MATH. SCAND. 44 (1979), 278-288

EMBEDDING-OBSTRUCTION FOR PRODUCTS OF
NON-SINGULAR, PROJECTIVE VARIETIES

MAGNAR DALE

In [1] Lluis has shown that a projective, non-singular embedded variety
X = PY over an algebraically closed field k can always be embedded in
P;4m¥)+1 yia a projection from PY, but not always in P29 (X) On the other
hand it is known (see for instance [2]) that the product of two projective
spaces X =P}’ x P; embedded by the Segre-embedding in PY, N =mn+m-+n,
can be embedded in P7%™¥)~! via a projection from PV. This motivates the
following general problem: Let X, be projective, nonsingular embedded
varieties of dimension n;>1, i=1,...,r, and let

¢:X =X x...xX, > Py, N=(m+i)...(n,+1)—1,

be the Segre-embedding. Find the embedding-dimension e=e(n,...,n)eZ,
such that X can be embedded in P{ but not in P2~ ! via a projection from PY.
In the present note we shall solve this problem by studying the Segre-classes of
X, and by using Holme’s general result in [4] (see also [5]) which characterizes
e in terms of the degree of these classes. We prove that e(n;,ny))=2(n;+ny,)—1
if and only if X, =P}" and X,=P!, and that otherwise we always have
e(ng,...,n)=2(m;+...+n)+1.

I would like to thank dosent Audun Holme for his help during the
preparation of the present note.

0. Preliminaries.

In the following we let k be an algebraically closed field, and X a projective,
non-singular k-variety of dimension n embedded in PY by i: X = PY. This
- embedding induces the group-homomorphism of Chow-rings

iy: A(X) > A(PN) = Z[T))TN*!
of degree N —n, and the ring-homomorphism

i*: A(PY) - A(X)
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of degree 0. We may then define the degree deg () € Z of an element a € A*(X)
by i, ()=deg ()TN "+
Further, let ¢(X)=c(2%%}) be the total Chern-class of X, and let

S(X) = c(X)"! = 14+5,(X)+ ... +5,(X) € AX)

be the total Segre-class of X. We then have the degree of the kth Segre-class
deg (5u(X))=di(X)=dy € Z.
We now define the “embedding-obstructions” of X by

B(X) = B, = 2( i+l )dk—d%

K=o \J—n—k

for n<j<2n, B;=0 for j>2n. The main result of [3] is then the following:

THEOREM 0.1. Let n<m < N. Then the projective nonsingular embedded variety
X = P} can be embedded in P} via a projection from PY if and only if B;=0
for every j=m.

We shall need the following result on the embedding-obstructions in section
2. It also gives a stronger version of Theorem 0.1.:

ProrosITION 0.2. The embedding-obstructions f;(X) satisfy

0282 ... 20.

Proor. We know from [4] that —27!B,, is the secant-number of X, which
gives f,,<0. To show the proposition we then need to show that 8,,., —8,=0
when n<m=2n—1. We may assume m< N. Then there exists a linear subspace
L Py of dimension N—m—1 such that LNX=(F. Let n: X — P! be
induced by the projection with center L. From [6, p. 160], we have further: Let
S, S X be the closed subset

{x e X| dimy, (Q%p®k(x)21}.

Then S, is of pure codimension m—n+1, and we may define the cycle S,
=3 v,Z, where v,=1ly, (Ox ./J). Here x is the generic point of the component
Z and J is the 0-th Fitting-ideal of (Q}Y/p:-)x. In [6] it is proved that

m—-n+1 m+1
1y (S,) = 3 Tm—n+1—k m-n+1 X).
cly (Sy) kgo (m—n+l—k)l ( )5, € A (X)
This immediately gives
m-n+1 m+1 )
: 1 = N-2n+m+1
ivfelx 50 = % (m_m_ k)dkT
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and so we get

m-—n+1 +1
deg (clx (8,)) = kgo (m--':+l—k>dk = Bu+1—Bm -

On the other hand it is clear from the definition of the cycle S, that deg (cly (S,))
20, and the proposition is proved.

1. The embedding-dimension of P} x Pj.
Let m,n21. We have a graded, surjective k-homomorphism

S = k[Y;|0<ism, 0<j<n] — k[X,X;|0<i<m, 0<j<n] =T
Y~ XX,
which induces the closed Segre-embedding
@m.n: Proj (T) = PP x P} — PY = Proj (S)
where N=mn+m+n. Let
Py <P pyx Py P, Py

be the projections. Then we have A(Py x P§)=Z[s,t] with s"*!=¢"*1=(,
where s and ¢ are prf and pr¥ of the class of a hyperplane in P;" and P}
respectively.

ProposITION 1.1. The group-homomorphism (¢,, ,),: APy x P}) — A(PY) is
given by

PLIT L IN m+n_(m1+nl) Tmn+mi+n
m—m,
Proor. We have
sMpm = clprxP:(Pm—ml x Pn—nl) ,

where P"~™ and P"™™ are the linear subspaces of P} and P} defined by X,
=...=X, 1=0and X,=...=X, _, =0, respectively. If we identify a linear
subspace P' with Pj, ¢,, , induces the Segre-embedding.

. pm—-m n—n; M
(Pm—m,,n—m'Pk lXPk ! Pk

where M = (m—m,)(n—n;)+ (m—m,)+ (n—n,). Thus it is enough to show that
(@m, )5 (D)= ("")T™, or that Py x P} is of degree ("5") in PY. For this, see
[3, p. 54, exercise 7.1].
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We now will compute the embedding-obstructions of PJI'x P! We
have

by = Pr (b )DDrE (e

which gives the total Chern-class of P x P} as

c(QbF.py) = Pry* (c(QpEi) pra* (c(2b3)

A+ (1 +1* e APTx PY) .

By using the identity (14+X)~"*V=¥% (—1)("TY)X’ we find the kth Segre-
class as

ST xB) = (—1f Y (m?“’)<",+’>sfﬂ, 05k min,
i+j=k l J
05ism,0<j<n
which together with Proposition 1.1 give the degree
; ) —k
do=(-1F ¥ ('".*’)("T”)('"*". ) 0<k<min.
i+j 1 J] m-—i

A=

0<izm,0

1A

jzn

Now d, occurs in the general formula for f,, m+n<r<2(m+n), with the

contribution (,_ (;,t},) _)di, when 0=k <r— (m+n). Further, from the formulas
above it is clear that

(M \(mAn— G+
(=1 i M\ Jje m—i

is one of the terms of d;, ;, 0<i<m, 0<j<n. Thus we get f, by adding terms of

the type
(_1)i+j(m+i n+j m+n—(i+j))< r+1 )
i j m—i r—(m+n)—(i+j)

for those i and j that satisfy 0<i+j<r— (m+n). But for r—(m+n)<i+j<m
+n the last factor in this term equals 0, and so we may let the summation
range over all i and j, 0Zi<m, 0<j<n. This gives

m+n\?
ﬁz(mn)-—:"’( ) =

m
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ki fm+iy & n+j\(m+n—(i+j)\/ 2(m+n)+1—t
i; (= 1)< ),; (= 1)’( )( m—i )(m+n—(i+j)—t>’
0Zt<m+n.

We want to look at B,,, -, for small values of ¢, and therefore we will
reformulate the expression for B+, -, S0 that the summation ranges from 0
to t. To do this we need the following combinatorial identities:

0 (2= & -l

r m m+k—r—1
2) Z (- 1)"( ) e k> —-( " > (Vandermonde)

" () (=)

We get

ﬁ2(m+n)—t+<m’:n)
5 () 5 e
i i \(mAn—(+)\(2(m+n)+1—s
DEC ) )(m+"—(i+f)) Y
_ ! L) _ifmHi\(2(m+n)+1-s
sgo( 1)(5')1;0( 1)< i )( m—i )
i(_l)j(n+j>(m+2n+1-—s+i> by 3)

j=0 J n—j
_ St & _gfmi 2(m+n)+1—s m+n+i—s
L) (T

i (_1)i<mj+‘l><2(m+n)+l—S)(m+n+f'—r) by 1)

m-—i m+i
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i (__1),.(m+n‘-f-i—-r>(2(m+n)+‘l—s) by 2)

1 m-—i

_ v (BY(mEnrY ¢ st (mAn—str
T o AR e

1]
o

] Il
- i
~ ~ ~ ~
SEE

3 3

+ +
S x 3 =

. .
~_—
—~ e .

3 [Ruell

+ ~

: p—
S | |

A
~ T

=

g 3
- +

=
|
N

This immediately gives B2om+my=Bam+m-1=0. For t=2 we get

-2 —1)\?
Bam+m-2 = 2<<m:1~n><m+': >_<m+£ ) ) <0

when m,n>1. We thus have proved

ProposiTioN 1.2. Let @, ,: Py x Py = PN, N=mn+m+n, be the Segre-
embedding, m,n=1, Then Py x P can be embedded into P2™*"-1 yig g
projection from PY, but not into P2™+" -2,

2. The embedding-dimension of X, x ... x X,.

Let X and Y be projective, non-singular varieties of dimension m and n,
respectively. We want to express the obstructions of X x Y by the obstructions
of X and Y. To do this, we first express the degrees of the Segre-classes of X by
the obstructions of X. We write the obstructions in matrix-form as

Bam(X) do(X) do(X)?
: =M,| :
Bn(X) dp(X) do(X)?

or
B(X) = M, (d(X))—d,(X)?
where M,, = (a;)) is the (m+1)x (m+ 1)-matrix with g = (mﬁ"'ztz(ij,i )

LemMa 2.1. The matrix M,, is non-singular with the inverse M,,* = (b;;) where
bij= (- 1)'+J—m(i+fn—tn'—2)-

Proor. We find det (M,)=(—1)"*1. Let M ! be defined as above and let
M, M. *=(cy). Then we have
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mt1 . 2m+2—i m+j
o= -1 +k—-m
Cik ,;, (=1y <m+2-—(i+j))<j+k——m—2
e z 2m+2 m+1+j
m+1+] 2m+2—k

[-m+1 2m+2~ k—i
== (2m+2 k) Z (- (—(m+1)+j>'

The factor (Z+27}) gives c;, =0 when i>k. For i<k we get

Sy k—i (L r—ktme1 o .<k—i>
Py “’(k—(m+1)+f>‘( DL GO
= (_1)—k+m-—1(1__1)k—i — (_1)_—k+m_]5i,k

which gives ¢, =4, ,, and so M, M ' =1I.

By the lemma we can write
*) d(X) = M, (B(X)+dy(X)) .

The next step is to express the degrees of the Segre-classes of X x Y by the
degrees of the Segre-classes of X and Y. We have the embeddings i: X =  2id
and j: Y = P} and get the product embedded by

l//:XXYCixi PkMkaN — Pm.n P’?'IN+M+N‘

LEMMA 2.2. We have

m+n—k

), 0k <m+n.
—i

d(XxY) = Z di(X)d; (Y)<

0<i

III\ -
° II
Il/\ =
Il/\

n

Proor. We identify A(P}) and A(PY) with subrings of 4(PM x PY) in the
canonical way. Let pr, and pr, be the projections of X x Y. Since s(X x Y)
=pr{ (s(X)) pr¥ (s(Y)), we get

Yu(s(X X Y)) = (@pr, )iy (s(X))jy (s(Y))] .

By using Proposition 1.1. on (¢ y), the lemma follows.
We also write this in matrix-form as

** d(X xY) = M(Y)d(X)

where M(Y) is the (m+n+1)x (m+ 1)-matrix with (s+ 1)-th column

(0 0, do(Y)<m+ns ) N .,dn(Y)("'+;:i"m>,o,. .. 0) .
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In M(Y) we now express the d,(Y)’s by the B;(Y)’s by (*), so that we finally can
use (*) and (**) to find the obstructions of X x Y in terms of the obstructions
of X and Y. We get

BXXY) = My, (d(X x Y))—dy(X x Y)?
= M, M(Y)(d(X))—do(X x Y)?
= My M(Y)My; (B(X)+do(X)2) —do(X x Y)? .

For Bypm+m(X xY) we get after rearrangement:

2
Cuym ('";“ ") }do(X)ldo(Y)2+ @

HE((2 C.-,,)ﬂzn-,-(Y)>} LiXP+ )

m

ﬁZ(m+n)(Xx Y) = {Z

n
i=0 j=0

+

Z Z Ci,j<ﬁ2n—j(y)+dO(Y)2>>ﬁ2m—i(X) (©

i 2m+1—i+k\2m+j—i—14+k\2(m+n)+1
Z(_l)k< k )( 2m—1—i+k )( i—k )

Now we find estimates of (a), (b) and (c) from the following lemma.

LEMMA 2.3.
mon m+n\?
I Z Z C'J =< m >
i=0 j=0

1I) ZC""'>0 for 0<j<n.

i=0
m Y C,;>0 for 0Zism.
j=o

IV) C,0>0 when 0<i<m, and if C, ; =0, 1<j,<n, we also have C; ;<0
when j,<j<n.

V) i Ci i(Ban-j(Y)+do(Y)?) >0, O0Zi<m.
j=0

Proor. I): Let X =P}, Y=P;. Then, since the obstructions of a projective
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space are all trivial, we get (b)=(c)=0, or B2em+m=(a). On the other hand
B2m+m=0 from Proposition 1.2., and I follows.
II): We expand the coefficient (2"'”,‘"“‘) in the expression for C;;as

2m+1—i+k 2m—1—i+k 2m—1—i+k 2m—1—i+k
SR B Gy = i M e

Then we can use (three times) the identities 3) and 2) from section 1 to get

G, = <2m+1'"'"1)(2"—1??1-!-1)_2(2m4jj—1)<2n.—1+1>+
’ J ! J i—1

<2m+j—~i+1) 2n—j+i-1>
+ . . .
Jj i—2

From this we get, with o, ;= (Grimizhy@n-jrivy)

m m-—1 m-—2
Cj=2 a;-2 % %+ Y o
i=0 i=0 i=0

m+j—1\2n—j+1+m _(m+j\(2n—j+m
J m j m—1

_ (m+j=D)!'2n—j+m)! 2(n—j)+1)
N JHm—1)m! Qn—j+1)!

ins

= B(m,n, )

which clearly is >0 when 0<j<n.
III) Straightforward calculations on the expression for C; ; found in II) give

c (2m+j—i—1)!(2n—j+i—1)!Ai,j
Y iIem =it ) n—j+ 1)1

where
Aij = 2nQ2n+1)i* = 2n(8mn+2n+4m + 1)i +
+2m(2m+1)j2—2m(8mn+2m+4n+1)j
+4mn(4mn+2m+2n+2ij+1) .
From this we see that C..j=C(m,n,i, j)=C(n,m,j,i), and so we get

— ! @m—i+n)! (2m—i)+1)
itm=1)!n! Cm—i+1)!

Z Ci.j = B(n’m9i) = (n+l
j=0

which is >0 when 0<i<m.

IV): From III) we see that the sign of C; ; only depends on the sign of 4, ;.
Jj=0 gives
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Ai o = 2n(2n+1)i* —2n(8mn+2n+4m+ )i+ 4mn(dmn+2m+2n+1) .

Clearly A, ,>0, and A, o=2mn(2mn+m+2n+1)>0. But A; o takes the
minimum value when i= (8mn+2n+4m+1)/2(2n+1) which is >m, and the
first part of IV) is clear.

Finally, keeping i fixed, 4, ; takes the minimum value when j= (8mn+2m
+4n+1-—4in)/2(2m+ 1) which is >n when 0<i<m, and this means that A; jis
strongly monotonically decreasing with 0<j<n.

V): Let bj=p,,_;(Y)+d,(Y)?, 0<j<n. From Proposition 0.2. we have b,
=2b,2...2b,=d,(Y)=1, and so if C; ;>0 for 0<j<n, we are finished. If not,
let j, be the least index such that C; ; <0. Then, using IV), we get

LJo=

Ciibj = Ciobo+... +C; b+ ... +Ci b,
j=0

J

g Ci,0b0+ e +b1 (Ci,jo+ e +Ci,n)

% <J=io <. j)

and V) follows by using III).

Parts II) and V) of Lemma 2.3. immediately give that Bom+m(X x Y)=0 if
and only if §,,(X)="...=8,(X)=0and B,,(Y)=...=p,(Y)=0, that is if and
only if X=P} and Y=Pj}. Since a product of projective varieties is never
isomorphic to a projective space, this result also gives f,y(X)<0 when X is a
product of three or more projective varieties, N =dim (X). Thus we have
proved

v

THEOREM 24. Let X; be projective, non-singular embedded varieties of
dimension m; 21, i=1,...,r, and let X=X;x...xX, be embedded by the
Segre-embedding. Then:

a) When r23, the embedding dimension of X is 2(n, + . .. +n,)+1.

b) When r=2, the embedding dimension of X is 2(n, +n,)+ 1, unless X = Pj

and Y=P, in which case it is 2(n, +n,)—1.
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