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THE MINIMAL DENSE TWO-SIDED IDEAL
OF A C*-ALGEBRA WITH CONTINUOUS TRACE

R. M. GILLETTE and D. C. TAYLOR

1. Introduction.

Let 4 be a C*-algebra with continuous trace, let 4 be the spectrum of A, and
let J4 be the set of all x € A such that

sup {dimRangen(x) : ne A} < o0,

and 7(x)=0 for all = outside some compact subset of A. In [2, 4.7.24, p. 100],
Dixmier asked whether J 4 is the minimal dense two-sided ideal of A. Pedersen
and Petersen answered the question negatively in [12, Prop. 3.6, p. 202], and
the authors showed in [3, Theorem 3.2] that the answer is negative even in case
the continuous field of C*-algebras generated by A is trivial.

The purpose of this note is to give sufficient conditions on A in order that J ,
will be the minimal dense two-sided ideal of A. The main result is the
following:

THEOREM. Let A be a C*-algebra with continuous trace. If each compact
subset of the spectrum A has finite covering dimension, then J , is the minimal
dense two-sided ideal of A.

This theorem applies to any continuous trace C*-algebra having finite
dimensional spectrum because a closed subset of a finite dimensional space is
finite-dimensional [7, C, p. 196]. The theorem also applies to a large class of
C*-algebras having infinite-dimensional spectra, including those whose spectra
are disjoint unions of open, compact finite-dimensional subspaces. The disjoint
union of the complex projective space P',P?, P3,..., is an instance of this
theorem. This spectrum is countable-dimensional in the strong sense [7, Def.
V1.4, p. 162]. The one-point compactification of this spectrum is an example of
an infinite dimensional spectrum associated with a continuous trace C*-
algebra for which the conclusion of the theorem fails [12, Prop. 3.6, p. 202], 3,
Theorem 3.2].

In [5, 2, p. 168], Laursen and Sinclair show that there exists a minimal dense
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two-sided ideal in every C*-algebra 4 and this minimal dense ideal is the
Pedersen ideal of A (the minimal dense two-sided hereditary ideal of A).
Pedersen notes in [11, § 5, p. 12] that concrete descriptions of the minimal
dense hereditary ideal are known for only a few non-commutative C*-algebras.
Our result provides a large class of non-trivial examples of C*-algebras for
which the Pedersen ideal is explicitly known.

For basic concepts and definitions we refer the reader to [2], [8], [9].

2. The minimal dense two-sided ideal.

Let T be a locally compact Hausdorff space, let o/ =(A(t),®) be a
continuous field of C*-algebras defined on T, and let A be the C*-algebra
defined by /. (The algebra A consists of all x € @ such that | x(t)|| vanishes at
infinity on T.) For each subset E of T, let @ | E denote the set of vector fields on
E that are continuous with respect to @ [2, 10.1.6, p. 188]. The continuous field
of C*-algebras ((4 (1)), ©|E) will be denoted /| E, and the C*-algebra
defined by &/ | E will be denoted 4| E. For any C*-algebra 4, K(4)=K, will
denote the minimal dense two-sided ideal of 4; that is, the Pedersen ideal of A4.

2.1. ProvrosiTION. If x € A* and x has compact support, then x € K} if and
only if, for each t € T there is a compact neighborhood V of t such that
x| Ve K;] v

Proor. The proof is a straightforward “partition of unity” type argument.

In 2.2 below, # = (H (t), I') will be a continuous field of Hilbert spaces on T,
o = (#) will denote the continuous field of elementary C*-algebras
generated by o [2, 10.7.2, p. 205], and, for each e, fe I', O(e, f)=0, ; € o will
be defined as in [2, 10.7.2, p. 205].

2.2. LEMMA. Let Q be the set of all e € I' having compact support, and let A be
the C*-algebra defined by o (). If # admits a continuous, non-vanishing
vector field, then K} is the set of all elements in A of the form

(2.1) O(ey,e))+0(eye,)+ ... +0(e,e,),
where each e; belongs to Q.

Proor. The proofiis a straightforward adaptation of the proof of Theorem 2.2
in [3] to the continuous field setting.

2.3. LEMMA. Suppose that A is a C*-algebra, and suppose that |z| € K 4 for
some z € A. Then z € K .
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Proor. According to the polar decomposition theorem, there is a u € A”
such that z=ulz|. By [1, 1.1.1, p. 166], ulz|* € 4, and since |z|* € K, we
conclude that z=u|z|*|z|* must belong to K.

The proof of the next lemma follows the proof of [4, Prop. 5.4, p. 30].

2.4. LEMMA. Suppose that S is a paracompact space having finite covering
dimension: dimS=n—1. Then each open covering ¥  of S admits a locally
refinement U =%, U ...U%, which is an open covering of S such that the
members of U, are pairwise disjoint for k=1,. .., n.

ProoF. Let ¥" = {V}},.; be an open covering of S. Since S is paracompact we
may assume ¥~ is locally finite. Since dimS=n—1, there is a locally finite
refinement of #” by an open covering of S having order at most n [7, Theorem
I1.6, p. 22]. (The order of a family {4,} is at most n provided that if F is any set
of n+1 distinct indices, then (1 {4; : i € F} = ). Thus we may assume that the
covering {V;},.; is locally finite and has order at most n.

Let {o;};, be a partition of unity on S such that support o; = V, for each i € I.
For each finite subset F of I, F+1, let U (F) be the set of all ¢ € S such that a; ()
>a;(t) whenever i € Fandj e I —F.If F=1, let U(F) be the set of all t € S such
that a;(t)>0 whenever i € F. Since the supports of the a; constitute a locally
finite family, each U (F) is an open subset of S. If U is an open set which meets
the support of «; only for the indices i=i,,. . .,i,, and if U meets U (F), then F is
a subset of ij,...,i,. Thus the family of all U(F) is a locally finite family.
Moreover, this family covers S.

Let %,, be the family of all U (F) such that |F|=m. If F and F’ are distinct sets
of m indices, then U(F) and U(F') are disjoint. Because the family {V;} has
order at most n, U(F)=¢ whenever |[F|=m>n. Thus %,U... U%, is a
covering of S. Since U (F) is contained in the supports of the «, for which i € F,
this covering is a refinement of ¥". This completes the proof of the lemma.

2.5. LEMMA. Suppose that # = (H(t), I') is a continuous field of Hilbert spaces
on the locally compact Hausdorff space T, and let A be the C *-algebra defined by
S (H). If T has finite covering dimension, dim T=n—1, then for each z € J}
there exist zy,...,z, € Jj and e,,. . .,e, € I satisfying the following conditions:

(2.6) z=z;+...+z,

(2.7) For each k and each t there is a scalar a2 0 such that z,(t)=oz(t).

(2.8) Each e, has compact support, and for each t € T, ||z,(t)| = | ex(t)| and
e,(t) € Range z,(1).
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ProoOF. Let S={t € T : z(t)%0}. Note that Cl; S is compact, and since § is o-
compact, § is paracompact. Since dim E <n— 1 for any closed subset E of T [7,
C, p. 196], S admits a countable closed covering by sets of dimension at most
n—1. It follows that dimS<n—1 [7, Cor., p. 195].

Given ¢, € §, choose u, € Rangez(t,) with |u,| = 1. There is a neighborhood
U of t, with Clz U = § on which z(t)u(z) is never zero where u(t,) = u,. Choose a
neighborhood V of ¢, such that Cl; V= U, and let « be a continuous function
on T which is 1 on Clr ¥, and 0 off U. Then the vector field e defined by

o) = {cx(t)“z(t)u(t)ll‘lz(t)u(t), when te U,
0, otherwise ,
belongs to I and has compact support (see [2, 10.1.9, p. 188] and [2, 10.7.3, p.
205]). Furthermore, e(t) € Rangez(t) for all t € T, and |e(t)|=1 for all
t € Clr V. In this way one can construct an open covering ¥ ={V,},.; of S and
a family {e;};.; of members of I having compact support such that for each
i € I the following conditions are satisfied:

e;(t) € Rangez(t) for all te T;
le®)] =1 forall teV,.

Let #=%,U ... U%, be a locally finite open covering of S which refines ¥~
and for which the mebers of %, are pairwise disjoint (Lemma 2.4). Letting %,
={U,,;:j € I1(k)}, there is a partition of unity {a, ;} on S with the support of
o, ; contained in U, ;. Since Cl; U, ;=§, we may assume that «, ; is defined
and continuous on all of T. Let z, be defined as follows:

0) = o ;(0z(t), if t e U, ; for some j € I(k);
Al = 0, otherwise .

Then z, belongs to A since % is locally finite, a; ; tends to zero at the boundary
of U, ; and z tends to zero at the boundary of S.

From the definition of z, it is clear that (2.7) is satisfied, and (2.6) follows
from the fact that the {«, ;} form a partition of unity. To define e, satisfying
(2.8), choose i(k, j) € I such that U, ;= Vj, ; for each k, j and let ¢, be given by
the following formula:

lzi(t)leiw, (), if t € Uy ; for some j € I(k);
ell) = {0 otherwise .

Since z, tends to zero at the boundary of each U, ; and at the boundary of §, ¢,
belongs to I'. The support of e, is contained in Cl; S and is therefore compact.
IfjeI(k)and t € U, j, then ¢, ; € Rangez(t); and if in addition z,(t) #0, then
Range z,(t) = Range z(t). Consequently (2.8) is satisfied.
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2.6. LEMMA. Suppose that # = (H (t),I") is a continuous field of Hilbert spaces
on the locally compact Hausdorff space T, and let A be the C*-algebra defined by
A (H). If Bz € K}, where ze A, B e C.(T)* and the support of z is contained
in the support of B, then z € KJ.

Proor. The hereditary C*-algebra B generated by Bz contained in K, [6,
3.3, p. 8]. Since B(t)z(1)*0 if z(1)+0, it is clear that z is in the g(A4", A') closure
of B taken in the bidual 4”. Hence z € B.

2.7. THEOREM. Suppose that # = (H(t),I') is a continuous field of Hilbert
spaces on the locally compact Hausdorff space T. Suppose also that # admits a
continuous, non-vanishing vector field, and T has finite covering dimension. If A is
the C*-algebra defined by (), then K ,=J 4.

Proor. Since J, is dense, we have K, ,=J,. (See [2, 10.4.4, p. 196]). By
Lemma 2.3, it will suffice to show that J = K. (Alternately, one can observe
that J,=SpanJ}). Let J(m)* consists of all z in JJ such that

dimRangez(t) < m

for each t € T. We will show by induction that J(m)* <K, for each m
=1,2,.... It will be convenient to let dim T=n—1.

Suppose z e J(1)*, and let z,,e, satisfy (2.6)—(2.8) of Lemma 2.5 (k
=1,2,...,n). Clearly for each k and each t € T.

(2.9) Ize(®)172e(t) = zi(£)B(ex(t), ex(8)) -

According to Lemma 2.2 the right-hand side of (2.9) belongs to K 4, and so by
Lemma 2.6, z, belongs to K,. Now by (2.6), z € K 4. This completes the proof
that J(1)* =K.

Next suppose that J(m—1)* =K ,. Fix z € J(m)*, and let z,, ¢, satisfy (2.6)-
(2.8) of Lemma 2.5. For a given k=1,...,n, define y by the formula

y(©) = 201z — 2 (00 (ex (1), e (1)), (1 T).

For a fixed t € T, we have by (2.7) of Lemma 2.5, z,(t) = az(t), where «=0. Let
P be the projection of H(t) onto Range z(t), and let

w(®) = [z (O)1*P—0(ex(t), e ()] -

From (2.8) of Lemma 2.5 we see that e,(t) is in the kernel of w(t) (recalling that
e,(t) is in the range of both 0(e,(t), e,(t)) and P). Clearly w(t) is self-adjoint, and
therefore e, (t) is orthogonal to Rangew(t). Since Range w(t)=Range z(t),
dim Range w(t) m— 1. Since y(t)=z,(t)w(t), dim Range y(t)<m—1, and there-
fore dimRange|y|()<m—1. But t was an arbitrary point of T, so by the
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inductive hypothesis, |y|e K,. Hence ye K, by Lemma 23. Since
z,0(ey, €,) € K4 by Lemma 2.2, it follows that ||z,(+)||%z, € K, and by Lemma
2.6, z; € K,. Consequently z € K, by (2.6) of Lemma 2.5 and the proof is
complete.

2.8. CorOLLARY. Let A be a C*-algebra with continuous trace. If each compact
subset of the spectrum A has finite covering dimension, then J 4 1S the minimal
dense two-sided ideal of A.

Proor. The proof will follow from a straightforward application of 2.1, 2.7
and the results in [2, Chap. 10].
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