ON A CONJECTURE OF BRUCKMAN

TORLEIV KLØVE

In connection with problem 6044 in the Amer. Math. Monthly [1] P. Bruckman made some conjectures. Let $g(x) = x^4 + x + 1$ and define P_n by

$$3P_n = \prod_{k=1}^n g(\exp(2\pi i k/n)).$$

Bruckman's conjectures were:

- (A) $2^4 | P_n \text{ iff } n \equiv 0 \pmod{15}$; (B) $2^8 | P_n \text{ iff } n \equiv 0 \pmod{30}$;
- (C) $3^3 \mid P_n \text{ iff } n \equiv 0 \pmod{13}$; (D) $3^7 \mid P_n \text{ iff } n \equiv 0 \pmod{39}$; (E) $5 \mid P_n \text{ iff } n \equiv 0 \pmod{4}$; (F) $5^2 \mid P_n \text{ iff } n \equiv 0 \pmod{20}$;
- (G) $7 \nmid P_n$ for all n; (H) $11 | P_n \text{ iff } n \equiv 0 \pmod{10}$.

In this paper we prove these conjectures as far as they are true. We will study a more general situation. Let

$$f(x) = x^r + a_1 x^{r-1} + \ldots + a_r$$

where a_1, a_2, \ldots, a_r are integers, $a_r \neq 0$. Let

$$Q_n = Q_n(f) = \prod_{k=1}^n f(\exp(2\pi i k/n)), \quad n \ge 1,$$

 $Q_0 = 0.$

We will show that Q_n is always an integer and we characterize the set

$$\mathscr{Z}_m(f) = \{ n \mid Q_n(f) \equiv 0 \pmod{m} \}.$$

Let

$$\varphi_d(x) = \prod_{\substack{k=1 \ \gcd(k,n)=1}}^n (x - \exp(2\pi i k/n)).$$

Then φ_d , which is a cyclotomic polynomial, has integral coefficients. Let x_1, x_2, \dots, x_r be zeros of f and let

Received April 19, 1978.

$$F_d = \prod_{k=1}^r \varphi_d(x_k) .$$

LEMMA 1. (i) F_d is an integer for $d \ge 1$.

(ii)
$$Q_n = (-1)^{rn} \prod_{d \mid n} F_d$$
 for $n \ge 1$.

PROOF. F_d is a symmetric polynomial in x_1, x_2, \ldots, x_r with integral coefficients. Hence it is possible to express F_d as a polynomial in a_1, a_2, \ldots, a_r with integral coefficients. Since a_1, a_2, \ldots, a_r are integers, (i) follows. In (ii) we have

$$Q_{n} = \prod_{k=1}^{n} \prod_{j=1}^{r} \left(\exp\left(2\pi i k/n\right) - x_{j} \right)$$

$$= (-1)^{rn} \prod_{\substack{cd=n \ 1 \le k \le n}} \prod_{j=1}^{r} \prod_{\substack{j=1 \ 1 \le l \le d}} (x_{j} - \exp\left(2\pi i k/n\right))$$

$$= (-1)^{rn} \prod_{\substack{cd=n \ 1 \le l \le d}} \prod_{\substack{j=1 \ 1 \le l \le d}} (x_{j} - \exp\left(2\pi i l/d\right))$$

$$= (-1)^{rn} \prod_{\substack{d|n \ r}} F_{d}.$$

THEOREM 1. Q_n is an integer for all $n \ge 0$.

Proof. Follows immediately from lemma 1. Let

$$\mathscr{G}_m(f) = \{ n \in \mathscr{Z}_m(f) \mid \text{ if } d < n \text{ and } d \mid n, \text{ then } d \notin \mathscr{Z}_m(f) \}$$
.

THEOREM 2. $n \in \mathscr{Z}_m(f)$ iff $q \mid n$ for some $q \in \mathscr{G}_m(f)$.

PROOF. By lemma 1 (ii), if $n \mid n_1$ then $Q_n \mid Q_{n_1}$. Hence, if $Q_n \equiv 0 \pmod{m}$, then $Q_{n_1} \equiv 0 \pmod{m}$ for all n_1 which are multiples of n, and so \mathscr{Z}_m consists of the multiples of the set of generators \mathscr{G}_m .

Since $Q_n \equiv 0 \pmod{\prod_{i=1}^s p_i^{\alpha_i}}$ iff $Q_n \equiv 0 \pmod{p_i^{\alpha_i}}$ for i = 1, 2, ..., s, we will from now on only consider $m = p^{\alpha}$, where p is a prime.

LEMMA 2. (i) If
$$p \nmid n$$
, then $F_{pn} \equiv F_n^{p-1} \pmod{p}$.
(ii) If $p \mid n$, then $F_{pn} \equiv F_n^p \pmod{p}$.

PROOF. If $p \nmid n$, then it is well known that

$$\varphi_{pn}(x) = \frac{\varphi_n(x^p)}{\varphi_n(x)}.$$

If h(x) is any polynomial with integral coefficients, then $h(x^p) = h(x)^p + ph_1(x)$ for some polynomial h_1 with integral coefficients. In particular

$$\varphi_n(x)\varphi_{pn}(x) = \varphi_n(x)^p + p\psi(x) .$$

For this to be possible $\psi(x) = \varphi_n(x)$. $\psi_1(x)$ and so

$$\varphi_{pn}(x) = \varphi_n(x)^{p-1} + p\psi_1(x)$$
.

Hence

$$F_{pn} = \prod_{k=1}^{r} \varphi_{pn}(x_k) = \prod_{k=1}^{r} \varphi_n(x_k)^{p-1} + p\Psi(x_1, x_2, \dots, x_r) .$$

Here Ψ is a symmetric polynomial in x_1, x_2, \ldots, x_r with integral coefficients and so $\Psi(x_1, x_2, \ldots, x_r)$ is an integer. Hence $F_{pn} \equiv F_n^{p-1} \pmod{p}$. If $p \mid n$, then $\varphi_{pn}(x) = \varphi_n(x^p)$. From this we prove (ii) similarly.

Before we go on with the study of \mathcal{G}_{p^2} we give a congruence for Q_n of another kind than those conjectured by Bruckman.

THEOREM 3. We have $Q_{pn} \equiv Q_n \pmod{p}$ for all n.

PROOF. If $Q_n \equiv 0 \pmod{p}$, then $Q_{pn} \equiv 0 \pmod{p}$ since $Q_n \mid Q_{pn}$. Suppose $Q_n \not\equiv 0 \pmod{p}$. Let $n = p^b n_1$ where $p \not\nmid n_1$. We show that

$$(-1)^{rp^2n_1}Q_{p^2n_1} \equiv (-1)^{rn_1}Q_{n_1} \pmod{p}$$
 for all $\alpha \ge 0$.

Let $d \mid n_1$. Then $Q_d \not\equiv 0 \pmod{p}$. Hence by lemma 2 (i) and Fermat's theorem, $F_{pd} \equiv 1 \pmod{p}$. By lemma 2 (ii), $F_{p^{\beta}d} \equiv 1 \pmod{p}$ for all $\beta \geq 1$. By lemma 1 (i)

$$(-1)^{rp^2n_1}Q_{p^2n_1} = \prod_{d \mid p^2n_1} F_d = \prod_{d \mid n_1} \prod_{\beta=0}^{\alpha} F_{p^\beta d} \equiv \prod_{d \mid n_1} F_d = (-1)^{rn_1}Q_{n_1} \pmod{p}.$$

Hence

$$(-1)^{rpn}Q_{pn} \equiv (-1)^{rn_1}Q_{n_1} \equiv (-1)^{rn}Q_n \pmod{p}$$
.

If p is odd, then $(-1)^{rpn} = (-1)^{rn}$, and if p = 2, then $(-1)^{2rn} = 1 \equiv (-1)^{rn} \pmod{2}$.

THEOREM 4. If $Q_n \equiv 0 \pmod{p^{\alpha}}$ for some $\alpha \ge 1$, then $Q_{pn} \equiv 0 \pmod{p^{\alpha+1}}$.

PROOF. Let $n = p^b n_1$ where $p \not\mid n_1$. If $Q_n \equiv 0 \pmod{p^\alpha}$, then $Q_n \equiv 0 \pmod{p}$, and by lemma 1 (ii) $F_d \equiv 0 \pmod{p}$ for some $d \mid n$. By lemma 2 (i), $F_{d_1} \equiv 0 \pmod{p}$ for some $d_1 \mid n_1$ and so $F_{p^{b+1}d_1} \equiv 0 \pmod{p}$. Since $Q_n \cdot F_{p^{b+1}d_1} \mid Q_{pn}$ and $p^{\alpha+1} \mid Q_n F_{p^{b+1}d_1}$, the theorem follows.

Let

$$S_k = \sum_{i=1}^r x_i^k, \quad k = 0, 1, 2, \dots,$$

and

$$f_n(x) = \prod_{i=1}^r (x - x_i^n) = x^r + a_1^{(n)} x^{r-1} + \ldots + a_r^{(n)}.$$

LEMMA 3. (i) For $n \ge 0$ we have $Q_n = (-1)^{r(n+1)} f_n(1)$,

(ii)
$$S_k = -ka_k - \sum_{i=1}^{k-1} a_i S_{k-i}$$
 for $1 \le k < r$,

(iii)
$$S_k = -\sum_{j=1}^r a_j S_{k-j}$$
 for $k \ge r$.

(iv) For j = 1, 2, ..., r there exist polynomials A_j with integral coefficients such that

$$j! a_i^{(n)} = A_i(S_n, S_{2n}, \ldots, S_{in}).$$

PROOF. (i)
$$Q_n = \prod_{k=1}^n \prod_{j=1}^r (\exp(2\pi i k/n) - x_j)$$

$$= (-1)^{rn} \prod_{j=1}^r \prod_{k=1}^n (x_j - \exp(2\pi i k/n))$$

$$= (-1)^{rn} \prod_{j=1}^r (x_j^n - 1)$$

$$= (-1)^{r(n+1)} \prod_{j=1}^r (1 - x_j^n) = (-1)^{r(n+1)} f_n(1).$$

(ii) and (iii) are Newton's equations and (iv) we get by solving for $a_j^{(n)}$ in Newton's equations for $f_n(x)$.

By lemma 3 (iii), S_k satisfies a linear recurrence, and so it is periodic modulo any integer m. More precisely, for each m there exist integers $K_m \ge 0$ and $\varrho_m > 0$ such that if $k \ge K_m$, then $S_{k+\varrho_m} \equiv S_k \pmod{m}$. If $\gcd(m, a_r) = 1$, then $K_m = 0$.

LEMMA 4. If p^{γ} is the exact power of p which divides r! and $m = p^{\alpha + \gamma}$ then

$$f_{n+\varrho_m}(1) \equiv f_n(1) \pmod{p^{\alpha}}$$

for $n \ge K_m$.

Proof. By lemma 3, if $\varrho = \varrho_m$, then

$$r! f_{n+\varrho}(1) = r! + \sum_{j=1}^{r} \frac{r!}{j!} A_j(S_{n+\varrho}, S_{2n+2\varrho}, \dots, S_{jn+j\varrho})$$

$$\equiv r! + \sum_{j=1}^{r} \frac{r!}{j!} A_{j}(S_{n}, S_{2n}, \dots, S_{jn})$$

= $r! f_{n}(1) \pmod{p^{\alpha+\gamma}}$.

Hence

$$f_{n+\varrho}(1) \equiv f_n(1) \pmod{p^{\varrho}}.$$

LEMMA 5. Let m have the same meaning as in lemma 4. If $n \in \mathcal{G}_{p^2}(f)$, $d = \gcd(n, \varrho_m)$, and $c \ge K_m/d$, then $cd \in \mathcal{Z}_{p^2}(f)$.

PROOF. There exist integers a and b such that $cd = an + b\varrho_m$. We may assume that $an \ge K_m$ since otherwise we replace a and b by $a + bl\varrho_m$ and b - bln for some l. Then by lemmata 3 and 4

$$Q_{cd} = (-1)^{r(cd+1)} f_{cd}(1) \equiv (-1)^{r(cd+1)} f_{an}(1)$$
$$= (-1)^{r(cd+an)} Q_{an} \equiv 0 \pmod{p^{\alpha}}.$$

THEOREM 5. If $p \nmid a_r$, then

- (i) $\mathscr{G}_{p^2}(f) \neq \emptyset$ for all $\alpha \geq 1$,
- (ii) if $n \in \mathcal{G}_{p^x}(f)$, then $n \mid \varrho_m$ where $m = p^{\alpha + \gamma}$.

PROOF. If $p \nmid a_r$, then $K_m = 0$ and so

$$Q_{\rho_m} = (-1)^{r(\varrho_m+1)} f_{\varrho_m}(1) \equiv (-1)^{r(\varrho_m+1)} f_0(1) = 0 \pmod{p^2}.$$

This proves (i). Let $n \in \mathcal{G}_{p^2}$ and $d = \gcd(n, \varrho_m)$. Then, by lemma 5, $d \in \mathcal{Z}_{p^2}$. Since $d \mid n, d = n$ by the definition of \mathcal{G}_{p^2} . Hence $n = d \mid \varrho_m$.

THEOREM 6. If $p \mid a_r$ and $n \in \mathcal{G}_p(f)$, then $n \mid \varrho_m$ where $m = p^{1+\gamma}$.

PROOF. Let $d = \gcd(n, \varrho_m)$ and choose β such that $p^{\beta}d \ge K_m$. Then, by lemma 5, $Q_{p^{\beta}d} \equiv 0 \pmod{p}$ and so, by theorem 3, $Q_d \equiv 0 \pmod{p}$. Hence $n = d \mid \varrho_m$.

For $g(x)=x^4+x+1$, r=4 and $a_r=1$, I have made a computer program to compute Q_n using lemma 3. The program also computed $\mathcal{G}_{p^2}(g)$ for a number of p^{α} 's by first computing ϱ_m and then testing Q_n for $n \mid \varrho_m$ to find if it is congruent to 0 modulo p^{α} . Some of the results are given in the following table which in particular proves that conjectures A, B, E, and H are true, whereas C, D, and F have to be modified and G is false.

Table

p ^α	$\mathcal{G}_{p^x}(g)$
2^{α} , $1 \leq \alpha \leq 9$	$\{15 \cdot 2^{[(\alpha-1)/4]}\}$
3	{1}
3^{α} , $2 \leq \alpha \leq 5$	$\{3^{\alpha-1}, 13 \cdot 3^{[(\alpha-2)/3]}\}$
5	{4}
5 ²	{20, 124}
5 ³	{100, 124}
7	{400}
7 ²	{400 }
11	{10}
13	{2380}
17	{16}
19	{18}
23	{11}
29	{14}

In the entries for 2^{α} and 3^{α} , [x] denotes the greatest integer $\leq x$. I thank Helge Tverberg who pointed out Bruckman's conjectures to me. Also, lemma 3 is due to him.

REFERENCE

1. Solution to problem 6044, Amer. Math. Monthly 84 (1977), 392-394.

DEPARTMENT OF MATHEMATICS ALLÉGT. 53-55 N-5014 BERGEN-UNIVERSITETET NORWAY