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POSITIVE SELF-ADJOINT EXTENSIONS
OF OPERATORS AFFILIATED WITH A
VON NEUMANN ALGEBRA

CHRISTIAN F. SKAU

Let N be a von Neumann algebra on the Hilbert space H with a cyclic and
separating vector &,. We study positive self-adjoint extensions affiliated with N
of operators h that are affiliated with N and such that &, € 2(h). We show that
the operators h have unique extensions if and only if N is finite. This in turn we
show is equivalent to the validity of the so-called T-theorem for N with respect
to &,. Finally we show how all this is intimately related to properties of the
cone P*=N_¢&;.

1. Introduction.

We are going to consider the following problem: Let h be a (densely defined)
positive operator affiliated with a von Neumann algebra N (see Definition 2.1).
Characterize all positive self-adjoint extensions i of h such that h is again
affiliated with N and give criteria for when there is a unique such extension. It
is a well known fact that there exists one extension h of the desired type,
namely the Friedrichs extension of h (cf. [14, 9. Appendix]).

The above posed problem arises quite naturally. In fact, if &, is a cyclic and
separating vector for N acting on the Hilbert space H with inner product {,),
we consider the cone P¥=N_¢;, ie. the closure of the set N.&,
={x&, | x € N, ). As a generalization of Sakai’s Radon-Nikodym theorem it
is shown in [20, Theorem 15.1] that to any normal positive linear functional ¢
on N there exists a unique ¢ € P* such that ¢ =w,, where w,(x)={x¢, &,
x € N. (Incidentally, this vector is characterized by the property of being the
unique vector ¢ in H such that

¢ =0, and [E=¢&l =inf{ln=Coll| e=w,),

cf. [6, Theorem 5.4; p. 83]). Denote by n(£) the closure of the linear map x'¢,
— x'¢,x" € N'. Then n(¢) is a (densely defined) positive operator affiliated with
N. As pointed out in [20], if n(¢) did have a unique positive self-adjoint
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extension k affiliated with N it would be natural to set k= (dcué/dwéo)*, where
dw./dw,, denotes the Radon-Nikodym derivative od w, with respect to w,,
However, in [12] Perdrizet gave an example with N an infinite type I factor to
show that m(£) may have several different positive self-adjoint extensions
affiliated with N. We are going to explore these matters in depth. For example,
we prove that m(¢) has a unique positive self-adjoint extension affiliated with N
for every & € P* if and only if N is finite (Theorem 3.1).

To classify all positive self-adjoint extensions of n(¢) affiliated with N we are
going to rely heavily on a truly fundamental paper by Krein [7]. To our
knowledge this paper has not been translated from Russian and this fact,
together with the extensive use we will make of some of the results contained
therein, has convinced us that it is necessary to give a brief outline, tailored for
our purposes, of some features of this paper. This is done in section 4. It turns
out that there are two “extreme” positive self-adjoint extensions of n(£) which
both are affiliated with N. One of these is the above mentioned Friedrichs
extension, the other we will call the Krein extension, and all other extensions
will lie between these two extremes in a sense that we will make precise. As
both the Friedrichs and Krein extensions can be characterized explicitly we
will be able to give criteria for when there is a unique positive self-adjoint
extension of n(¢) affiliated with N. In this connection let us introduce some
relevant subsets of the cone P*=N ;. We set

Pt = (¢ e P*| (&) is self-adjoint}, Ph, = {£€ P*| n(d)

has unique positive self-adjoint extension affiliated with N }. Clearly, N.¢&,
c P¥, < P} < P*. In [12, Corollaire 4.9] it is shown that C, {5 = P!, where C is
the centralizer to w,,, that is,

C={xeN ! wg, (xy) =g, (yx), Yy € N} .

It is a remarkable fact that we will have P} + P! for some cyclic and
separating vector &, when N is not finite (Theorem 3.2).

Whether P%, (or P%) is equal to P* is related to a seemingly different
question. Specifically, let us consider the map ®: P* — (N%), of P¥into (N%),,
the positive normal linear functionals on N, defined by ®(¢)=w; for ¢ € P*.
Here w denotes the vector functional on N’ defined by w(x)=<{x'{, &),
x' € N'. In [6, Theorem 4.1; p. 79] Araki showed that if ¢ e(Nys is
dominated by a positive multiple of w};, then Y’ = o} for some ¢ € P*. We show
first that P%, (or P%) is equal to P if and only if @ is an injective map (Lemma
5.1). We also show (Lemma 5.1) that @ is onto (N',), if and only if the T-
theorem is valid for N with respect to &, (see discussion of this in the next
paragraph). Finally we show that each one of the above stated conditions
are equivalent to N being finite (Theorem 3.1).
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The ontoness of the above map @ is intimately connected with the following
question: If ¢ is any vector in H, does there exist a closed (densely defined)
operator ¢t affiliated with N such that &y € 2(t) and E=t&,? For descriptive
purposes let us call this result, when valid, the “T-theorem” for N with respect
to &, Murray and von Neumann [8] showed that if N is finite the
(unrestricted) T-theorem holds for N, i.e. for any ¢, € H and ¢, € [N¢,] there
exists a closed (densely defined) operator ¢ affiliated with N such that ; € 2(1)
and &,=t¢,. They deduced this result from their so-called BT-theorem (8,
Lemma 9.2.1], using the fact, which they established, that unbounded
operators affiliated with a finite von Neumann algebra can be manipulated
with in much the same way as one can with bounded operators (cf. [18]).
The converse result was established by Dye [5, Theorem 2]. In the setting
above, i.e. N has a cyclic and separating vector &,, he proved that if the
(unrestricted) T-theorem holds for N, then N is finite (cf. also [3; III, § 8,
Exercice 3]). We shall prove a stronger result, namely we show that if the T-
theorem holds for N with respect to the (fixed) cyclic and separating vector &,
then N is finite (Proposition 5.4). As a simple corollary (Corollary 2 to
Theorem 3.1) we get a strengthening of [S, Theorem 2].

Finally, let us say a word about a method we apply throughout this paper to
prove our results. If N, acting on H, is properly infinite we have that N is
spatially isomorphic to 2(K)®N acting on K®H, where K is a Hilbert space
of countable infinite dimension and % (K) denotes the bounded operators on K
(Proposition 2.2). In this situation the method we use is to transport suitable
operators defined in K to operators defined in K®H and there being affiliated
with Z(K)®N. By choosing appropriately “bad” operators in K we get “bad”
operators affiliated with Z(K)®N.

2. Notation and preliminaries.

For the purpose of completeness, and also to establish our notation, we will
include here a number of basic definitions and elementary results which we
shall need in the sequel. We refer to [3] and [18] for proofs and more detailed
exposition.

By the term “operator” we will mean a linear mapping ¢ defined on a linear
manifold 2 (t) of the Hilbert space H and with range #(t) in H. If t; and t, are
two operators, we write t, =t if 2(t,)=2(t;) and ¢, and t, agree on 2 (t,). We
write t, =t, if 2(t;)=2(t,) and t, and t, agree on their common domain of
definition. We shall occasionally study operators that are not densely defined,
but when we use the term “operator” without any specification we will assume
that the operator in question has a dense domain of definition.
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DerINITION 2.1. Let N be a von Neumann algebra acting on the Hilbert
space H. Let t be an operator in H. We say that ¢ is affiliated with N; in
symbols t n N, if x't<tx’ for every x' in N'. This is equivalent to t=u'tu’* for
every unitary operator ¥’ in N'.

We notice that if ¢t is bounded with 2(t)=H then t n N is equivalent to
te N.

We assume the reader is familiar with the concepts of closed and closable
operators and also with the concepts of symmetric, positive and self-adjoint
operators, respectively (cf. [18]). The polar decomposition of a closed operator
t in H yields a unique decomposition ¢t =u|t|, where |f| is a positive self-adjoint
operator and v is a partial isometry with initial space equal to Z(Jt|), i.e.
initial (v) is equal to the closure of %(|t|). We also have that the final space of v
is equal to 2(t)". Notice that 2 (t)=2(|t|). Let the spectral resolution of || be

[t] = J AE(d4) .
0
Then it is an elementary fact that |t| n N if and only if the spectral projections
{E(w) I w Borel setin R, } liesin N. Alsot n Nifand onlyifv e N and |t| n N.
Recall that by a core for a closed operator t we mean a linear subset € of
2 (t) such that ¢ is the closure of t|4, the restriction of t to €. We observe that ¢
is a core for t if and only if € is a core for [t|.
An operator h in H is called (lower) semibounded if there exists a real
number o such that (hé, €Y 2 alé, &) for all & € 2(h). The supremum m(h) of all
such « is called the (lower) bound for h. Obviously,

RS
mh) = e

Clearly h is positive if and only if m(h)=0.

Now let N be a von Neumann algebra acting on H and let &, be a (fixed)
vector in H. Let ¢ € [N¢,], where [N&,] denotes the closed linear subspace
N¢&;. (By a common abuse of notation we will also let [N&,] denote the
orthogonal projection onto the subspace [N&,]. It will be clear from the
context what we mean in each case). Define an operator 7,(¢) in H which is 0
on the orthogonal complement of [N'¢,] and which is equal to x'¢, — x'&,
x' € N', in [N',]. Observe that &, € D(ng(&)). It is easily verified that my(¢) is
well-defined with a dense domain of definition and ny(&) n N. If () is
closable we denote the closure with #(¢), and it is easily verified that n(£) n N.
Now assume that &; is a cyclic and separating vector for N and let £ € H
=[N¢&,]. Then ny(€) is equal to the map x'¢, — x’¢, X' € N', and m,(¢) is the
smallest operator (in the partial ordering < introduced above) among
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operators affiliated with N which has &, in their domains of definition. Also, if
no(&) is closable, then 7(€) is the smallest closed operator with these properties.

If N is a von Neumann algebra there exists a unique central projection e in
N such that Ne is finite and N (I —e) is properly infinite. For later reference we
write down the following proposition whose proof can be found in [3; 1, § 2,
Proposition 5 and 111, § 8, Corollaire 2].

ProposITION 2.2. Let N be a properly infinite von Neumann algebra acting on
H. Then N is spatially isomorphic to the von Neumann algebra #(K)® N acting
on K®H, where K is a Hilbert space of countable infinite dimension.

We also write down for later reference the following theorem.

THEOREM 2.3. Let N be a finite von Neumann algebra acting on H and let
E e H. If &, € [NE,] there exists a closed (densely defined) operator t n N
such that &, € D(t) and &, =t&,.

Let h be a closed symmetric operator with h n N. Then h is self-adjoint.

ProoOF. The first part is the T-theorem for finite von Neumann algebras, cf.
[18, Corollary 2 to Lemma 3.4].

To prove the second part of the above theorem, let v= (h—iD(h+il)~* be
the Cayley transform of v [16, Chapter VIII, § 123]. Set e=initial (v)=%(h
+iI). Then e is a projection in N and ve is a partial isometry in N. Now h=i(l
+0v)(I—v)~! and so %#(e—ve)=2P(h) is dense in H. Hence we have

I = R(e—ve)~ = R((e—ve)e)”
~ R({(e—ve)e}*)” = R(e(e—ve)*)” < e.

where ~ denotes equivalence of projections in N [3: IIL, § 1. Proposition 2].
Since N is finite we must have e=1I and also v=ve must be a unitary operator
in N. Hence h is self-adjoint.

3. Main results.

Let N be a von Neumann algebra acting on the Hilbert space H with a cyclic
and separating vector &, Recall from section 1 that we defined (relative to &)
the following sets:

P* = N,&, P = {¢eP*| n()is self-adjoint} ,
Pi, = {¢ € P*| m(¢) has unique positive self-adjoint extension

affiliated with N} .
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Recall also that if £ € H, then w} denotes the normal positive linear functional
on N’ (that is, w; € (N',),) defined by

wi(x) = (XEEY, X eN.

We can now state our main theorem.

TueoreM 3.1. Let N be a von Neumann algebra on H with &, a cyclic and
separating vector for N. Then the following conditions are equivalent:

(1) N is finite.

(2) For every & € H there exists a closed (densely defined) operator t affiliated
with N such that &, € D (t) and E=tE&,,.

(3) The map ®: ¢ — w} from P* into (N%), is onto.

(4) The map ® in (3) is injective.

(5) Pt =P

(6) P% =P

COROLLARY 1. If either one of (2), (3), (4), (5) or (6) holds in the above theorem
for one particular cyclic and separating vector &, then the same properties hold
for any cyclic and separating vector.

The next corollary should be compared with [5, Theorem 2].

COROLLARY 2. Let M be a von Neumann algebra on K and let &, € K. Then
the following conditions are equivalent:

(i) If & is any vector in [M&,], there exists a closed (densely defined) operator
t affiliated with M such that &, € D(t) and E=t&y; i.e. the T-theorem holds
for M with respect to &,.

(i) The projection e=[M'&] in M is finite (equivalently, e =[M¢&,] is a finite
projection in M’).

Proor. We show first that (i) implies (ii). We have (eMe)=M’'e and so
ee’ € (eMe). Now N =ee'Mee' is a von Neumann algebra acting on the Hilbert
space H=ee'(K)=[M'¢,] N [ME&y], and & € H is a cyclic and separating
vector for N. Let & € H. Then ¢ € [M¢&,] and so by hypothesis there exists a
closed operator t 7 M such that ¢, € 2(t) and & =1t{,. We may assume that ¢
=n({),ie. tis equal to 0 on (I —e)(K) and in e(K) t is equal to the closure of the
map x'é, — x'&, x'’ € M’ (cf. section 2). Since [M'{]<[M'{,] =e(K) we get ¢
=ete, and since (ete) n M it is easily verified that ¢ restricted to H=ee'(K) is a
closed operator in H equal to eetee’.Set t, =ee'tee’ and observe that t; n N. We
also have &, € 9(t,) and ¢ =t,&,. By the theorem N =ee’Mee' is finite. Now the
central support to the projection ee’ in eMe is equal to e since [ (M'e)¢,] =e(K).." ;
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So eMe is isomorphic to N [3; 1, § 2, Proposition 2]. Hence e is finite.

To prove that (ii) implies (i) we proceed more or less as in [5], and we
present the proof here for the sake of completeness. We first recall that if &, and
&, are vectors in K, then [M¢,]<[M¢&,] in M’ if and only if [M'¢,]<[M'¢,] in
M [3; 111, § 1, Théoréme 2]. This yields, in particular, that e=[M’&,] is finite if
and only if ¢ =[M¢,] is finite. Now let & € [M&,]. Then [ME]S[ME,] and
hence [ME]<[ME,] in M'. So [M'E]<[M'¢,]=e in M. Let v be a partial
isometry in M with initial space [M'¢] and final space contained in [M'&,].
Now eMe is finite by hypothesis, and so by Theorem 2.3 there exists a closed
operator t, in e(K) affiliated with eMe such that &, € 2(t,) and v¢ =t,¢,. From
this we get by a simple observation that the closed operator n(vé), which is
affiliated with M, exists (cf. section 2). Since Z(n(v¢)) = [ M’ (vE)] =v([M'E]), we
get that the operator t=v*n(vé) is a closed operator affiliated with M. Also
Eo € D(t) and E=t&,. So (i) is true.

As mentioned in the Introduction the next theorem has the remarkable
consequence that we may actually have P! + P! .

THEOREM 3.2. Let N be a von Neumann algebra on H with a cyclic and
separating vector. The following conditions are equivalent:

(i) N is finite.
(ii) For every cyclic and separating vector &, we have P¥,=P? .

REMARK. We conjecture that it is enough to know that P¥,=P¥_ for just one
cyclic and separating vector &, to prove that N is finite, by using some more
refined technique than we apply in our proof.

The next proposition gives a characterization of P} and P¥,.

ProposiTION 3.3. Let N be a von Neumann algebra on H with a cyclic and
separating vector &, and let ¢ € P*. Then

(i) & is in P, if and only if £+ &, is separating for N.
(ii) & is in PY, if and only if
o X'E XY 0

inf =
weN [<p X' EDI?

for every y orthogonal to [N'(£+¢&,)] .

Math. Scand. 44 — 12
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ReMARK. We can show that if the numerator in the fraction in (ii) is O for
some x' € N', then the denominator is also 0, cf. remark after Theorem 4.4.
When this occurs we make the convention to set the fraction in (ii) equal to oo.

4. Krein’s method.

To prove our theorems we are faced with the following problem: Let h be a
(densely defined) positive operator affiliated with the von Neumann algebra N;
when does h have a unique positive self-adjoint extension h affiliated with N?

To solve this problem we present below an outline, suitably tailored for our
purposes, of those parts of Krein’s paper [7] which has a direct bearing on our
investigation.

Let S=0 be a positive (densely defined) operator in the Hilbert space H.
Define the operator B by the transformation B=(S—I)(S+1)"', where 2(B)
=R(S+1). It is easily verified that B is well-defined, but we emphasize that B is
not in general densely defined. We call B the Krein transform of S. The Krein
transform is analogous to the Cayley transform V=(T—il)(T+il)™' of a
symmetric (densely defined) operator T. But whereas 4 — (A—i)(4 +i)~! maps
the real line onto the unit circle (except 1) of the complex plane, the map A
— (A—1)(A+1)"! maps the positive real line onto the interval [ —1,1). This is
reflected in the fact that whereas the Cayley transform of a symmetric operator
T gives rise to a partial isometry V such that Z(I — V) is dense in H, the Krein
transform of a positive operator S gives rise to an operator B which has the
following properties:

(i) (B&;, &0 =<¢y,BE,) for all &y,¢, € D(B).
(i) I1BEI =<l for all & e 2(B).
(iii) #(I — B) is dense in H.

Let # denote the family of all operators in H satisfying the properties (i), (ii)
and (iii). Let 2 denote the family of all densely defined positive operators in H.
Then there is a 1-1 correspondence between & and #; specifically, if B € &#
and S € # correspond we have B=(S—I)(S+I)"! and S= (I+B)(I—-B)™ !,
where 2(B)=#(S+1) and 2(S)=%#(—B). (It is simple to verify that
properties (i) and (iii) implies that (I — B)™! exists.) Furthermore, § is closed if
and only if 2(B) is closed. Also, if S; <> B,, S, « B,, then §, ¢S, if and only if
B, cB,. Finally, § € 2 is self-adjoint if and only if the corresponding B € # is
in #(H), ie. 2(B)=H. We refer to [16, Chapter VIII, Section 125] for
verification of these facts.

So the problem of finding all positive self-adjoint extensions of a given
positive densely defined operator S is transferred to the problem of finding all
self-adjoint extensions B in #(H) of B=(S—1I)(S+1I)"! such that B £1. We
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call such B’s for admissible extensions of B and denote the set of all these by
& (B). The various positive self-adjoint extensions S of S will then be rendered
by the transformation S=(I+ B)(I—B)~!, where B € &(B). Krein’s proof of
the existence of at least one element B in &(B) is presented in [16, Chapter
VIII, Section 125], thus giving an alternative proof to Friedrichs’ of the
existence of a positive self-adjoint extension of a positive opeérator.

To characterize the set &(B) we let B be a specific element of &(B). Let
Be %(H) and write B=B+C.Thenitisa simple observation that Bisin & (B)
if and only if C is self-adjoint and

(1) #(C) =« HO2(B).
(2 —(I+B=Cc=sI-B

FUNDAMENTAL LEMMA. Let K be a closed subspace of H and let A be a positive
operator in B(H). The set ¥ of self-adjoint operators D in B(H) such that

(a) 2(D)cK
(b) DA
contains a largest operator Ag, i.e. D € # implies D< Ag. Specifically, Ag

= A*P; A%, where P, is the orthogonal projection onto the closed subspace L
={¢e H| A e K}.

Proor. Set K, =HOGK and observe that L is equal to the orthogonal
complement of 4*(K,). Hence we have, with ¢ € H:

(*) (Ag&, &> = (APLAN &) = ||PLAYE)?
= inf |A¥-A%,)? = inf CA(-¢).E-¢).
¢ ek, ¢,eK,

If D € #, we have (D¢, &> =&, DE>=0for £ € H, &, € K,. Hence D&, =0.
Thus we have

(D¢, = gin1f< D(E—=&).¢—¢
S inf <A(-&)E-&) = (AgéE: {eH.

§1eK,y

Hence D < Ag. As clearly Ak is in 4 we are done.

REMARK. Observe that Ax =0 if and only if KN #(A*)={0}. In fact, #(Ag)
cKNR(A*) and so KNA(A*)={0} implies Ax=0. Conversely, Ax=0
implies A*P; =0, which in turn implies that K N #(A4*)={0} by the definition
of L.
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Returning to the arguments preceding the lemma we get as a consequence of
the Fundamental Lemma that a necessary condition for C to satisfy (1) and (2)
is that

—(I+B)g £ C £ I-B)x. where K = HOZ(B).
We define
B, = B—(I+Byg, By =B+(UI-Bk.

Then B,, and By are in &(B), and it is easily verified that a necessary and
sufficient condition for B to be in & (B) is that B <B<BM So B has a unique
admissible extension if and only if B,,=B),. _

From the remark to the Fundamental Lemma we conclude that B=B,, if
and only if

{Ho2(B)} N (I +B)}) = {0} .

Correspondingly, B=B,, if and only if {(HO2(B)} N % ((I— B)*)={0}.
Now let S,, and Sy, be the positive self-adjoint extensions of S corresponding
to B,, and By, respectively, i.e.

= (I+B,)I—B,)"' and Sy = (I+By)(I—-By) .
Recall that S=(I+B)(I—B)~* and B=(S—-1)(S+1I)"'. We get easily that
I-B=28+n)""' and I+B=258+D"".

Hence 2((I1—B)*)=2(5% and R((I+B)})=%(S?*. Then if the spectral
resolution of § is §=j3° AE(d4), a direct translation of the above relations yields
the following theorem. (Recall that 2 (B)=%(S+1)).

THEOREM 4.1. S coincides with S, if and only if
J:o %(E(d)t)é,f) = 0o for all £+0 orthogonal to A(S+1) .
Likewise, § coincides with S, if and only if
J:o AE(dAEE) = oo for all £%0 orthogonal to R(S+1) .
S has a unique positive self-adjoint extension § if and only if
Ij i < EWES = ﬁ LE@EE =

for all £%0 orthogonal to R(S+1) .
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We now want to show that S, is the Friedrichs extension of S. Recall that
By =B+ (I—B)g, where B is a specific admissible extension of B=(S—1I)
(S+1)~! and K=HO2(B).

LevMa 4.2. B= B, if and only if 2(B) (= R(S+1)) is dense in H, where H is
endowed with the seminorm ||&|g=(||&||2 —<BE, EY)E, which we get from the
inner-product {&,yyp=<&,y)—<(B&y>; {7y € H.

ProoF. We have that B= B, if and only if (I — B)x =0. From (*) in the proof
of the Fundamental Lemma we get, with & in H:

(I=B)g& & = inf (I-B)E—¢)¢E-¢)> = inf [E-¢&]F.
¢, e2(B) £,e2(B)
Hence (I —B)x =0 if and only if 2(B) is dense in H with respect to |- ||3.

ProposITION 4.3. S, is equal to the Friedrichs extension of S.

Proor. Recall that the Friedrichs extension Sy of S is characterized by being
S* restricted to 2(S*)N9,, where

Do = {EeH| 3{&}<2(S), &, — & and
(SE—Ep) En—Emy — 0 when n,m — 00}

(cf. [21, Chapter XII, Section 5]). From [16, Chapter VIII, Section 124] we also
have that if S, is any symmetric extension of S such that 2(S,)c2,, then §,
=Sr. So to show that S,, =S it is sufficient to establish that 2(S),) < 2,.

Now 2(Sy)=2(I—B)) and so & € 2(Sy) is of the form é=y—Byy for
y € H. Also, Sy & =7+ Byy. Consequently,

[[E1)* = C&E+Su& & = 2(n > —<{Bum 1)) -

Notice that ¢ € 2(S) if and only if y € 2(B). By Lemma 4.2 we get that 2(B)
=R(S+1) is dense in 2(S)), where 2(S)) is endowed with the seminorm
[[-1]. But this has the following consequence: Let & € 2(Sy), then 3{{,}
<=2(S) such that [[£,—&]] — 0 as n — oo, that is, &, — ¢ and

(S(E—Cmh&n—Em» — 0 as n,m— 0.
So & € 9, and hence 2(Sy) <=2, This concludes the proof.

REMARK. We can show that if S, is a positive self-adjoint operator, then S, is
an extension of S if and only if S,,<S, <Sy, where we write h<k for two
positive self-adjoint operators h and k if 2(h*)> 2 (k?*) and ||h*&| < ||k*E|| for
each ¢ in 2 (k?) (cf. [10, p. 62]). As mentioned in the Introduction we call S,
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the Krein extension of S. Whereas m(Sy,)=m(S), one can show that m(S,,)=0,
cf. (B) below. (See also [22, § 14 & § 15] and [23, pp. 330-333]).

If in the Fundamental Lemma we assume K =lin.span {&,}, where ¢, is a
vector in H, then a direct argument shows that

o A8, 8)
Al = al&,EE for £ € H, where a0 = inf —222 |
8 e geh [KE, EDP?
On the other hand, by the characterization of Ax given in the Fundamental
Lemma, we deduce that

1 J I1E(dA)&lI*
«  Jo A ’

where A = [§ AE (d2) is the spectral resolution of A. Using this and the previous
characterization of S,, and Sy, Krein [7] proves by a lengthy argument the
following criterion for when S has a unique positive self-adjoint extension. We
state it as a theorem, giving no proof.

THEOREM 4.4. The positive operator S has a unique positive self-adjoint
extension if and only if

o 56D
cea(s) |<& DI

for every y orthogonal to R(S+1I).

REMARK. Assume (S¢, &> =0 for some & € 2(S). Then we get that SE=0.
(This is seen by considering any positive self-adjoint extension S of S. Then we
get that §*¢ =0 and so (S¢=) §¢=0). Now the orthogonal complement to #(S
+1) is the null space of S* + I. Hence we get that {({,y) =0 for y orthogonal to
R (S +1). So if the numerator of the fraction in the above theorem is 0, then so
is the denominator. By convention we set the fraction equal to oo when this
occurs.

We will now draw some consequences of the preceding discussion of Krein’s
method that we shall need to prove the theorems in Section 3. As before S is a
positive (densely defined) operator in H.

(A) S is essentially self-adjoint, i.e. the closure S of § is self-adjoint, if and
only if #(S +1) is dense in H. So if S is closed, then S=S* if and only if Z(S+1I)
=H.

(B) Assume S+ S*. For S to have a unique positive self-adjoint extension it
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is necessary that m(S)=0, where m(S) is the (lower) bound for S (cf. Section 2).
Indeed, this follows easily from Theorem 4.4: If y %0 is orthogonal to %£(S + 1),
then we get by the Schwartz inequality,

o SO L e e 1o
se(s) KE TP <e.@m &y nw :
so by Theorem 4.4 we must have m(S)=0 for S to have a unique positive self-
adjoint extension.

We remark that this particular fact is also a consequence of [1, Chapter VII,
Section 83, Satz 3] by noting that if S has infinite deficiency indices, we first
extend S to a positive operator S such that m(S)=m(S) and § has (non-zero)
finite deficiency indices.

We stress that m(S)=0 is not a sufficient condition for S to have a unique
positive self-adjoint extension. A simple example to that effect is given in [13,
X. 3, p. 178], where even S has deficiency indices (1,1).

(C) We are now going to use Theorem 4.1 to construct a closed positive
operator S in H, where H is an infinite dimensional Hilbert space, which is not
self-adjoint, but has a unique positive self-adjoint extension.

In fact, let T be an unbounded positive self-adjoint operator in H with
spectral resolution T= [§° AE (d4), such that 0 € ¢(T), where o(T) denotes the
spectrum of T. Then we can find a vector y=0 in H such that

0 0

. . 1 .
(1) j AEWiy|? = 00 and  (2) J 7 IE(diy|* =
Clearly (1) implies that [ A%[|E(dA)y[|* =00, and so y ¢ 2(T). Now let

2(S) = {Ee D(T)| (E+TEy)=0}

and define S¢=T¢ for & € 2(S). It is easily verified that S is closed. We prove
that 2(S) is a dense linear manifold in H.

Indeed, assume to the contrary that &, € H, &, +0, such that <&, &,>=0 for
all £ € 2(S). Now &, =(T+1)&, for some &,+0 in 2(T) (cf. (A)). So

0 = (& (T+DE) = C+TE &,y  forall e 2(S).
Consider the two linear functionals ¢ and ¥ defined on 2(T) by

@(&) = CE+T&y), Y =E+TEE): Eea(T).

Now obviously ker (¢)=2(S)<ker (), and so Y =a¢ for some a € C. This is
easily seen to imply that £, =4y. Since &, +0 we must have a 30, and so we get
= (1/%)¢, € 2(T), which is a contradiction. So 2(S) is dense in H.

We show next that the orthogonal complement of #(S+1) is the one-
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dimensional space spanned by 7. In fact, by the definition of 2(S) we get first
that y is orthogonal to #(S+1), and so, in particular, S is not self-adjoint by
(A). On the other hand, assume ¢; € H is orthogonal to %#(S+1). Then

0 = (E+88,83) = KE+TEL)  for Ee D(5).

By the same argument as in the preceding paragraph we get that &, = fy for
some f € C.
Thus we conclude by (1) and (2) that

00 A A 00 1
J AEA¢|? = f < IE@AE|? = oo
0 0 '1

for every £+0 which is orthogonal to % (S +I). By Theorem 4.1 we get that S
has a unique positive self-adjoint extension.

(D) We conclude this section by relating some of the preceding material to
von Neumann algebras. Let S be a positive operator affiliated with a von
Neumann algebra N acting on H. We have shown in Proposition 4.3 that S,
coincides with the Friedrichs extension of S, and thus S, is affiliated with N (cf.
[14, 9. Appendix]). Then By = (Sy —I)(Sy+ 1)~ ! is an operator in N, a fact
which is readily verified. We have shown in our description of Krein’s method
that we have B, =B, — (I + By)k, where K is the orthogonal complement of
R(S+]1). Since :

(I+By)x = (I+By)*P (I+By)?,

where P, is the orthogonal projection onto the subspace L={¢ eH| v
+ Byy)*¢ € K}, it is easily verified that B, € N. As a consequence we get the
following result which we state as a theorem.

THEOREM 4.5. Let S be a positive operator affiliated with the von Neumann
algebra N acting on the Hilbert space H. Then Sy, and S,, are both affiliated with
N. Thus S has a unique positive self-adjoint extension affiliated with N if and
only if S has a unique positive self-adjoint extension § in H (with no requirement
that § n N).

In particular, for S to have a unique positive self-adjoint extension affiliated
with N it is necessary that m(S)=0 (assuming S+ S*).

5. Proofs.

PrOOF OF ProposiTION 3.3. Recall that (with & in P*) m(£) denotes the
closure of the map ny(¢): x'¢y — X’¢, X’ € N'. We know that n({) is positive
and affiliated with N. Now

A (@) +1) = [N'E+&o)],



POSITIVE SELF-ADJOINT EXTENSIONS OF OPERATORS ... 185

and so by (A) in section 4 we get that ¢ € P¥, if and only if [N'(E+&)]=H,
that is, £+ ¢, is a separating vector for N. So we have proved (i).

(ii) is an immediate consequence of Theorem 4.4 and Theorem 4.5, by
observing that n(£) has a unique positive self-adjoint extension if and only if
the same is the case for m,(&).

The proof of Theorem 3.1 will emerge after establishing some lemmas. The
first lemma is Proposition 2.8 of [12], tailored for our purpose. However, one
should also note the parallell with Lemma 3.4 of [5].

We retain the notation from section 3.

LEMMA 5.1. Let N be a von Neumann algebra on the Hilbert space H with a
cyclic and separating vector £,. Let & € H. Then the following two conditions are
equivalent

(i) &=t&, for some closed operator t n N.
(ii) There exists a vector &, in P§, such that w}=w},.

If these conditions are satisfied for & € H, then the element &, in (ii) is uniquely
determined by &.

PrROOF. (i) = (ii): We may assume that ¢t =n(¢). Let n(¢)=uh be the polar
decomposition of n(&), where initial (u)=2(h)~ and final (W=R(r(&)". As
¢ € R(n(&)) we have uu*(&)=E. Now m(u*é) is the closure of the map

X'&o = Xu*¢ = u*x'é = uruhx'é, = hx'é,, x e N'.
Hence n(u*¢) is the closure of h restricted to N'&,. As N'&, is a core for n(&),

and so for h, we get that n(u*&)=h. Hence u*¢ e P!, Set &, =u*&. If X' € N, we
have

X616 = Xuu*d &) = (x'E &) .

Hence o} =w;.
(i) = (i): The condition stated in (ii) gives rise to a partial isometry u in N
such that u¢, =¢ and initial (u)=[N'¢,;]=R(n(&,))". If x' € N’ we have

x'& = xul, = ux'é; = un(é)x'E, .

Since initial (u)=%(n(£,))", this implies that the map x'¢, — x'¢, x' € N', is
closable, i.e. n(&) exists, and so (i) is established. Furthermore, n(&)=un(&,).

Now let ¢, &, € P, such that ((x'&, &) =) (X'¢,E > =(x"E,y 8>, x € N'. By
the proof (ii) = (i) above we get that n(¢,)=un(¢,) for some partial isometry
u € N with initial (u)=%(n(,))”. Now both n(¢,) and n(&,) are positive and
self-adjoint. Hence

(&) = m(&)*n(Ey) = m(EIurun(E,) = n(&,)? .
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By uniqueness of positive square root we get that n(&,)=n(&,). Hence &, =¢,.
This completes the proof of the lemma.

LEMMA 5.2. Let M be a von Neumann algebra on the Hilbert space H and let
£,y be two non-zero vectors in H. Assume y=t¢ for some closed operator t n M.
Then there exists ¢’ +0 in (M',), such that ¢' S w}, ¢'Sw),

PRroOOF. Let t =ult| be the polar decomposition of ¢ and let [t|= (& AE(dA) be
the spectral resolution of [¢|. Set |t|,= {3 AE(dA) and t,=ult|,. Then t, € M and
t,l — té=y. If x’ € M’ we have,

(*) Xt 0,8 = (X't31,8, 8> = X|tlu*ult], &, &)
= X7 &
(Recall that initial (u)=2(|t|)” > 2(|t|,)”. By (*) we get that
Wi < K0,

where K, is a suitable positive constant. We also get from (*) that

(X)) 70 (x)  for x'e M, .
Hence for sufficiently large n we have that w; ,+0 and

W S 0 0, = K05

By multiplying w; . with a suitable positive number we obtain ¢’ which satisfies
the conditions of the lemma.

LEmMMA 5.3. Let @ be a faithful normal positive linear functional on %(K),
where K is a Hilbert space of countable infinite dimension. Then there exists
another faithful normal positive linear functional ¢ on #(K) such that, if 0<0
<@, 0y, then 6=0.

Proor. Let Tr be the canonical trace on #(K). There exists a positive trace
class operator h in #(K) such that ¢(x)=Tr (hx), x € #(K) [17, Theorem
1.15.3]. Since ¢ is faithful h is non-singular. Now #(h?) is the domain of h™%,
which is a (densely defined) closed unbounded operator in K. Hence there
exists a unitary operator u in #(K) such that

R(h*) N Ru*h*u) = {0},

cf. [9, Satz 18] (see also [4, Lemme 8.3] for a simpler proof and a more general
result). Set k=u*hu and let Y (x)="Tr (kx), x € #(K). Then ¥ is faithful since k
is non-singular. Now assume 0=0 is dominated by both ¢ and y. Let
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O(x) = Tr(Ix), xe B(K),

where [ is a positive trace class operator in #(K). Then I<h and < k. Hence [*
=h*a, *=k*b for some a,b € #(K) [3; 1, § 1, Lemme 2]. So

A1) = R(h}) N R(kY) = {0} .
Hence /=0 and so 0=0.

ProrosiTION 54. Let N be a von Neumann algebra on the Hilbert space H
with a cyclic and separating vector &,. If the T-theorem holds for N with respect
to &, that is, for every vector ¢ € H there exists a closed operator t n N such
that £y € D(t) and E=tE,, then N is finite.

ProOF. Assume to the contrary that N is not finite. Then we may decompose
N by a central projection as a direct sum of its finite portion and its properly
infinite portion. Thus, as is easily seen, we may assume that there is a properly
infinite von Neumann algebra N with a cyclic and separating vector &, such
that the T-theorem holds for N with respect to &,. We show that this is
impossible, thus proving the proposition by a reductio ad absurdum argument.

Now N’ is also properly infinite since N has a cyclic and separating vector.
By Proposition 2.2 we may identify N’ with Z(K)® N’ acting on K® H, where
K is a Hilbert space of countable infinite dimension. Let ¢ be w}, restricted to
#(K)®Iy. By identifying #(K) and #(K)®Iy in the obvious manner we then
get a faithful normal positive linear functional ¢ on #(K). Choose ¥ as in
Lemma 5.3 and let 7" be any normal state on N’. Then y ®1’ is a non-zero
normal positive linear functional on #(K)®N’ (cf. [3; 1, § 4, Exercise 6]). We
have Yy @1’ = w}; for some vector ¢ in K@H [3; 111, § 1, Théoréme 4]. Now let &
be a normal positive linear functional on Z(K)® N’ such that 0w, 0 Sw;
Let 0 denote the restriction of 6’ to Z(K)®1I (identified with #(K)). Then 0
20 and 0<¢, 6<y. Thus §=0 by the choice of y. This implies that §' =0, a’
fact that is readily verified. By Lemma 5.2 we get a contradiction to the
assumption that {=t{, for some closed operator t n N. This completes the
proof.

ProoF oF THEOREM 3.1. (1) = (2) follows from Theorem 2.3.

(2) = (1) is Proposition 5.4.

(2) «» (3) follows from Lemma 5.1 by noting that every ¢’ € (N'p)+ is of the
form w} for some & € H (cf. [3; I, § 1, Théoréme 4]). Besides we know that if
y € P¥, then y=h¢, for some closed operator h n N; for example, let h=mn(y).

(4) <> (5) is an immediate consequence of Lemma 5.1.

(5) = (6) is obvious.

(6) = (5): Assume P%,+P* and let ¢ € P*\ P%. Hence n(¢) is a closed
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positive operator which is not self-adjoint. Set &, =&, +¢. Then &, € P* and it
is easily verified that n(¢,)=1+n(&). Clearly n(¢,) is not self-adjoint and also
m(n(¢y))2 1. By Theorem 4.5 we get that ¢, is not in P¥ .

(1) = (5) follows from Theorem 2.3.

To complete the proof of Theorem 3.1 we will prove that (5) = (1). This is
Lemma 5.5. However, before we prove Lemma 5.5 we make some preparatory
observations that will be useful in the sequel.

Let M be a von Neumann algebra on the Hilbert space H and let ¢’ be a
projection in M’ with central support equal to I. Then the induction map x
— xe€', x € M, is an isomorphism of M onto Me'. This map also establishes a
1-1 correspondence between the set of closed operators affiliated with M and
the set of closed operators affiliated with Me'. Specifically, if ¢ n M is a closed
operator then te', i.e. t restricted to ¢ (H)N2(t)=¢'(2(t))=e'(H), is a closed
operator affiliated with' Me'. If t=v|t| is the polar decomposition of ¢ and if It]
= (& AE(d4) is the spectral resolution of |t], then the polar decomposition of te’
is te'= (ve')(|tle’) and the spectral resolution of |tle’ in €' (H) is ltle' = {3 AF (d4),
where F(w)=E(w)e’ (v Borel subset of R,). All this is readily verified.

We also observe that this correspondence preserves the adjoint operation,
i.e. the adjoint of t¢’ (acting in ¢'(H)) is t*¢’. Obviously symmetric, positive, and
self-adjoint operators correspond to symmetric, positive, and self-adjoint
operators, respectively, by the above map. Also, t, =, if and only if t,¢' = 1,¢'.

Now let L be another Hilbert space and let M®1I; be the amplification of M
acting on HQ®L. The amplification map x — x®1I,, x € M, is an isomorphism
between M and M®];. Let { f,}, - be an orthonormal basis for L with card (I
=dim (L). By the standard unsymmetric realization of H®L as the Hilbert
sum of dim (L) copies of H, we may consider M®]I, as copies of operators in
M “along the diagonal”. The elements of H®L are represented as {¢,},.p,
where {, e H (veI') and ¥, . [I€,]2 <00 (cf. [3; 1, § 2, 3]). Let ¢ be a closed
operator in H, with t n M. We denote by t®1I, the operator in H®L whose
domain of definition is

{{&} e HOL| &, € (1), all v, and {1} e HRL) .
and
t®IL({E)) = {tg,}  for {&) e 20®1)).

It is easily verified that t®1, is a closed operator in H®L that is affiliated with
M®I,. In fact, the map t — t®I; is a 1-1 correspondence between the set of
closed operators affiliated with M and the set of closed operators affiliated with
M®I,, having analogous properties as the map considered in the preceding
paragraph. In particular, if r=vl| is the polar decomposition of ¢, then
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@I, = (v®I)([tI®1})

is the polar decomposition of t®1I,." Also, if |t|=[ AE(d4) is the spectral
resolution of |t|, then the spectral resolution of |t|@1I, is

o0

f®1, = J AF(d2)
0

where F(w)=E(w)®I; (v Borel subset of R,).

We also note at this stage, since we shall be needing this later on, that if v= (s
—il)(s+iI)™! is the Cayley transform of the closed symmetric operator s in H,
then v®], is the Cayley transform of the closed symmetric operator s®I; in
H®L.

From the preceding discussion it follows that if &: M — N is an
isomorphism between the von Neumann algebras M and N, then we can
establish a 1-1 correspondence between the set of closed operators affiliated
with M and the set of closed operators affiliated with N. In fact, @ is the
composition of an amplification map, an induction map, and a spatial
isomorphism ([3; I, § 4, 4]). Specifically, let t M be a closed operator with
polar decomposition t =wv|t|, and let |¢| = [¥ AE(d1) be the spectral resolution of
|t]. Then the corresponding operator affiliated with N, denoted by @(t), has
polar decomposition @(t)=®(v)®(|t|), and the spectral resolution of D(|t)) is
P (|t]) = [§° AF (d4), where F(w)=®(E(w)) (w Borel subset of R,).

LEMMA 5.5. Retaining the same notation as in Theorem 3.1, let us assume that
P!,=P*. Then N is finite.

ProoF. Assume to the contrary that N is not finite. Arguing similarly as in
the proof of Proposition 5.4, we may assume that there is a properly infinite
von Neumann algebra N having the property stated in the lemma. We will then
reach a contradiction, thus proving the lemma.

By Proposition 2.2 we may identify N with Z(K)®N, acting on K®H,
where K is a Hilbert space of countable infinite dimension. Let ¢
=[(B(K)®Iy)¢,o]- Then ¢ is a projection in the commutant of Z(K)® Iy with
central support equal to I (since &, clearly is separating for #(K)®Iy). So
(B(K)®Iy)e' is isomorphic to #(K)®Iy, and hence to #(K). Now &, is a
cyclic and separating vector for (#(K)®Iy)e', acting on ¢ (K®H). Let Q*
denote the cone {(Z(K)®Iy)e'} . &g in ¢ (K®H). Then there is a vector ¢ in Q*
such that {=h,{, for some positive self-adjoint and unbounded operator h,
affiliated with (#(K)®Iy)e’, with &, € 2(h,). [In fact, if this is not the case,
then by [20, Theorem 15.1] every normal positive linear functional on M
= (B(K)®Iy)e' is of the form x — wy, (k,xk,), x € M, for some k, € M ,. Since
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M is isomorphic to #(K), we transport w,, to a faithful normal positive linear
functional ¢ on #(K). Let ¢(x)=Tr (tx) for a non-singular trace class operator
tin #(K), ([17, Theorem 1.15.3]). Then every ¢ in (#(K),), must be of the
form

Y(x) = Tr(tkxk) = Tr (ktkx), x € B(K),

for some k € #(K),. Hence {ktk Ik € #(K),} is the set of all trace class
operators in #(K),. This, however, can easily be seen to contradict [11]].

By the discussion preceding this lemma we have that h, =he’ for some
positive self-adjoint and unbounded operator h affiliated with #(K)®I.
Observe that &, € 2(h). Also, by the preceding discussion, we have that h
=k®Iy, where k is a positive self-adjoint and unbounded operator in K. Let
y € K\ 92(k), y+0. Extend k to an operator k, whose domain of definition is
9 (k)+Cy, and where

k& +ay) = ké+ay, for E€ @(k), a e C,

and where 7, is an arbitrary vector in K. Then k is a closed operator ([19, p.
48]) which is a strict extension of k. Let k=uv|k| be the polar decomposition of
k, and let s be the restriction of |k| to 2 (k). Then it is easy to see that s is a
closed positive operator such that S$|E|, hence s is not self-adjoint. Set ¢
=s®Iy. Then ¢ is a closed positive operator affiliated with #(K)®Iy, hence
affiliated with Z(K)® N, which is not self-adjoint. Now 2 (t)= 2 (h), since 2(s)
=2 (k) and ||s&|| = |k&|| for & € D (k). So &y € D(t). Set 0=t&,. Then 6 is not in
P!, since n(f)ct, and t is not self-adjoint. Clearly 6 € P* since t is positive,
hence has a positive self-adjoint extension affiliated with Z(K)®@N.
This completes the proof of the lemma.

Proor oF THEOREM 3.2. (i) = (ii) follows from Theorem 2.3.

(ii) = (i): Assume to the contrary that N is not finite. Arguing similarly as
in the proof of Proposition 5.4, we may assume that there is a properly infinite
von Neumann algebra N satisfying condition (ii). We will then reach a
contradiction, thus proving the theorem.

Since N has a cyclic and separating vector, we have that N’ is also properly
infinite and so by Proposition 2.2 N’ is spatially isomorphic to N'®%(K),
acting on H® K, where K is a Hilbert space of countable infinite dimension. So
N is spatially isomorphic to N®I, acting on H® K. Again by Proposition 2.2
we get that N is spatially isomorphic to (#(K)®N)®Ig, acting on
(K®H)®XK, and so we may identify N with (#(K)®N)®I. (Henceforth we
drop the parentheses since the tensor product is associative).

Let ¢, be a closed positive operator in K which is not self-adjoint, but has a
unique positive self-adjoint extension. (Such operators exist as we established
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in (C) in Section 4). Let ¢ be the closed, positive (non self-adjoint) operator
t;®Iy in KQH. By Theorem 4.5 we get that ¢ has a unique positive self-adjoint
extension. In fact, ¢ is affiliated with 2(K)®1Iy, and every self-adjoint extension
of ¢ that is affiliated with Z(K)®Iy must be of the form t,®Iy, where t, is a
self-adjoint operator in K such that ¢, =t,. Applying this argument again we
get that the closed, positive (non self-adjoint) operator s=t®Ix=t, @Iz ®Ig
in KH®K has a unique positive self-adjoint extension. Since s is affiliated
with Z(K)®Iy®Ik we obviously have that s is affiliated with 2(K)@ N®I.

In order to get a more suitable notation we set M =% (K)®N, acting on the
Hilbert space L=K® H. Note that M has a cyclic and separating vector. So we
have that the operator s=t®I is affiliated with M®1 and ¢ is affiliated with
M. To get the desired contradiction we would. like to find a cyclic and
separating vector &, for M®Ig such that &, € 9(s) and s=n (), where E=s&y;
in other words, (M®1I) &, is a core for s. If we can establish this, we conclude
namely that

tePi, and (&¢ P, where PP=(M®Ig).& .

We are going to achieve this by choosing a slightly different s, as will emerge
from the following.
Let ¢ =vlt| be the polar decomposition of ¢. Then the polar decomposition of
s is
s = (v®Ig)(11®Ik) ,

with 2(s)=2(|t|®1k). Now s and |t|®Ik have the same cores (cf. Section 2).
Let 5o € L be a cyclic and separating vector for M and set

1
Moo= (Eln—Lm)n,  for n=12,...,

where [t|=(§ AE(dA) is the spectral resolution of |f|. Let 0, be the vector
{Nafn=1,2,... in LOK, where we identify L& K with the Hilbert sum of copies
of L a countable number of times. It is easily verified that 6, is a separating
vector for M®Ig. We also observe that 6, € 2(|t|®Ik). We claim that
(M®IK)0, is a core for [t|@Ik. In fact, M'n, is dense in the range of the
projection E[n—1,n) for all n. Besides, I, ®#(K), which is contained in
M®I)=M@%AB(K), will permute the summands in the Hilbert sum
@2 L,=L®K (where L,=L for all n). Since the linear span of the ranges of
E[n—1,n) for n=1,2,... is a core for |t|, the claim follows.

So (by the remark above) we have found a separating vector 6, for M®I
such that (M®Ik)0, is a core for s. Set ¢ =[(M®Ik)f,]. Then ¢ is a
projection in (M ®Ig) whose central support is I. Hence M®I  is isomorphic
to (M®Ig)e' by the induction map. Clearly 6, is a cyclic and separating vector
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for the von Neumann algebra (M®Ik)e' acting on ¢ (L®K). Let se’ be the
restriction of s to €' (L® K) N 2(s). Then se, like s, is a closed, positive (non self-
adjoint) operator which has a unique positive self-adjoint extension in
¢ (L®K). Besides, se’ is affiliated with (M®Ig)e'. (All this follows from the
discussion preceding Lemma 5.5). It is also easily seen that {(M®Ik)e'}'0, is a
core for se’. Now M®Igx and (M®Ik)e' are spatially isomorphic since both
have a cyclic and separating vector [3; IIl, § 1, Théoréme 3]. Hence we can
transport 6, and se’, respectively, to a cyclic and separating vector &, for
M®Ig and an operator s, affiliated with M®Ig with corresponding
properties as se’, respectively. As remarked above we have thus reached a
contradiction to the assumption that M ®I ¢ satisfies condition (ii), and so the
proof of (ii) = (i) is complete.

6. Concluding remarks.

(a) Let N be a von Neumann algebra acting on the Hilbert space H, and let
¢, be a cyclic and separating vector for N that we fix for the time being. Let ¢
be a vector in H. Then the conjugate linear map a: x'é, — x'*¢, x' € N, is
closable. In fact, the (densely defined) conjugate linear map b: x¢, — x*¢,
x € N, is easily seen to be contained in the adjoint of a, that is, b= a*. (See [2,
Section 2] where such maps are studied). However, as we have shown in
Theorem 3.1, when N is not finite there exists a vector ¢ in H such that the map
e(8): x'&y — X', X' € N, formally very similar to the map a above, is not
closable. Let us denote by & the set of those & in H such that n,(¢) is closable.
Recall that 2%, which is the domain of definition of the closure S of the
conjugate linear map x&, — x*¢,, x € N, is a subset of # [20, p. 19]. (One
shows quite simply that 9*= +ix’, where X =N,¢5; N, denotes the
hermitian elements in N. We also have that 2% = 2 (4%), where S=J41% is the
polar decomposition of S).

Now 2* may be different from #. Indeed, we claim that 9* = # if and only
if 4 is bounded, which in turn is equivalent to w,, being minorized and
majorized, respectively, by a positive multiple of a faithful trace on N. In
particular, for this to occur N has to be finite.

To prove this claim we first observe that the linear span of & is H. In fact, if
¢ € H then by the BT-theorem (cf. [18, Lemma 3.4, Corollary 1]) there exist a
closed operator t n N, &, € 2(t), and an operator b € N such that &=bt{,.
Now b is the linear sum of four unitary operators in N, and it follows easily
from this that ¢ is.the linear sum of four elements in &#. Hence we have that 2*
=4 if and only if 2*=H. Now by the closed graph theorem the latter is
equivalent to 4 being bounded, and so the claim is proved.
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(b) As in (a) let N be a von Neumann algebra on H with a cyclic and
separating vector &,. Let "= N,&g, where N, denotes the hermitian part of N.
We have that 2 = P* — P*, where P* as before denotes N, &5 (cf. [20, Lemma
15.2]).

Let & e . Then n(&) is easily seen to be a closed symmetric operator
affiliated with N. Conversely, let & € H such that n(£) is a symmeétric operator.
Then we claim that ¢ € 2. In fact, let x' € N;. Then

ExEy = (XE &) = <r(E)x'8p, &0y = (X'Eo(E)0) = {X'CosC) -

By the characterization given of " in [15] we have that { e X"

We know that if & € P*, then n(¢) can always be extended to a (positive) self-
adjoint operator affiliated with N. However, this is not generally true if £ € .
In fact, if N is not finite there exists a cyclic and separating vector &, for N and
a vector & € A =N,& , such that the symmetric operator 7(£) has no self-
adjoint extension even in H.

To see this we argue similarly as in the proof of (ii) = (i) of Theorem 3.2. We
may identify N with Z(K)® N®Ig acting on KQH®K, where K is a Hilbert
space of countable infinite dimension. Let s, be a closed symmetric operator in
K with deficiency indices (0, 1). Then the Cayley transform v, of s, has initial
space K, hence v, is an isometry on K. Set s=5,®Iy®Ix. Then s is a closed
symmetric operator affiliated with Z(K)® N ®I. and the Cayley transform of
sis 0=0,®Iy®I g, hence v is an isometry on KQ H®K and ¢ is not a unitary
operator. Hence s has no self-adjoint extension in K@ H®K. The rest of the
argument proceeds exactly as in the proof of (ii) = (i) of Theorem 3.2.

We now want to give an example of a n(¢) for £ € A, such that n(¢) has a
self-adjoint extension in H but has no self-adjoint extension affiliated with N.
In fact, let K be a Hilbert space of countable infite dimension. Let s be a closed
symmetric operator in K with deficiency indices equal to (1,2) and let v be the
Cayley transform of s. Let s,=s®Ix in H=K®K. Then s, is a closed
symmetric operator with Cayley transform v, =v®I, and it is easily seen that
s, has deficiency indices (0o, 00). Hence s, has a self-adjoint extension in H. We
also have that s, is affiliated with the von Neumann algebra N =%(K)®I.
However, s, has no self-adjoint extension which is affiliated with N. In fact, if 5,
is a self-adjoint extension of s, such that §; n N, then the Cayley transform of
§, would have to have the form u®Ix, where u is a unitary operator in #(K)
which is an extension of r. However, this is impossible.

One can show quite easily that there is a cyclic and separating vector &, for
N=2(K)®I such that s, =n(&) for some & e A =N,&;.

In conclusion one can say that the situation for symmetric operators
affiliated with a von Neumann algebra N is very different from the situation for
positive operators affiliated with N.
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(c) We retain the notation from (a). For « a real number between 0 and  we
consider the cone V*=A*(N,¢&,)”. Then V is the cone P*=N,¢&;, and Vs
the cone P’=N", {5 of [20]. For a=1/4 we have the cone P* of [2]. Araki [6,
Theorem 4.1, p. 79] has proved that if ¢ € (N,), is dominated by a positive
multiple of w,, then for every 0 <a <3, there exists a £ € V* such that o= w,.
For «a=0 (x=1/4) we have that for any ¢ € (N,), there exists a unique vector
& e VO (¢ € V'*) such that ¢ =w,. It seems to be a reasonable conjecture that
the corresponding result is true for any o between 0 and 1/4. In light of
Theorem 3.1 (interchanging the roles of N and N’) it seems reasonable to
conjecture that if the same is true for some « such that 1/4<a<1/2, then N is
finite, and conversely.
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