ENLARGING A SUBSPACE OF $C(X)$ WITHOUT CHANGING THE CHOQUET BOUNDARY

EGGERT BRIEM

1.

Let X be a compact metric space, let B be a uniformly closed subspace of $C(X)$, the Banach space of all continuous real-valued functions on X, and suppose that B separates the points of X and contains the constant functions.

For each $x \in X$ let ν_x be a maximal measure on X representing x with respect to B. We are going to study conditions on the subspace B and the selection $x \to \nu_x$ of maximal representing measures which ensure that the space

$$A = \left\{ f \in C(X) : \int f \, d\nu_x = f(x) \text{ all } x \in X \right\}$$

is a simplicial space i.e. the state space for A is a simplex. In [3] it is shown that it is always possible to find a selection $x \to \nu_x$ which is measurable but this is in general not a sufficient condition. The case when the Choquet boundary $\partial_B X$ for B is closed is treated in [2]. There it is shown that if $\partial_B X$ is closed, then the selection $x \to \nu_x$ is continuous if and only if A is simplicial.

In this note conditions on B and on the selection $x \to \nu_x$ are given which imply that A is a simplicial space. These conditions involve separation of maximal representing measures and upper semi-continuity of the selection $x \to \nu_x$ with respect to the cone of all finite suprema of functions from B.

2.

Let X and B be as above. By $M(X)$ we denote the space of all regular Borel measures on X, by $\partial_B X$ the Choquet boundary for B and by $M(\partial_B X)$ the set of all boundary (or maximal) measures on X; since X is a metric space a measure μ is in $M(\partial_B X)$ if and only if $|\mu|(X \setminus \partial_B X) = 0$ ([1, (4.11), p. 35 and II. §2]).

A measurable selection of maximal representing measures is a map $x \to \nu_x$ of X into $M(\partial_B X)$ such that ν_x is a probability measure in $M(\partial_B X)$ for which

Received May 16, 1978.
\[b(x) = \int b \, dv_x \quad \text{for each } b \in B \]

and such that for each \(f \in C(X) \) the function

\[x \rightarrow \int f \, dv_x \]

is Borel measurable on \(X \). Such a selection gives rise to a map \(T \) from \(M(X) \) into \(M(\partial_B X) \) defined by (cf. [3])

\[\int f \, dT\mu = \int \left(\int f(y) \, dv_x(y) \right) \, d\mu(x), \quad \text{for all } f \in C(X). \]

From the definition of \(T \) it is clear that \(T \) is a linear map, and that \(T\mu = \mu \) if \(\mu \) is a boundary measure. We are interested in deciding when the space

\[A = \left\{ f \in C(X) : f(x) = \int f \, dv_x, \text{ for all } x \in X \right\} \]

is a simplicial space, that is when the state space for \(A \) is a simplex. In terms of the map \(T \) we have a condition which implies that \(A \) is simplicial:

Proposition 1. The space \(A \) is simplicial, if the null-space for \(T \),

\[N(T) = \{ \mu \in M(X) : T\mu = 0 \}, \]

is a \(w^* \)-closed subspace of \(M(X) \) (when \(M(X) \) is equipped with the \(w^* \)-topology defined by \(C(X) \)).

Proof. We look at the space \(M(X)/N(T) \) equipped with the quotient topology which is a Hausdorff topological vector space. The set \(M_1^+(X)/N(T) \) is a compact convex subset of \(M(X)/N(T) \) where \(M_1^+(X) \) denotes the set of probability measures on \(X \). Now, if \(\varphi \) denotes the canonical projection of \(M(X) \) onto \(M(X)/N(T) \) and if \(\tilde{a} \) is a continuous affine function on \(M_1^+(X)/N(T) \) then the restriction of \(\tilde{a} \circ \varphi \) to \(M_1^+(X) \) is a continuous affine function. Since \(T\nu = \nu \) if \(\nu \in M_1^+(\partial_B X) = M_1^+(X) \cap M(\partial_B X) \), this shows that the continuous affine functions on \(M_1^+(X) \), which are constant on each of the sets \(\{ \mu \in M_1^+(X) : T\mu = \nu \} \), where \(\nu \in M_1^+(X) \), separate the points of \(M_1^+(\partial_B X) \). But these functions are just the functions in \(A \) because the continuous affine functions on \(M_1^+(X) \) are of the form

\[\mu \rightarrow \int f \, d\mu \]

where \(f \in C(X) \). If \(x \in X \setminus \partial_B X \) then \(\delta_x \), the point mass at \(x \), and \(\nu_x \) represent \(x \) with respect to \(A \), which shows that the Choquet boundary for \(A \) is contained
in that for B. The reverse inclusion is clear since A contains B. Thus A and B
have the same Choquet boundary. But then $M_1^+(\partial_B X) = M_1^+(\partial_A X)$ and we
conclude that A separates the points of $M_1^+(\partial_A X)$, which shows that each point
in the state space for A is represented by a unique measure in $M_1^+(\partial_A X)$. But
then the state space for A is a simplex ([1, Thm. II 3.6]).

We now turn to look at conditions given in terms of the space B on
selections of representing measures which ensure that $N(T)$ is w^*-closed.

Let P denote the cone of all pointwise suprema of finitely many functions
from B. The following condition is necessary for the existence of a simplicial
space A containing B and having the same Choquet boundary as B:

(*) There is a measurable selection $x \to v_x$ of maximal measures such that for
each $f \in P$ the function $x \to \int f \, dv_x$ is upper semi-continuous on X.

The necessity of this condition follows from [1, Thm. II 3.7]. If $\partial_B X$ is closed,
then the restriction of P to $\partial_B X$ is dense in $C(\partial_B X)$ so that (*) is in that case
equivalent to the existence of a measurable selection which is upper semi-
continuous with respect to $C(X)$ which is the same thing as saying that the
selection is continuous. This is, however known to be a sufficient condition
when $\partial_B X$ is closed ([2, Thm. (2.4)]).

The second condition is concerned with separation of measures in $M_1^+(\partial_B X)$
by functions in P:

(**) If $\mu, v \in M_1^+(\partial_B X)$ with $\mu \neq v$ then there exist functions $f, -g \in P$ with
$f \geq g$ on $\partial_B X$ such that

\[\int f \, d\mu < \int g \, dv . \]

We observe that condition (**) is satisfied if $\partial_B X$ is closed, because in that
case the restriction of P to $\partial_B X$ is dense in $C(\partial_B X)$. We also note that if (**) is satisfied
then each point of $\partial_B X$ has a unique boundary representing measure
with respect to B. This may be seen as follows: Suppose $x \in \partial_B X$ has to
representing measures $\mu, v \in M_1^+(\partial_B X)$. Let $f, -g$ be as in condition (**)
relative to μ and v. Then

\[f(x) \leq \int f \, d\mu < \int g \, dv \leq g(x) . \]

But $f \geq g$ on $\partial_B X$ and hence $f(x) \geq g(x)$.

The following theorem shows how conditions (*) and (**) are related to the
existence of a simplicial subspace containing B and having the same Choquet
boundary as B.

Theorem 2. Let \(B \) be a closed subspace of \(C(X) \) and suppose that each point in \(\partial_B X \) has a unique boundary representing measure with respect to \(B \). Then there exists a simplicial space \(A \) containing \(B \) and having the same Choquet boundary as \(B \) if and only if conditions (*) and (**) are satisfied.

Proof. Let \(A \) be a simplicial subspace of \(C(X) \) containing \(B \) and suppose that \(\partial_A X = \partial_B X \). As noted earlier condition (*) is then satisfied. To see that condition (**) is satisfied let \(\mu \) and \(\nu \) be two different elements of \(M_1^+ (\partial_B X) \) and let \(a \) be a function in \(A \) such that

\[
\int a \, d\mu < \int a \, d\nu.
\]

Let \(\hat{a} \) be the function defined for each \(x \in X \) as follows:

\[
\hat{a}(x) = \inf \{ b(x) : b \in B \, b > a \}.
\]

It follows from [1, Cor. I. 3.6], that there is a measure \(\eta \) representing \(x \) with respect to \(B \) such that

\[
\hat{a}(x) = \int a \, d\eta.
\]

Let \(\xi \in M_1^+ (\partial_B X) \) be such that \(\xi - \eta \in A^\perp \). Such a measure exists by Choquet's theorem. Then also \(\xi - \eta \in B^\perp \) which shows that \(\xi \) is a boundary representing measure (with respect to \(B \)) for \(x \). Since each point of \(\partial_B X \) has a unique boundary representing measure with respect to \(B \), we conclude that \(\xi \) is a representing measure for \(x \) with respect to \(A \), if \(x \in \partial_B X \). Thus

\[
\hat{a}(x) = \int a \, d\eta = \int a \, d\xi = a(x)
\]

if \(x \in \partial_B X \). Therefore the function \(a \) can be approximated uniformly on \(\partial_B X \) by functions in \(P \) and applying this result to \(-a \in A \) instead of \(a \), we see that \(a \) can also be approximated uniformly by functions in \(-P \). Taking (1) into account we conclude that condition (**) is satisfied.

Suppose now that conditions (*) and (**) are satisfied and let \(T \) be the linear map from \(M(X) \) into \(M(\partial_B X) \) which the selection \(x \mapsto \nu_x \) gives rise to. By Proposition 1 it suffices to show that \(N(T) \) is \(w^* \)-closed in \(M(X) \). By the Krein–Smulian Theorem it suffices to show that the set

\[
N_1 = \{ \mu \in M(X) : \|\mu\| \leq 1 \text{ and } T\mu = 0 \}
\]

is \(w^* \)-closed in \(M(X) \).

First we observe that each \(\mu \in N_1 \) can be written as \(\mu = t\mu^+ - t\mu^- \) where \(\mu^+, \mu^- \in M_1^+ (X) \) and \(0 \leq t \leq 1/2 \).
Let μ be in the w^*-closure of N_1 and let $\{\mu_n\}$ be a sequence in N_1 converging to μ. Each μ_n can be decomposed as $\mu_n = t_n \mu^+_n - t_n \mu^-_n$ where $\mu^+_n, \mu^-_n \in M^1_1(X)$ and where $0 \leq t_n \leq 1/2$. Passing to a subsequence if necessary we may suppose that there are $\xi, \eta \in M^1_1(X)$ and a number t with $0 \leq t \leq 1/2$ such that $\{\mu^+_n\}$ and $\{\mu^-_n\}$ converge to ξ and η respectively in the w^*-topology and such that $\{t_n\}$ converges to t. Then $\mu = t\xi - t\eta$. We want to show that $T\xi = T\eta$. Suppose this is not the case. Then there are functions $f, -g \in P$ such that $f \geq g$ on $\partial P X$ and such that

$$\int f d\eta < \int g d\xi$$

Suppose we knew that for each $h \in P$ the map

$$\eta \rightarrow \int h d\eta \quad \eta \in M^1_1(X)$$

was upper semi-continuous when $M^1_1(X)$ is equipped with the w^*-topology. Then

$$\int f d\eta \geq \liminf_n \int f dT\mu^+_n = \liminf_n \int f dT\mu^-_n \geq \liminf_n \int g dT\mu^-_n \geq \int g d\xi$$

contradicting (4). Thus it only remains to show that the map defined by (5) is upper semi-continuous. Since for each $h \in P$ the map

$$\varphi_h: x \rightarrow \int h dv_x, \quad x \in X$$

is upper semi-continuous there is a family $\{f_i\}_{i \in I}$ of continuous functions, downwards directed in the pointwise ordering, such that $\varphi_h(x) = \inf_{i \in I} f_i(x)$. Now by definition

$$\int h d\eta = \int \varphi_h d\eta$$

By Lusin's theorem we can find compact sets to which the restriction of φ_h is continuous, carrying as large a portion of the mass of η as we wish. It then follows that

$$\int h d\eta = \inf_i \int f_i d\eta$$

which shows that the map defined by (5) is upper semi-continuous and this concludes the proof of Theorem 2.
3.

We conclude with a couple of examples and some remarks. First an example of a non-simplicial subspace whose Choquet boundary is not closed and where conditions (*) and (**) are satisfied.

Example 3. Let \(\{P_1, P_2, P_3, P_4\} \) be the 4 corners of a square in \(\mathbb{R}^2 \), let \(P_5 \) denote the midpoint of the segment \(P_1P_2 \) and let \(\{Q_n\} \) be a sequence of points converging to \(P_5 \) from outside the square. Let

\[
X = \{P_i : i = 1, \ldots, 5\} \cup \{Q_n : n \in \mathbb{N}\}
\]

and let \(B \) be the space of all continuous functions on \(X \) which are affine on the set \(\{P_i : i = 1, \ldots, 5\} \). Then the Choquet boundary for \(B \) is \(X \setminus \{P_5\} \), the space \(B \) is not simplicial and it is not hard to see that (*) and (**) are satisfied.

In [2, Counterexample 3.11] an example is given of a subspace for which condition (*) is not satisfied. In that example the Choquet boundary is closed so that condition (**) is satisfied. The second example given here is an example of a subspace \(B \) for which points in \(\partial B X \setminus \partial B X \) have more than one boundary representing measure so that condition (**) is not satisfied, but where there exists a simplicial space containing \(B \) and having the same Choquet boundary as \(B \).

Example 4. Let \(X \subseteq \mathbb{R}^2 \) be the set

\[
X = \left\{ x_n = \left(\frac{1}{n}, 0 \right) : n \in \mathbb{N}\right\} \cup \{y_1 = (0, -1), y_2 = (0, 0), y_3 = (0, 1)\}
\]

and let

\[
B = \left\{ f \in C(X) : \frac{1}{2}(f(y_1) + f(y_3)) = f(y_2) = \sum_{n=1}^{\infty} \frac{1}{2^n} f(x_n) \right\}.
\]

Then \(\partial B X = X \setminus \{y_2\} \) and \(y_2 \) has two boundary representing measures so that condition (**) is not satisfied. As a simplicial space \(A \) containing \(B \) and having the same Choquet boundary as \(B \) we can take

\[
A = \left\{ f \in C(X) : f(y_2) = \frac{1}{2}(f(y_1) + f(y_3)) \right\}.
\]

In the general case when points of \(\partial B X \setminus \partial B X \) may have more than one boundary representing measure we do not have a necessary and sufficient condition for the existence of a simplicial space \(A \) containing \(B \) and having the same Choquet boundary as \(B \). Further, we do not know whether condition (**) is redundant in Theorem 2 i.e. contained in condition (*), or more
generally even whether condition (*) is sufficient in the general case when points of \(\partial_B^+X \setminus \partial_BX \) may have more than one boundary representing measure.

REFERENCES

