ON SOME FUNCTIONAL EQUATIONS OF JESSEN, KARPF, AND THORUP

BRUCE R. EBANKS

In this paper we shall extend a theorem of B. Jessen, J. Karpf, and A. Thorup which was used in a simplified proof of Sydler's theorem on polyhedra (see [4]). The result is also related to known results in homological algebra and in the measurement of information (cf., e.g. [2; section 3.5]).

In [5], Jessen, Karpf, and Thorup proved the following two theorems.

THEOREM 1. Let A and X be commutative groups, with X divisible. Then $F \colon A^2 \to X$ satisfies

(1)
$$F(a,b) = F(b,a), \quad \forall a,b \in A,$$

(2)
$$F(a,b)+F(a+b,c) = F(a,b+c)+F(b,c), \quad \forall a,b,c \in A$$

if and only if there is a map $f: A \to X$ such that

$$(*) F(a,b) = f(a+b) - f(a) - f(b), \forall a,b \in A.$$

Furthermore, if A is ordered, then the same result holds with A replaced by $A_+ := \{a \in A \mid a > 0\}$.

THEOREM 2. Let A be an integral domain and X a uniquely A-divisible unitary module over A. Then $F: A^2 \to X$ and $G: A^2 \to X$ satisfy (1), (2),

$$G(a,b) = G(b,a), \quad \forall a,b \in A,$$

$$(4) cG(a,b)+G(ab,c) = G(a,bc)+aG(b,c), \forall a,b,c \in A,$$

(5)
$$F(ac, bc) - cF(a, b) = G(a+b, c) - G(a, c) - G(b, c), \quad \forall a, b, c \in A$$

(6)
$$\sum_{i=1}^{p} F(1, i1) = 0, \quad p = \operatorname{char} A,$$

if and only if there is a map $f: A \to X$ such that

Received October 20, 1978.

$$(*) F(a,b) = f(a+b)-f(a)-f(b), \forall a,b \in A,$$

(**)
$$G(a,b) = f(ab) - bf(a) - af(b), \quad \forall a,b \in A$$
.

Furthermore, if A is ordered, then the same result holds with A replaced by A_{+} .

It is known (cf. [1], [3]) that Theorem 1 can be extended by removing equation (1) and simultaneously replacing equation (*) by

$$(*') F(a,b) = f(a+b) - f(a) - f(b) + \psi(a,b),$$

where $\psi: A^2 \to X$ is an arbitrary antisymmetric function which is additive in each variable. In this paper, we shall extend Theorem 2 in a similar way, showing that equation (1) is in fact superfluous. A corollary to this result is also given. The main result is the following.

THEOREM 3. Let A be an integral domain and X a uniquely A-divisible unitary module over A. Then $F, G: A^2 \to X$ satisfy equations (2), (3), (4), (5), (6) if and only if there is a map $f: A \to X$ representing F and G through equations (*), (**). Moreover, if A is ordered, then the same result holds with A replaced by A_+ .

Proof. In one direction, it is trivial.

On the other hand, suppose F and G satisfy (2), (3), (4), (5), (6) (on either A or A_+). We divide this part of the proof into two cases. Note that equation (6) is void if char A=0.

CASE 1. Suppose char $A \neq 2$. Define the canonical symmetric and antisymmetric parts of F, respectively, as follows:

(7)
$$\varphi(a,b) := \frac{1}{2} [F(a,b) + F(b,a)], \quad \psi(a,b) := \frac{1}{2} [F(a,b) - F(b,a)],$$

for all $a, b \in A$ (or A_+). It is easily checked that equations (1), (2), (3), (4), (5) are satisfied by the pair (φ, G) , i.e., with φ in place of F. ((5) follows because of the symmetry of its right-hand side with respect to a and b.) Equation (6) for φ follows from (6) for F and

$$F(1, i1) = F(i1, 1), \quad i = 1, 2, \dots$$

This equation, in turn, is established by induction on n with the equation

$$F(1, n1) + F((n+1)1, 1) = F(1, (n+1)1) + F(n1, 1)$$
,

which is (2) with a=c=1, b=n1.

Thus, by Theorem 2, we have a map f: A (or A_+) $\to X$ such that G is of the form (**), and

$$\varphi(a,b) = f(a+b)-f(a)-f(b).$$

But, by (7), $F = \varphi + \psi$, so F has the form (*'), where ψ is antisymmetric by definition (7).

We show that ψ is also bi-additive. Using (2) three times along with (7), we have

$$2\psi(a+b,c) = F(a+b,c) - F(c,a+b)$$

$$= [F(a,b+c) + F(b,c) - F(a,b)] - [F(c+a,b) + F(c,a) - F(a,b)]$$

$$= F(a,c+b) - F(a+c,b) - F(c,a) + F(b,c)$$

$$= [F(a+c,b) + F(a,c) - F(c,b)] - F(a+c,b) - F(c,a) + F(b,c)$$

$$= F(a,c) - F(c,a) + F(b,c) - F(c,b)$$

$$= 2\psi(a,c) + 2\psi(b,c).$$

Moreover, by the antisymmetry of ψ , the additivity of ψ in its second variable follows at once. Hence, in particular,

(8)
$$\psi(2a, 2b) = 4\psi(a, b), \quad \forall a, b \in A \text{ (or } A_+).$$

Finally, we show that $\psi \equiv 0$. It follows immediately from (5) and (7) that

$$\psi(ac,bc)-c\psi(a,b)=\mathbf{0}.$$

In particular, if $c = 2 \cdot 1$, then

$$\psi(2a, 2b) = 2\psi(a, b), \quad \forall a, b \in A \text{ (or } A_+).$$

Comparing this with (8), we obtain

$$\psi(a,b) = \mathbf{0}, \quad \forall a,b \in A \text{ (or } A_+).$$

With this, (*') becomes (*), and the proof is finished in this case.

Case 2. Suppose char A = 2. Now it is impossible to divide F as in (7). But we shall show that in this case F must be (1) symmetric.

For this purpose, we need several preliminary results. Since char A=2, equation (6) says

$$F(1,0) = F(1,1)$$
.

Equation (4) with a=b=0 becomes

$$G(0,c) = (1-c)G(0,0)$$
.

Using these relations with (2) and (5), it can be shown that

$$F(c,c) = F(1,1), F(a,a+c) = F(a,c), \quad \forall a,c \in A \text{ (or } A_+).$$

Finally, (2) with c = a + b gives now

$$F(a,b)+F(1,1) = F(1,1)+F(b,a)$$
,

which means that F is (1) symmetric. Therefore, by Theorem 2, the proof is complete.

COROLLARY. Let V be a vector space over R (the real numbers). Then the class of functions $F: [0, \infty]^2 \to V$ which satisfy the equations

$$F(a,b)+F(a+b,c) = F(a,b+c)+F(b,c),$$

$$F(ac,bc) = cF(a,b)$$

is identical with the class of $F:]0, \infty[^2 \to V \text{ determined through the equation}]$

$$F(a,b) = f(a+b)-f(a)-f(b)$$

by means of a function $f:]0, \infty[\rightarrow V$ satisfying the equation

$$f(ab) = bf(a) + af(b).$$

PROOF. Apply Theorem 3 (on A_+) with $A = \mathbb{R}$, X = V, and $G \equiv 0$.

REFERENCES

- J. Aczél, The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, Glasknik Mat.-Fiz. Astr. 20 (1965), 65-72.
- J. Aczél and Z. Daróczy, On Measures of Information and Their Characterizations, Academic Press, New York - London, 1975.
- M. Hosszú, On a functional equation treated by S. Kurepa, Glasnik Mat.-Fiz. Astr. 18 (1963), 59–60.
- B. Jessen, The algebra of polyhedra and the Dehn-Sydler theorem, Math. Scand. 22 (1968), 241– 256.
- B. Jessen, J. Karpf, and A. Thorup, Some functional equations in groups and rings, Math. Scand. 22 (1968), 257-265.

TEXAS TECH UNIVERSITY LUBBOCK, TEXAS U.S.A.