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ON A CONJECTURE OF BRUCKMAN

TORLEIV KLOVE

In connection with problem 6044 in the Amer. Math. Monthly [1] P.
Bruckman made some conjectures. Let g(x)=x*+x+1 and define P, by

3P, = ﬁ g(exp (2mik/n)) .
k=1

Bruckman’s conjectures were:

(A) 2*|P, iff n=0 (mod 15); (B) 28| P, iff n=0 (mod 30);
(C) 33|P, iff n=0 (mod13); (D) 37|P, iff n=0 (mod 39);
(E) 5|P, iff n=0 (mod 4); (F) 5%|P, iff n=0 (mod 20);
(G) 74 P, for all n; (H) 11| P, iff n=0 (mod 10).

In this paper we prove these conjectures as far as they are true. We will study
a more general situatiion. Let

f(x) = x"+a;x""'+... +a,

where a,,a,,...,a, are integers, a,+0. Let
Q. = Q.(f) = [I flexp 2mik/n), nz1,
k=1
0 =0.
We will show that Q, is always an integer and we characterize the set
Z,(f) = {n] Q,(/)=0 (modm)} .
Let

00 = Tl (x—exp@uikn).

k=1
ged (k,n)=1

Then ¢, which is a cyclotomic polynomial, has integral coefficients. Let
X1, X .., X, be zeros of f and let
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F, = n ®alxy) .
k=1

LeEMMaA 1. (i) F, is an integer for d>1.
(i) Qu=(=1Y"TTs Fs for n21.

Proor. F, is a symmetric polynomial in x,,x,,...,x, with integral
coefficients. Hence it is possible to express F, as a polynomial in a,a,,...,a,
with integral coefficients. Since a,,a,,. . .,a, are integers, (i) follows. In (ii) we
have

0, = hl"[ [T (exp (2mik/n)—x;)
=1 j=1

r

(=" [T TII II (x;—exp (2nik/n)

cd=n ged (k,m)=c j=1
1<ks<n

=(=D"TT IT TI (x;—exp (2nil/d))
cd=n j=1 gccli 1

= (=" ]]F,.

din

G, d)=
Sisd

THeOREM 1. Q, is an integer for all n>0.

Proor. Follows immediately from Jemma 1. Let

%.(f) = {neﬁl’m(f)| if d<n and d|n, then d ¢ Z,,(f)} .
THEOREM 2. n e Z,,(f) iff q|n for some q € 4,,(f).

Proor. By lemma 1 (i), if n|n, then Q,|Q, . Hence, if Q,=0 (mod m), then
Q,, =0 (mod m) for all n; which are multiples of n, and so &, consists of the
multiples of the set of generators %,

Since Q,=0 (mod [T, p¥) iff @, =0 (mod p*) for i=1,2,. . .,s, we will from
now on only consider m=p* where p is a prime.

Lemma 2. (i) If p f n, then F,,=F?~! (mod p).
(i) If p|n, then F,,=F% (mod p).
PrOOF. If p 4 n, then it is well known that

@n(xP)
?n(x)

Ppn(X) =
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If h(x) is any polynomial with integral coefficients, then h(x?)=h(x)?+ ph,(x)
for some polynomial h; with integral coefficients. In particular

Pn(X)Ppn(x) = @, (x)"+pY(x) .
For this to be possible y(x)=¢,(x). ¥,(x) and so

Opn(X) = @, ()P +py, (x) .
Hence

Fpn = kljl q’pn(xk l_l (xk p 1+pq’(xl,x29 ces X ) .

Here ¥ is a symmetric polynomial in x,,x,,...,x, with integral coefficients
and so ¥(xy,X,,...,x,) is an integer. Hence Fp,,EFﬁ" (mod p). If p|n, then
@ pn(x)=@,(x?). From this we prove (ii) similarly.

Before we go on with the study of % . we give a congruence for Q, of another
kind than those conjectured by Bruckman.

THEOREM 3. We have Q,,=Q, (modp) for all n.

Proor. If 0, =0 (mod p), then Q,,=0 (mod p) since Q,|Q,,. Suppose Q,%0
(mod p). Let n=p®n; where p } n,. We show that

(—=1)"™Q,, = (—1)™Q, (modp) for all 220.

Let d|ny. Then Q,%0 (mod p). Hence by lemma 2 (i) and Fermat’s theorem,
F,y=1 (mod p). By lemma 2 (ii), F s,=1 (mod p) for all = 1. By lemma 1 (i)

(——l)rpﬂlep,'Il = l—[ Fd = n n Fp"d = l—[ Fd — (__l)er"l (modp).
d|p*n, din, p=0 d|n,
Hence
(=17Q,, = (—1y™Q, = (—1y"Q, (modp).

If pis odd, then (—1)""=(—1)" and if p=2, then (—=1?*"=1=(-1)"
(mod 2).

THEOREM 4. If Q,=0 (mod p®) for some a>1, then 0,,=0 (mod p**).

PROOF. Let n=p®n, where p ,{' ny. If 0, =0 (mod p®), then Q, =0 (mod p), and
by lemma 1 (ii) F;=0 (mod p) for some d|n. By lemma 2 (i), F 4, =0 (mod p) for
some d;|n; and so Fpe, =0 (modp). Since Q, Fp+y |Q,m and
P** 1| Q,F p+1y, the theorem follows.
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Let

Si=Y x5 k=01,2...,

i=1
and

S0 =TT (x=x]) = ¥ +aPx" "1+ ... +a.
i=1

LEMMA 3. (i) For n20 we have Q,= (— 1Y+ (1),

(1) Sy=—3%-y a;S,-; for k=r.
(iv) Forj=1,2,...,r there exist polynomials A; with integral coefficients such

that
j!aj-"’ = Ai(SySsm- ., 85 .

Proor. (i) Q, = l:[ ﬁ (exp (2nik/n)—x;)
k=1 j=1

(=1 I=]1 kI;Il (x;—exp (2mik/n))

(—1y" [ (=1)
j=1

J

= (—1y" D ] (=x) = (= 1y Dg1).
Jji=1

(ii) and (iii) are Newton’s equations and (iv) we get by solving for a{” in

Newton’s equations for f,(x).
By lemma 3 (iii), S, satisfies a linear recurrence, and so it is periodic modulo

any integer m. More precisely, for each m there exist integers K,,=0 and g,,>0
such that if k=K, then S,,, =S8, (modm). If gcd (m,a,)=1, then K,,=0.
LemMMA 4. If p’ is the exact power of p which divides r! and m=p**" then
Jn+en1) = fo(1) (mod p%)

for n2K,,

Proor. By lemma 3, if ¢=g,, then

r

r!
r!_f;l+0(1) = r!+ Z FAj(Sn+0,S2"+20,. . "Sj'l"'jll)
i=1J:
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r !
Pt Y 4SS S,

ji=1J: J")

r!f(1) (modp**?) .

Hence

Jare(1) = £o(1) (mod p*).
LEMMA 5. Let m have the same meaning as in lemma 4. If ne % ,(f),

d=gcd (n,0,), and c 2K, /d, then cd € Z ;(f).

Proor. There exist integers a and b such that cd =an+ bg,,. We may assume
that an= K, since otherwise we replace a and b by a+ blg,, and b—bln for
some /. Then by lemmata 3 and 4

Qe = (= 1" Vf,(1) = (=1 Vf, (1)
= (=)™, = 0 (modp* .

THEOREM 5. If p } a,, then

(i) 9N+ forall azl,
(ii) if n € G,+(f), then n|g,, where m=p**".

Proor. If p } a,, then K,,=0 and so
Q,, = (=1ye*bf (1) = (=1)e*"Vf(1) = 0 (mod p?) .

This proves (i). Let n € 4, and d=gcd (n,0,). Then, by lemma 5, d € Z ..
Since d|n, d=n by the definition of % ,.. Hence n=d|g,,.

THEOREM 6. If pla, and n € 4,(f), then n|g,, where m=p'™*".

ProoF. Let d =gcd (n, 0,,) and choose B such that pfd > K,,. Then, by lemma
5, Q#4=0 (mod p) and so, by theorem 3, Q,=0 (nod p). Hence n=d| g,

For g(x)=x*+x+1, r=4 and a,=1, I have made a computer program to
compute Q, using lemma 3. The program also computed % ,:(g) for a number of
p®s by first computing g,, and then testing Q, for n|g,, to find if it is congruent
to 0 modulo p®. Some of the results are given in the following table which in
particular proves that conjectures A, B, E, and H are true, whereas C, D, and F
have to be modified and G is false.
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Table
P G (8
2%, 15059 {152t /a1y
3 {1}
3%, 25055 (371,13 31@-231}
5 (4}
52 {20,124}
5 {100, 124}
7 {400}
72 {400}
11 {10}
13 {2380}
17 {16}
19 {18}
23 {11}
29 {14}

In the entries for 2* and 3% [x] denotes the greatest integer <x.
I thank Helge Tverberg who pointed out Bruckman’s conjectures to me.
Also, lemma 3 is due to him.
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