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ON THE STRUCTURE OF SOLVABLE
LIE ALGEBRAS

T. SUND

1. Introduction.

Given two Lie algebras ¢ and o/ where % is solvable and &/ abelian, we shall
consider how to classify within isomorphisms all Lie algebras ¢ which are
extensions of ¥ by &/ and for which the centre of the nilradical ¥ is equal to
&. To this end we show that the isomorphism classes of all such Lie algebras
% possessing no abelian direct factors are in bijective correspondence with
certain Aut% x Aut.o/ orbits in Uy H?(%,0) where 6 runs through a certain
family of representations of ¥/4" in & and A =.¥ /<. This result gives an
inductive method of constructing solvable Lie algebras.

2. Extensions and automorphisms.
2.1. Let % and o/ be Lie algebras, & abelian, : ¥ — End ./ a representa-
tion, B: ¥ x% — o/ an anti-symmetric bilinear map satisfying
2.1)  B(X,[Y,Z])+B(Z,[X,Y])+B(Y,[Z,X])+0(X)B(Y, Z)
+0(Z)B(X,Y)+60(Y)B(Z,X) =0, all X,Y,Ze¥%,

ie. B is a 2-cocycle on ¥ with respect to 6. The set of all such 2-cocycles is
denoted by C?*(%,0). Given B € C*(%,0) we can construct a Lie algebra &
=%(B,0) which is an extension of ¥ by & as follows: 9=9@. as
vectorspace, and the Lie product is given by

22  [(ga),(g.a)] = ([g8].0(g)a —0(g)a+ B(g,g));
all a,d e A, g, g €9 .

Conversely if & is an extension of ¥ by & there exist §: 4 — End .« and
B e C*(%,0) such that Z and ¥%(B,0) are isomorphic as Lie algebras.

2.2. Let A denote the nilradical of 4 and Z the centre of .#". (In the sequel
we shall only assume that 4" is a nilpotent ideal of 4, 4" >[¥,%].) We wish to
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study Lie algebras 4 =% (B, 6) for which the nilradical ¥ is a central extension
of # by o. Let B°=B|,, , and 0°=0| ,.. Clearly the extension

0— o - #(B%E) > &/ >0

is central if and only if ker 6> 4. In this case 6°=0 and 4" (B°,0° =4 (B°)
<. We show that 4" (B°) =.¥. Obviously .¥ is an extension of a subalgebra
M of 4 by /. It follows that .# is a nilpotent subalgebra of ¢ containing A"
Hence .# = 4" proving the assertion. Let Z denote the centre of .#". Assuming
ker 0> .4 we have & = (¥ p N F)D o where

Sp = {XeN: BX,H)=(0).
Thus & =« if and only if ¥ N 2% =(0). We have shown

2.4. Given two such extensions 4;=%(B,,0,), i=1,2, of 4 by ., and assume
& is abelian. Then '

a) The nilradical ¥ of % is a central extension of ¥ by o if and only if ker 6
oSN

b) Let ker 0> A". The centre of A is o if and only if & poNZ = (0).

2.4. Given two such extensions 7 =% (B;,6),i=1,2, of 4 by o/, and assume
the Lie algebras &, and %, are isomorphic and that the centres &, of their
nilradicals both are equal to . Let a: 4, — &, be an isomorphism. Dividing
with the common ideal ./ we obtain an automorphism a,: ¥ — 4. We can
realize o as a matrix relative to a suitable basis for 4@ .o/ which is assumed to
contain a basis for 4 and a basis for «:

1 0
2.3) o= (%f*)’ oo € AutG, Y € Aut o/, ¢ € Hom (94, &) .

Now « preserves the Lie products and writing [, -], [, -]; for the products of
% and 9, respectively we have using (2.2)

e @ E)

= (wle. 8], o[, 81+ VB (8,8) + Y8, (8)a' — Y0, (g')a)

and similarly

09 [«(5)a()]

= ([oo8, %8'], B (208, %08 + 0 (208) (08" +Ya) — 0, (xog) (g + Ya)) .
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Hence letting a=a’'=0 and combining (2.4) and (2.5) we get

B, (08, %8")

= ¢[g,8']1+VY°B;(g 8)+0,°00(g)(9g) — 0,°00(8) (08"
or
(2.6) Byoay = YoB,+dp, do e B*(%,0,00,)

where B%(%,0,0a,) denotes the set of coboundaries in C?(¥, 0,-a,), [3, p. 220].
Moreover substitution of (2.6) into (2.4) and (2.5) gives

Yo0,(g)a’ —0,000(8)(Ya’) = Yo0,(g)a—0,(x0g)(Ya),
and letting a’=0 we obtain
Yob,(ga = 0,000(gW(a),
thus
2.7 Yol ()oy ™ = 0,000,
in other words i must be an intertwining operator for the representations 6,
and 6,00, Conversely if (2.6) and (2.7) hold it is readily verified that the Lie
algebras %(B,,0,) and %(B,,0,) are isomorphic.
(2.6) can be written B, =yoB,oay '+ (dp)oa;!. Now we have
(dp)ag ' (8,8) = @olag ‘g ag '8 T+0,000(x5 ') (95 'g)
—03000(x5 '8) (05 '8) = @oag '[8,871+0,(8)(¢oxg 'g)
—0,(8)(@oag 'g) -
Hence (do)ag'=d(poay') € B*(%4,0,). Thus %(B,,0,) is isomorphic to
%(B,,0,) if and only if there exists a, € Aut¥ and Yy € Aut« such that
B, = YoByoay ! mod B*(%,0,)
and V¥ is an intertwining operator for 6, and 0,-a;'. We have proved
2.5. PROPOSITION. Let for i=1,2, &,=%(B,,0,) be an extension of the solvable
Lie algebra 4 by the abelian Lie algebra of ; and assume of is the centre of the
nilradical of 8, i=1,2. Then the Lie algebras 4, and %, are isomorphic if and

only if B, and B, are in the same Aut% x Aut o/ orbit in Uy H*(¥,0), where 0
runs through the family of all representations of ¥ in 4, under the action

((x0,¥), By) > YoByoag € Hz(g, ¢01°‘o(')‘/’—l)

In case B,=B,=B and 6, =0,=0 we obtain the following description of
Aut % (B, 0).
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2.6. COROLLARY. Let B € C?(4,0), 0: ¥ — End ¢, and assume s/ is the centre
of the nilradical of the extended Lie algebra %(B,0). Then the automorphism
group of %(B,0) is isomorphic to the group of all matrices

<.‘3‘_0_ 1.9_)
o iy)’

where o, € Aut9, ¢ € Hom (9, &), Y € Aut &, and

28) Boay = YoB+dop, do e B*(%,0)
' Yoy~ = foa,
3. The exclusion of abelian direct factors.

3.1. We continue our study of extensions % (B, 6) of a solvable Lie algebra ¢
by an abelian &/, and proceed to exclude those 2-cocycles B for which the
extended Lie algebra ¢ (B, ) is isomorphic to a direct sum 2@ s where 2 and
X are Lie algebras, 2 abelian. Obviously any abelian direct factor of %(B, 0)
must be contained in the nilradical #". Assuming 4/ =.4" and ker> 4",
N is a central extension of 4" by & and in order to omit abelian factors in
it suffices to study the restricted action of Aut% x Aut./ in H*(A, ).
If &N Z =(0) the centre of ¥ is & and any abelian direct factor 2 of 4
is contained in &/.

Let J be the set of all linear maps F € End &/ such that there exists
¢ € Hom (A, &) with the property

FoB® = go[, 1y

where B’=B| ;- 4 and [ -, -] denotes the Lie product of A". Then J is a left
ideal in End o and we have J = (End /) o n for some projection n in J. Hence
there exists' ¢, € Hom (A", &) such that

noB® = (pno[" ]/V .
Let
(3.1 B = B°—¢.[,' ]y = (I—n)°B°.

3.2. LEeMMA. FoB' =¢,o[, '], implies ¢.o[-, ], =0.

PROOF. FoB' =Fo (I —m)oB®=¢,°[*, ], implies Fo(I —n) € J. Hence
Fo(I-mn) = Gon  for some G € End & .
This gives F = (F + G)om, so that
Fo(I-m) = (F+G)ono(I—m) = 0.
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Now A (B)=A"(B)®n(s/) where Bl=(I—m)B°: A x N — (I—m).
Thus, if ©40, 4" (B° contains an abelian direct factor and we have

3.3. LeMMA. Let %(B,0) be an extension of the solvable Lie algebra % by the
abelian of whereker 0> A and S po N F = (0), /" = N '|.of. Assume N cannot be
written as a direct sum D@ H of Lie algebras where 9 is abelian. For any pair
F e End o, ¢ € Hom (A, o) such that FeB®=qo[-, -], we have F=0.

3.4. Let for o as above =, 1<i<k, be its coordinate functions relative to
some basis. Thus Lemma 3.3. is equivalent to: n,B°,...,m,B° are linearly
independent in H?(A",F) where F denotes the field of 4. We know from
section 2 that two extensions ¥(B,,0,) and 4(B, 0) of 4 by & are isomorphic if
and only if B;=yoBoo,+d(pon,) for some ay € Aut%, ¥ e Aut.o, d(e
oao) € B2(%,0,), y0,¢ "' =0oa,. This gives by restricting to A":

BY = YoBop+gefol,-Ius B = aolys BY = Bilyxw .

Such an identity holds if and only if n,cBef,...,m,cBof and n,-BY,..., n,
oBY generate the same subspace of H2(#", F). Thus the restricted action of
Aut¥ x Aut o/ in H*(4, o) induces an action of Aut% in the set of all k-
dimensional subspaces G, H?*(A4", F) of the second cohomology group of 4 if
and only if 4(B,6) contains no abelian direct factor. We say that an Aut%-
orbit Q in G,H?(A", F) has no kernel in the centre Z of A if FLpNZ =(0)for
some and hence for all B° e V, where V runs through Q. Denote by
H*(%;%//, o) the space U,H*(%4,0) where 0 runs through those
representations of ¢ in &/ which satisfy ker 6> 4" and, for x in the nilradical of
4, 0(x) is nilpotent <> x € A (this ensures F'/of = 4.

3.5. ProPOSITION. Let 4 be a solvable Lie algebra over the field F, & a
nilpotent ideal of 4, N >[%,%). The isomorphism classes of solvable Lie
algebras % possessing nilradical & with k-dimensional centre of such that /oA
~9, N/ =N and such that 4 contains no abelian direct factor are in
bijective correspondence with those Aut% x Aut of/-orbits in H*(%; 4/ N, o)
(under the action (a,y, B) — Y Ba) which satisfy the following conditions.

1) The restricted action of Aut% x Aut o in H*(A", /) induces an action of
Aut¥% in G.H*(AN,F).

2) The induced Aut G-orbits in G H* (A", F) have no kernel in the centre of N

If we restrict our attention to the classification of all (isomorphism classes
of) central extensions of ¥ by , we can drop the assumption that ¥ be
solvable. In this case =0 and the extended algebra % =%(B) is defined by an
anti-symmetric bilinear map B: ¥ x ¥ — o satisfying the Jacobi-identity.
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3.6. COROLLARY. Let 4 be a Lie algebra over F, Z its centre. The isomorphism
classes of Lie algebra @ with centre & of dimension k, 4/% =%, and without
abelian direct factors, are in bijective correspondence with those Aut %-orbits Q
in the set of all k-dimensional subspaces of the second cohomology group
H?(%,F) enjoying the property that ¥5N\ % = (0) for all B € V, where V runs
through Q.

3.7. Suppose Q<U,H?*(%,0) is an orbit under Aut¥ x Aut.o/ and let
B e QNH*(%,0), SgoN Z = (0). Let B(A, A") be the range of B® in . Clearly
the nilradical A" of the extension % (B, ) contains an abelian direct factor 2
c«/ if and only B(A ', A/ )+. Now, let L(0)={a e o : 0(%a=(0)}. We
have ¢ (B, 0) contains no nonzero, abelian direct factor if and only if &/ can not
be written o/ =#D2P where o B(9,9), 0(9)B<AB, and (0)+D ¥ (0).
In view of this observation our main result follows.

3.8. THEOREM. Let % be a solvable Lie algebra over the field F, A a nilpotent
ideal of 9, /" >[%,%). The isomorphism classes of solvable Lie algebras Z
possessing nilradical & with k-dimensional centre o/, such that GA =%, N|A
~ &, and without nonzero abelian direct factors, are in bijective correspondence
with those Aut % x Aut o/-orbits Q in H*(4,%/A ", ) (under the action (a,V, B)
— YBa) which satisfy the following conditions.

1) If Be QNH?*(%,0), then &/ can not be written oA =BDD where
BoB(%,%), 0(9)RB=B, and (0)+D <= (0).
2) FpNZ=(0)

3.9. ReMARK. Theorem 3.8 (respectively Corollary 3.6.) gives an algorithm for
constructing all solvable (respectively nilpotent) Lie algebras of dimension n,
given those algebras of dimension <n. Corollary 3.6 was obtained before by
T. Skjelbred and the author, and a systematic application to the classification
of all real nilpotent Lie algebras of dimension six can be found in [2].

3.10. AppLIcATIONS. Next in table 1 we apply Theorem 3.8 and Corollary 3.6.
to the case where % is real, solvable, dim ¥ =4, and dim &/ = 1. Note that only
those Lie algebras 4 which satisfy N/ = A are tabulated. If (e)f-, is a fixed
basis for ¥, we let B;;: ¥ x4 — R denote the bilinear form

(X xee0 X 08 = xy—xy, 15i<j<4.

The four-dimensional solvable Lie algebras ¢ not listed (4, 4 etc.) do not yield
any extensions of the above type. See P. Bernat et al., Représentations des
groupes de Lie résolubles, DUNOD, Paris, 1972, pp. 180-182, for notation.
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Table 1. The case dim¥% =4, dim«/ =1, F=R.

g N Represent. 0 Lie products in extension %(B, ) %(B,0)
Cocycle B Lie products in ¢
=0 [e,e;]=e
4 4 1¢2 5
@ ) By, +B;, 0 [es,eq]=e;s s
0=0 _ [enea]=es
Y31%x9, | 93, %9, B+ B, [er,e;]=ey [es 5] =es 9s.,
O(e,)es =2es _ _ [ey,es]=2es
Y. B, lenes]=es[e;,es]=e4 [es, el =es 9s.3
Y1 (es,e3,€4) O(ey)es=es ez, es]=e, [er,es]=e;s @
B, [e,ei]=e;s S
(@,)? (e )es=2es [ej,es]=e; [e,e,]=¢,4 [er,es]=2e;s
Ya,2 ! B(e;)=0 [es, e3]= —eyle; e4]=e; [es.es]=es Ys.s
(e3,€4) By,
=0
Bis [ene2]=es e eal=es Ys.e
Y43 E
6=0 [e,es]=e, [ei.eq]=es 4
B4+ B,; ez, e3]=es 57
@ a=0: 0(e,)es [er,e3]=es[e;,e3]=e, [er,es]=es G o
31 =es5, By, [er,e;]=—e, [es,eq] =es 5
a=2: 0(e,)es [es,e3]=es[e;,e5]=¢, [e1,es]1=13es
Fa.s) (€2, €3¢0 =3es, Bs, e, ex]=e; [e;,e4] =2e, [es,es]=es Fs.o
0<ax<2 a%0,2: O(e)es [e,es]=es[e;,e5]=e, [e),es]= (20— 1)es G 0(0)
a%l =(2a—1)es, By, | [eg,e;1=(a—1)e, [ez. e ] =e5 5,10
9(‘-’1)35 [el’es] = (a+ l)es g (a)
=(a+1)es, By, | [eea]=0e, [es,es]=es s
@ Y31 (e )es=3es [ez e3]=e,[e;,e3]=¢e, [ey,es]=3e;s @
410 (es,€3,64) By [ei, e ]=e;+e;[e;,e4] =2¢, [eye]=e;s 512

Added in Proof: Table 1 is incomplete.
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