THE MINIMAL DENSE TWO-SIDED IDEAL OF A C*-ALGEBRA WITH CONTINUOUS TRACE

R. M. GILLETTE and D. C. TAYLOR

1. Introduction.

Let A be a C*-algebra with continuous trace, let \hat{A} be the spectrum of A, and let J_A be the set of all $x \in A$ such that

$$\sup \{\dim \operatorname{Range} \pi(x) : \pi \in \widehat{A}\} < \infty$$

and $\pi(x)=0$ for all π outside some compact subset of \hat{A} . In [2, 4.7.24, p. 100], Dixmier asked whether J_A is the minimal dense two-sided ideal of A. Pedersen and Petersen answered the question negatively in [12, Prop. 3.6, p. 202], and the authors showed in [3, Theorem 3.2] that the answer is negative even in case the continuous field of C*-algebras generated by A is trivial.

The purpose of this note is to give sufficient conditions on \hat{A} in order that J_A will be the minimal dense two-sided ideal of A. The main result is the following:

Theorem. Let A be a C^* -algebra with continuous trace. If each compact subset of the spectrum \hat{A} has finite covering dimension, then J_A is the minimal dense two-sided ideal of A.

This theorem applies to any continuous trace C^* -algebra having finite dimensional spectrum because a closed subset of a finite dimensional space is finite-dimensional [7, C, p. 196]. The theorem also applies to a large class of C^* -algebras having infinite-dimensional spectra, including those whose spectra are disjoint unions of open, compact finite-dimensional subspaces. The disjoint union of the complex projective space P^1, P^2, P^3, \ldots , is an instance of this theorem. This spectrum is countable-dimensional in the strong sense [7, Def. VI.4, p. 162]. The one-point compactification of this spectrum is an example of an infinite dimensional spectrum associated with a continuous trace C^* -algebra for which the conclusion of the theorem fails [12, Prop. 3.6, p. 202], [3, Theorem 3.2].

In [5, 2, p. 168], Laursen and Sinclair show that there exists a minimal dense

Received May 29, 1978; in revised form November 8, 1978.

two-sided ideal in every C^* -algebra A and this minimal dense ideal is the Pedersen ideal of A (the minimal dense two-sided hereditary ideal of A). Pedersen notes in [11, § 5, p. 12] that concrete descriptions of the minimal dense hereditary ideal are known for only a few non-commutative C^* -algebras. Our result provides a large class of non-trivial examples of C^* -algebras for which the Pedersen ideal is explicitly known.

For basic concepts and definitions we refer the reader to [2], [8], [9].

2. The minimal dense two-sided ideal.

Let T be a locally compact Hausdorff space, let $\mathscr{A} = (A(t), \Theta)$ be a continuous field of C*-algebras defined on T, and let A be the C*-algebra defined by \mathscr{A} . (The algebra A consists of all $x \in \Theta$ such that ||x(t)|| vanishes at infinity on T.) For each subset E of T, let $\Theta \mid E$ denote the set of vector fields on E that are continuous with respect to Θ [2, 10.1.6, p. 188]. The continuous field of C*-algebras $((A(t))_{t \in E}, \Theta \mid E)$ will be denoted $\mathscr{A} \mid E$, and the C*-algebra defined by $\mathscr{A} \mid E$ will be denoted $A \mid E$. For any C*-algebra A, $K(A) = K_A$ will denote the minimal dense two-sided ideal of A; that is, the Pedersen ideal of A.

2.1. Proposition. If $x \in A^+$ and x has compact support, then $x \in K_A^+$ if and only if, for each $t \in T$ there is a compact neighborhood V of t such that $x \mid V \in K_{A \mid V}^+$.

PROOF. The proof is a straightforward "partition of unity" type argument.

- In 2.2 below, $\mathcal{H} = (H(t), \Gamma)$ will be a continuous field of Hilbert spaces on T, $\mathcal{A} = \mathcal{A}(\mathcal{H})$ will denote the continuous field of elementary C*-algebras generated by \mathcal{H} [2, 10.7.2, p. 205], and, for each $e, f \in \Gamma$, $\theta(e, f) = \theta_{e, f} \in \mathcal{A}$ will be defined as in [2, 10.7.2, p. 205].
- 2.2. Lemma. Let Ω be the set of all $e \in \Gamma$ having compact support, and let A be the C*-algebra defined by $\mathscr{A}(\mathscr{H})$. If \mathscr{H} admits a continuous, non-vanishing vector field, then K_A^+ is the set of all elements in A of the form

(2.1)
$$\theta(e_1, e_1) + \theta(e_2, e_2) + \ldots + \theta(e_n, e_n) ,$$

where each e_i belongs to Ω .

PROOF. The proof is a straightforward adaptation of the proof of Theorem 2.2 in [3] to the continuous field setting.

2.3. Lemma. Suppose that A is a C*-algebra, and suppose that $|z| \in K_A$ for some $z \in A$. Then $z \in K_A$.

PROOF. According to the polar decomposition theorem, there is a $u \in A''$ such that z = u|z|. By [1, 1.1.1, p. 166], $u|z|^{\frac{1}{2}} \in A$, and since $|z|^{\frac{1}{2}} \in K_A$, we conclude that $z = u|z|^{\frac{1}{2}}|z|^{\frac{1}{2}}$ must belong to K_A .

The proof of the next lemma follows the proof of [4, Prop. 5.4, p. 30].

2.4. Lemma. Suppose that S is a paracompact space having finite covering dimension: $\dim S = n-1$. Then each open covering $\mathscr V$ of S admits a locally refinement $\mathscr U = \mathscr U_1 \cup \ldots \cup \mathscr U_n$ which is an open covering of S such that the members of $\mathscr U_k$ are pairwise disjoint for $k = 1, \ldots, n$.

PROOF. Let $\mathscr{V} = \{V_i\}_{i \in I}$ be an open covering of S. Since S is paracompact we may assume \mathscr{V} is locally finite. Since dim S = n - 1, there is a locally finite refinement of \mathscr{V} by an open covering of S having order at most n [7, Theorem II.6, p. 22]. (The order of a family $\{A_i\}$ is at most n provided that if F is any set of n+1 distinct indices, then $\bigcap \{A_i : i \in F\} = \emptyset$). Thus we may assume that the covering $\{V_i\}_{i \in I}$ is locally finite and has order at most n.

Let $\{\alpha_i\}_{i\in I}$ be a partition of unity on S such that support $\alpha_i \subset V_i$ for each $i \in I$. For each finite subset F of I, $F \neq I$, let U(F) be the set of all $t \in S$ such that $\alpha_i(t) > \alpha_j(t)$ whenever $i \in F$ and $j \in I - F$. If F = I, let U(F) be the set of all $t \in S$ such that $\alpha_i(t) > 0$ whenever $i \in F$. Since the supports of the α_i constitute a locally finite family, each U(F) is an open subset of S. If U is an open set which meets the support of α_i only for the indices $i = i_1, \ldots, i_k$, and if U meets U(F), then F is a subset of i_1, \ldots, i_k . Thus the family of all U(F) is a locally finite family. Moreover, this family covers S.

Let \mathscr{U}_m be the family of all U(F) such that |F| = m. If F and F' are distinct sets of m indices, then U(F) and U(F') are disjoint. Because the family $\{V_i\}$ has order at most n, $U(F) = \emptyset$ whenever |F| = m > n. Thus $\mathscr{U}_1 \cup \ldots \cup \mathscr{U}_n$ is a covering of S. Since U(F) is contained in the supports of the α_i for which $i \in F$, this covering is a refinement of \mathscr{V} . This completes the proof of the lemma.

- 2.5. Lemma. Suppose that $\mathcal{H} = (H(t), \Gamma)$ is a continuous field of Hilbert spaces on the locally compact Hausdorff space T, and let A be the C^* -algebra defined by $\mathcal{A}(\mathcal{H})$. If T has finite covering dimension, dim T = n 1, then for each $z \in J_A^+$ there exist $z_1, \ldots, z_n \in J_A^+$ and $e_1, \ldots, e_n \in \Gamma$ satisfying the following conditions:
- $(2.6) \ z = z_1 + \ldots + z_n.$
- (2.7) For each k and each t there is a scalar $\alpha \ge 0$ such that $z_k(t) = \alpha z(t)$.
- (2.8) Each e_k has compact support, and for each $t \in T$, $||z_k(t)|| = ||e_k(t)||$ and $e_k(t) \in \text{Range } z_k(t)$.

PROOF. Let $S = \{t \in T : z(t) \neq 0\}$. Note that $\operatorname{Cl}_T S$ is compact, and since S is σ -compact, S is paracompact. Since $\dim E \leq n-1$ for any closed subset E of T [7, C, p. 196], S admits a countable closed covering by sets of dimension at most n-1. It follows that $\dim S \leq n-1$ [7, $\operatorname{Cor.}$, p. 195].

Given $t_0 \in S$, choose $u_0 \in \text{Range } z(t_0)$ with $||u_0|| = 1$. There is a neighborhood U of t_0 with $\operatorname{Cl}_T U \subset S$ on which z(t)u(t) is never zero where $u(t_0) = u_0$. Choose a neighborhood V of t_0 such that $\operatorname{Cl}_T V \subset U$, and let α be a continuous function on T which is 1 on $\operatorname{Cl}_T V$, and 0 off U. Then the vector field e defined by

$$e(t) = \begin{cases} \alpha(t) \|z(t)u(t)\|^{-1} z(t)u(t), & \text{when } t \in U, \\ 0, & \text{otherwise,} \end{cases}$$

belongs to Γ and has compact support (see [2, 10.1.9, p. 188] and [2, 10.7.3, p. 205]). Furthermore, $e(t) \in \text{Range } z(t)$ for all $t \in T$, and ||e(t)|| = 1 for all $t \in \text{Cl}_T V$. In this way one can construct an open covering $\mathscr{V} = \{V_i\}_{i \in I}$ of S and a family $\{e_i\}_{i \in I}$ of members of Γ having compact support such that for each $i \in I$ the following conditions are satisfied:

$$\operatorname{Cl}_T V_i \subset S;$$

 $e_i(t) \in \operatorname{Range} z(t)$ for all $t \in T;$
 $\|e_i(t)\| = 1$ for all $t \in V_i$.

Let $\mathscr{U} = \mathscr{U}_1 \cup \ldots \cup \mathscr{U}_n$ be a locally finite open covering of S which refines \mathscr{V} and for which the mebers of \mathscr{U}_k are pairwise disjoint (Lemma 2.4). Letting $\mathscr{U}_k = \{U_{k,j} : j \in I(k)\}$, there is a partition of unity $\{\alpha_{k,j}\}$ on S with the support of $\alpha_{k,j}$ contained in $U_{k,j}$. Since $\operatorname{Cl}_T U_{k,j} \subset S$, we may assume that $\alpha_{k,j}$ is defined and continuous on all of T. Let z_k be defined as follows:

$$z_k(t) = \begin{cases} \alpha_{k,j}(t)z(t), & \text{if } t \in U_{k,j} \text{ for some } j \in I(k); \\ 0, & \text{otherwise}. \end{cases}$$

Then z_k belongs to A since \mathcal{U} is locally finite, $\alpha_{k,j}$ tends to zero at the boundary of $U_{k,j}$, and z tends to zero at the boundary of S.

From the definition of z_k it is clear that (2.7) is satisfied, and (2.6) follows from the fact that the $\{\alpha_{k,j}\}$ form a partition of unity. To define e_k satisfying (2.8), choose $i(k,j) \in I$ such that $U_{k,j} \subset V_{i(k,j)}$ for each k,j and let e_k be given by the following formula:

$$e_k(t) = \begin{cases} \|z_k(t)\|e_{i(k,j)}(t), & \text{if } t \in U_{k,j} \text{ for some } j \in I(k); \\ 0, & \text{otherwise}. \end{cases}$$

Since z_k tends to zero at the boundary of each $U_{k,j}$ and at the boundary of S, e_k belongs to Γ . The support of e_k is contained in $\operatorname{Cl}_T S$ and is therefore compact. If $j \in I(k)$ and $t \in U_{k,j}$, then $e_{i(k,j)} \in \operatorname{Range} z(t)$; and if in addition $z_k(t) \neq 0$, then $\operatorname{Range} z_k(t) = \operatorname{Range} z(t)$. Consequently (2.8) is satisfied.

2.6. Lemma. Suppose that $\mathcal{H} = (H(t), \Gamma)$ is a continuous field of Hilbert spaces on the locally compact Hausdorff space T, and let A be the C^* -algebra defined by $\mathcal{A}(\mathcal{H})$. If $\beta z \in K_A^+$, where $z \in A^+$, $\beta \in C_c(T)^+$ and the support of z is contained in the support of z, then $z \in K_A^+$.

PROOF. The hereditary C*-algebra B generated by βz contained in K_A [6, 3.3, p. 8]. Since $\beta(t)z(t) \neq 0$ if $z(t) \neq 0$, it is clear that z is in the $\sigma(A'', A')$ closure of B taken in the bidual A''. Hence $z \in B$.

2.7. THEOREM. Suppose that $\mathcal{H} = (H(t), \Gamma)$ is a continuous field of Hilbert spaces on the locally compact Hausdorff space T. Suppose also that \mathcal{H} admits a continuous, non-vanishing vector field, and T has finite covering dimension. If A is the C*-algebra defined by $\mathcal{A}(\mathcal{H})$, then $K_A = J_A$.

PROOF. Since J_A is dense, we have $K_A \subset J_A$. (See [2, 10.4.4, p. 196]). By Lemma 2.3, it will suffice to show that $J_A^+ \subset K_A^+$. (Alternately, one can observe that $J_A = \operatorname{Span} J_A^+$). Let $J(m)^+$ consists of all z in J_A^+ such that

$$\dim \operatorname{Range} z(t) \leq m$$

for each $t \in T$. We will show by induction that $J(m)^+ \subset K_A$ for each m = 1, 2, ... It will be convenient to let dim T = n - 1.

Suppose $z \in J(1)^+$, and let z_k, e_k satisfy (2.6)–(2.8) of Lemma 2.5 (k = 1, 2, ..., n). Clearly for each k and each $t \in T$.

According to Lemma 2.2 the right-hand side of (2.9) belongs to K_A , and so by Lemma 2.6, z_k belongs to K_A . Now by (2.6), $z \in K_A$. This completes the proof that $J(1)^+ \subset K_A$.

Next suppose that $J(m-1)^+ \subset K_A$. Fix $z \in J(m)^+$, and let z_k, e_k satisfy (2.6)–(2.8) of Lemma 2.5. For a given k = 1, ..., n, define y by the formula

$$y(t) = ||z_k(t)||^2 z_k(t) - z_k(t)\theta(e_k(t), e_k(t)), \quad (t \in T).$$

For a fixed $t \in T$, we have by (2.7) of Lemma 2.5, $z_k(t) = \alpha z(t)$, where $\alpha \ge 0$. Let P be the projection of H(t) onto Range z(t), and let

$$w(t) = [\|z_k(t)\|^2 P - \theta(e_k(t), e_k(t))].$$

From (2.8) of Lemma 2.5 we see that $e_k(t)$ is in the kernel of w(t) (recalling that $e_k(t)$ is in the range of both $\theta(e_k(t), e_k(t))$ and P). Clearly w(t) is self-adjoint, and therefore $e_k(t)$ is orthogonal to Range w(t). Since Range $w(t) \subset \text{Range } z(t)$, dim Range $w(t) \leq m-1$. Since $y(t) = z_k(t)w(t)$, dim Range $y(t) \leq m-1$, and therefore dim Range $y(t) \leq m-1$. But t was an arbitrary point of T, so by the

inductive hypothesis, $|y| \in K_A$. Hence $y \in K_A$ by Lemma 2.3. Since $z_k \theta(e_k, e_k) \in K_A$ by Lemma 2.2, it follows that $||z_k(\cdot)||^2 z_k \in K_A$, and by Lemma 2.6, $z_k \in K_A$. Consequently $z \in K_A$ by (2.6) of Lemma 2.5 and the proof is complete.

2.8. COROLLARY. Let A be a C^* -algebra with continuous trace. If each compact subset of the spectrum \hat{A} has finite covering dimension, then J_A is the minimal dense two-sided ideal of A.

Proof. The proof will follow from a straightforward application of 2.1, 2.7 and the results in [2, Chap. 10].

REFERENCES

- 1. F. Combes, Quelques propriétés des C*-algèbres, Bull. Soc. Math. 94 (1970), 165-192.
- J. Dixmier, Les C*-algèbres et leurs représentations (Cahier Scientifiques 24), Gauthier-Villars, Paris, 1964.
- 3. R. M. Gillette and D. C. Taylor, A characterization of the Pedersen ideal of $C_0(T, B_0(H))$ and a counterexample, Proc. Amer. Math. Soc. (to appear).
- 4. D. Husemoller, Fiber Bundles, McGraw-Hill, New York, 1966.
- K. Laursen and A. Sinclair, Lifting matrix units in C*-algebras II, Math. Scand. 37 (1975), 167-172.
- A. J. Lazar and D. C. Taylor, Multipliers of Pedersen's ideal, Mem. Amer. Math. Soc. no. 169 (1976).
- 7. J.-I. Nagata, Modern dimension theory, Interscience Publ. New York, 1965.
- 8. G. K. Pedersen, Measure theory for C*-algebras, Math. Scand. 19 (1966), 131-145.
- 9. G. K. Pedersen, Measure theory for C*-algebras II, Math. Scand. 22 (1968), 63-74.
- 10. G. K. Pedersen, A decomposition theorem for C*-algebras, Math. Scand. 22 (1968), 266-268.
- 11. G. K. Pedersen, C*-integrals, an approach to non-commutative measure theory, Doctoral Thesis, Copenhagen Univ., Copenhagen, 1970.
- 12. G. K. Pedersen, and N. Petersen, Ideals in a C*-algebra, Math. Scand. 27 (1970), 193-204.

MONTANA STATE UNIVERSITY BOZEMAN, MONTANA 59717 U.S.A.