u®tsqn—u .

Carefully checking degrees, we get

s+2 —1y— s+1 —1)—
(t®t) Sq2 k+2v0(s—1)-20() _ Z tSqZ lgtois—1)—v(l)tu .
0 <u<uo(l)

Here we use the property tSq =0 if r>4degreet. But by Lemma 4.2,
Sq¥ " k+uls—D-vhtu g K - therefore,

t®t € ker qu’”k+2v(s—1)—2v(l) .
Now consider

(4.1.7) (t®)Sq*"™* = Y 1Sq¥ ke,

O<u<u(s—1)
If u=0, tSq*"'*=0 by construction. If u#v(j) for some j < (s — 1) then Lemma
4.2 implies
Sq¥ " ktve K, _, .

If u=wv(j) there is a factorization
j—1
(4.1.8) qu ko) — Z qu ‘k+2u(,—1)—20(1)QlH+

1=-1
+(Q)+1+8g" U V) 8q¥ k-2
Lemma 4.2, Lemma 4.3 and (4.1.8) imply

Cyst+2 A
Sq2 2k 4 0(j) € Ks—l .
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Hence t®t € ker Sq¥ "%,
Finally Lemma 4.4 together with (4.1.2) imply
t®t € kernel (Q,,,+Sq"**1).

By Main Theorem 1.3 we get t240 which is a contradiction. This proves Case
3.

SteP 3. (c,_,) and (a,) imply (by).

To show Sq*"' QB**¥ =0, note Sq* ' QB**Y< QB 1:2k*1 and (c,_,)
implies
(4.1.9) QP12+ D K OB* = (.
But (a,) implies

(4.1.10) QB*sh = Sq¥"'kQBPE=1.0 + Sq

2s+l

QBb(s—l,Zk—l) .
Lemma 4.1 implies
qum QBa(s,k) c iqum("* 1)QBb(s—l.k) =0.
This completes the proof of Step 3.
Step 4. (c,-,), (a), and (b, imply (c,).

To prove if t € PBy ,, then t € Ann K, ,. By (c,_,) t € Ann K. It therefore
suffices to prove tSq*" =0.

But if  Sq*""' +0 that would imply Sq
This proves Step 4.

Steps 1-4 prove the theorem by induction on s.

2s+l

QB**® £ 0 which contradicts (b,).
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