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Li-ESTIMATES FOR GREEN POTENTIALS
IN LIPSCHITZ DOMAINS

BJORN E. J. DAHLBERG*

1. Introduction.

Let D<R” be a bounded domain. Let G be the Green function of D and for
fe LY(D) let Gf(P)=[p f(Q)G(P,Q)dQ be the Green potential of f. It is a
classical fact that if 0D is sufficiently smooth and if fe€ L?(D) then

(11) ( J |VGf|'*dP>Uq < C(j lfI"dP)”p
D D

where V denotes the gradient and q is given by 1/g=1/p—1/n, 1 <p<n. Also if
1<p<oo then

(12) ( j IVszl"dP>1/p < C(f |f|"dP)”p,
D D

where V,u denotes the second order derivatives with respect to a basis
X,,. .., X, arranged in some order.

The purpose of this paper is to study the possibility of extending the
properties (1.1) and (1.2) to Lipschitz domains. Regarding (1.1) we shall
establish the following result.

TueoreM 1. Let D<R" be a Lipschitz domain and put p,=4/3, p,=3n(n
+3)~! for n=3. Then there is a number ¢= ¢(D)>0 such that if 1 <p<p,+e€and
q is given by 1/g=1/p—1/n then

1/q 1/p
(1.3) (j |VGf|qu> : s C(j lfl"dP> ;
D D

where C only depends on p and D. Also there is a constant C only depending on D
such that

nin—1
(1.4) {PeD: IVGf(PI>A}| = C(l" L 1f1 dP) )
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where |E| denotes the Lebesgue measure of a set E.

We remark that if g, is defined by 1/q,=1/p,—1/n then g, =4 and ¢,=3 for
n=3. Also the exponent p, is optimal; we shall show in Section 4 that given
any q>gq, there is a Lipschitz domain D<R” and a bounded function f such
that VGf ¢ LY(D).

We shall in Section 4 construct a Lipschitz domain in R? such that for some
bounded function fin D we have that V,Gf ¢ L? for all p> 1, which shows that
no analogue of (1.2) is possible for Lipschitz domains.

2. Technical preliminaries.

In this section we have collected some results on which the proof of Theorem
1 is based.

We start by recalling that a bounded domain Q<R" is called a Lipschitz
domain if 0Q can be covered by finitely many open right circular cylinders
whose bases have positive distance from 0Q and corresponding to each
cylinder L there is a coordinate system (x,y) with x € R""!, y € R, with the y-
axis parallel to the axis of L and a function ¢: R"~! — R satisfying a Lipschitz
condition (i.e., |p(x)— @ (z)| < M|x —z|) such that

LNQ = {(x,y): ¢(x)<y} NL and
LNoQ = {(x,y): y=p(x)} NL.

Let L(M) denote the class of functions ¢: R"~! — R such that ¢(0)=0 and
l@(x)—@(z)| £ M|x—z|. As is easily seen, there are now positive constants a
and b, which can be taken to depend only on M, such for all ¢ € L(M +2) we
have that the domain

D(g) = {(x,y) : Ix|<10, @(x)<y<a}

is star shaped with respect to Py, = (0, b) € D(¢). Moreover, there is a 6 >0 only
depending on M such that for any P € dD(¢) the circular cone I' (P) with vertex
at P, opening angle 6 height |P — P,| and axis along the line segment between
P and P, is contained in D(¢). Also if I’ _(P) denotes the unbounded cone
which has the same vertex, opening angle and axis as I'(P) but has its opening
opposite that of I'(P) then I' _ (P) is contained in the complement of Dﬂ(p). We
also have that if P € {(x,¢(x)) : |x|<5} and 0<t<5 then P+ (0,t) € I'(P).

We next pick a 6>0 such that B(P),20) is contained in D(¢) for all
¢ € L(M +2), where B(Q,r) means the ball with center at Q and radius r. We
put D*(¢)— B(Py,9). We denote by o the surface measure of 0D(¢), d(P) the
distance from P to dD(¢p) and w(E) the harmonic measure of a set EcdD(¢p)
evaluated at Py,.
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We shall next give some estimates for function harmonic in D(¢) ¢ € L(M).
Unless otherwise is specified, the constants C that will appear only depend on
M and n. In the next lemma we have collected some results from Dahlberg [2],

(3], [4].

LemMA 1. Let ¢ € L(M + 1) and denote by g the Green function of D(¢) with
pole at Py, There are constants C such that the following holds:

1) jam,,,, sup (IVE(Q) : Q & I'(P) N D*(p)}do < C.

If P € D*(¢) and {P*}=0D(¢)N{r(P—Pp)+Pp : r>0} then

22) C 'w(A(P) = d(P)"?g(P) = Cw(A(P),

where A(P)={Q € 0D(¢) : |Q — P*|<d(P)}. If f € L*(0D(¢),0) and Hf denotes
the Poisson integral of f then

2.3) jap(‘,,, sup {{Hf Q) : QeT'(P)} £ C j“’“‘” IfPde .

We shall need to compare positive harmonic functions which simultaneously °
vanish on the boundary.

LEMMA 2. Let u and v be two positive harmonic functions in D(¢) which both
vanish on {(x,(x)) : |x|£10}. If u(Py)=v(Py)=1 then

(24) sup{u(P): PeR} £C
and
2.5 C'Suw<C inR,

where R={(x,y) : |x|<4, ¢(x)<y<@(x)+4}.
Proor. First inequality (2.4) follows from Hunt—Wheeden [6, p. 512].
Let g denote the Green function of D(¢). Then
sup {g(P,Py) : |[P—Py|=0} < C,

where § is as in the definition of D*(¢). Since é was chosen such that B(P), 26)
< D(g) it follows from Harnack’s inequality that if P € B(Py,d) then u(P)=C
>0. Hence it follows from the maximum principle that if P € D*(¢) for some
c>0

(2.6) u(P) 2 Cg(P,Py).
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For a number ¢ let t* denote t if t>0 and zero otherwise. We now put ¢*(x)
=g@(x)— (]x|—6)* and observe that ¢* € L(M +1). Let

D = {(xy): IxXI<9, ¢p(x)<y<10+o(x)},
E = {(x,0(x) : |x|<9}

and put F=0D'—E. From Harnack’s inequality follows that infp.r G(P)Zc
>0, where G is the Green function of D(¢*) with pole at Py A repeated
application of the aforementioned result in Hunt-Wheeden [6] yields that
supp.rv(P)< C. Since G is superharmonic it follows now from the minimum
principle that v < CG in D’ and hence in R. In view of (2.6) we see that the right
hand side inequality of (2.5) follows if we can show that

2.7 G(P) < Cg(P,Py), Pe€R.

From the computation in Naim [8, p. 223] follows that if Q € D(¢) and
P;e D(¢) and P; - P € {(x,@(x)) : x| £5} then

g(P;Q)

(2.8) TF

where K (P, -) is the kernel function of D(¢*) with pole at P normalized by
K(P,Py)=1 and h(P,-) the harmonic function in D(p) with the same
boundary values as K(P, -) on D(¢*)NdD(¢) and zero otherwise.
Let T(@)={(x,@(x)) : |x|<5} and put
e = inf inf {K(P,Py)—h(P,Py} .
@eL(M) PeT(p)

A compactness argument shows that e=K(P,Py)—h(P,Py) for some
¢ € L(M) and some P € T(g). It is easily seen that K (P, Py)—h(P, Pp)>0 (see
Dahlberg [2, p. 281]) which shows that e>0. Denote by w; and w, the
harmonic measure evaluated at Py, of D(¢) and D(¢*) respectively. If k;
denotes the density of w; with respect to the surface measure then k; is a.e. given
as the normal derivative of the Green function with pole at Py. Since e>0 it
follows from (2.8) that there is a constant C such that k, < Ck, a.e. on T(¢). If
P e {(x,@(x) : |x|<4} and 0<t<1 it follows from (2.2) that if P,=P,(0,t)
then

(29) G(P) < CP™" j k, do
A(P)

IA

ce " j k,do = Cg(P,,Py) -
A(P)

Observing that from Harnack’s inequality it follows that
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G(P) < Cg(P,Py) if Pe{(xy): @ex)+1<y<eo(x)+4, |x| <4}

we see that (2.9) yields (2.6) which establishes the right hand side of inequality
(2.5). Reversing the roles of u and v establishes the left hand side of (2.5) which
yields the lemma.

We shall use the following notations. For x=(x;,...,X,-1) € R""! put ||x]|
=max |x;] and put
S(e,r) = {(x,y) : Ixl<r, p(x)<y<e(x)+2r},
Z,= 0, T(pr) = {(x0x): Ix|<r}.

We have the following straight-forward consequences of Lemma 2.

LemMMA 3. If u and v are positive and harmonic in S(¢,2r) with vanishing
boundary values on T(¢,2r) then there is a constant C>0 such that uSCu(Z,) in
S(p,r) and

_u(Z)
@) =

u(Z,)
v(Z,)

“ in S(@,7) .
v

PRrOOF. Since the Lipschitz constant is invariant under changes of scale its
sufficient to prove the lemma for r=1 in which case a repeated application of
Lemma 2 yields the result.

For O<a<n let

Lf(P) = Ln f@IP-QI*""dQ .

We shall need estimates for the operator I,.

LemMma 4. If 1 <p<nja then

1/q 1/p
(j 11,f|4d9> < c(j |f|"dQ) ,
R" R"

where q is given by 1/g=1/p—a/n and C depends only on p and n. If f € L*(RM
then

nn—a
{P: ILf(P)>S}| < C(S”‘J |f|dP)
Rl
where C only depends on n.

For a proof of these results we refer to Stein [9, Chapter V1.
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3. The main result.

We shall continue working with a fixed function ¢ € L(M) and make our
estimates uniformly with respect to M.

We put

V(g) = {(x,y) : xe R o(x)<y},
A=A(p) is defined as the class of domains of the form
S ={(xy: lIx=—xl<r ep(x)<y—a<e(x)+2r}

for some x, € R"~! and some a,r>0. We call the point Z=(x,, p(x;)+r+a)
the center of S. If N>0 we put

NS = {(x,y) : |x—x,|<Nr, [y—a—e@(x)—r|<Nr} .

We shall call {(x, ¢(x)+a) : |x—x, | <r} for the bottom part of 6S. We let d(P)
denote the distance from P to dV(g).

LeEMMA 5. Suppose U is positive and harmonic in D(¢) and is vanishing on
{(x,@(x)) : |x| <10}. Then there is a constant C such that for all S € A, contained
S(@,1) we have

Cﬁl(l—;“l L (u(P)/d(P))‘*dP)”q < u(2)/d(2)

1
< C—j (u(P)/d(P))dP ,
ISI J's
when Z is the center of S and q=4 when n=2 and q=3 when n=3.

Proor. If ¢ denotes the diameter of S then B(Z,2C,0)=S<B(Z,C,0) for
suitable constants C;>0. Hence it follows from Harnack’s inequality that y
=cu(Z) in B(Z, C,0) which yields the right hand side of the inequality. If say
585NV (p)=¢ then it follows from Harnack’s inequality and elementary
geometry that u(P)/d(P)< Cu(Z)/d(Z), for all P in S, which gives the left hand
side inequality in this case. If 5SNJV(p)+¢ we see that there is no loss in
generality in assuming that the botoom part of S touches 0V (@), for otherwise
we pick an §’ € 4 such that S<§' <58 and the bottom part of the boundary of
S’ touches V. Since the conclusion of the lemma is invariant under changes of
scale it’s therefore sufficient to show the lemma for the case S=S(¢p,1), Z
=(0,1) and u(Z)=1.

Let

U = {P=(x,y) : y>—2M|x|,|P|<r,}
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where r,=ro(M) has been chosen so small that for all P € {(x,¢(x)) : [x] =1}
=T we have that

P+U = S(0,3/2 U {(xy) : lIxI<3/2,ySeXx)} = E.

Put F=0U NB(0,r,) and denote by h the harmonic measure of F with respect
to U. Then it’s well known that h(P)< C|P|’, where >1/2if n=2and 6>0ifn
>3. If we extend u to E by putting u=0 outside D(¢) then u is subharmonic in
E. It follows from Lemma 3 that u< C=C(M) in E, which means thatif P, € T
and P € P,+ U then

u(P) £ Ch(P—Py) £ CIP—Py|°.
Therefore, we have that
(3.1) u(P) £ Cd(P) inS.

If g denotes the Green function of D(¢) with pole at P, we have from Lemma 3
that u(P)<Cg(P) in S. For Pe T let

f(P) = sup{|Vg(Q)| : QeI (P)N D*(e)} .
Then it follows from (2.1) that [s;p,, f>do<C and we have that if P
=(x,y) € S(¢p, 1) then
u(P)/d(P) £ C(g(P)/d(P))
< Cf(P%)
where P* = (x, ¢(x)). From out estimates of u we have that

1

j (u(P)/d(P))*dP < CJ y“’“"“'z"[ f*de £ C
s T

0

if q is as in the formulation of the lemma, which completes the proof.

We shall next study the integrability properties of Green functions.

LEMMa 6. There is a constant C >0 such that if g denotes the Green function of
V="V (p) with pole at Z=(0,1) then

f (g(Pyd(P)'"~1dP £ C.
4

ProoF. We shall give the proof only for the case n= 3. The case n=2is left to
the reader.
From Lemma 5 and the fact that g(P)<|P—Z|>~" follows that
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J (g(Pyd(P)"~*dP < C,
v

where V'=V N B(0, 10). If we extend g to all of R" by putting g=0 outside V we
find that g is subharmonic in I'={(x,y) : y>2—2M(x)} and has vanishing
boundary values on 0I' N (R"— B(0, r,)), where ro =ry(M). It is well known that
this implies

(3.2) g(P) £ CIP?P "% for Perl, 6=6(M)>0.
It is easily seen that there is a constant C>0 such that if P € K={(x,y) : y
>2M|x|, |x|>2} then d(P)=C|P|. Hence

J (g(P)/d(P)y'"~1dP < C-[ |P|~"+gp < C.
K K

To complete the proof of the lemma it now remains to estimate
[y (g(P)/d(P))""~* dP, where V"=V— (V'UK). To this end we observe that
there is a number N, only depending on n, such that for j=>0 an integer the set
{x e R"" ! :2/<| x| £2*!} can be written as a union of N cubes K,,...,Ky
with sides 2. We denote the center of K; by x; and put

Q = {(xy): xeK, p(x)<y<e(x)+2/*3M}
and P;=(x;,¢(x;)+2/M). From Lemma 5 and (3.2) follows

j (g(Pyd(P)"""1dP < C2"(g(P)/d(P))""~" < C27%
o

where 8, >0. Since V"N {x : 2/<|x||<2/*'} is contained in UY Q; it follows
that [, (g(P)/d(P))""~'dP<C which yields the lemma.

We have the following consequence of Lemma 6.

LEMMA 7. There is a constant C such that for all S € A we have

jv-ws sup{(G(P,Q)/d(P)!"""" : QeS}dP < C,

where V="V (¢) and G is the Green function of V.

ProoF. Since the assertion is invariant under translation and changes of
scale we see that there is no loss in generality in assuming that Z = (0, 1), where
Z is the center of S. If 5SN V=g it follows from Harnack’s inequality that

sup{G(P,Q): Q€ S} = CG(P,Z).
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If 55NdV+¢ we may without loss of generality assume S=S(p,1). If Pe V
—10S then G(P, -) fulfils the conditions of Lemma 3 so that supgcs G(P,Q)
< CG(P,Z). Therefore the lemma follows from Lemma 6.

We shall next compare the boundary behaviour of a potential with a
harmonic function which vanishes on a piece of the boundary.

LemMa 8. Let u be postive and harmonic in D(¢p) and suppose u vanishes on
{(x,@(x) : x| <10}. Also assume u(Z)=1, where Z=(0,1). Then there are
positive constants C and o such that if f € L(S), where S=S(¢, 1) then

f (u(Pyd(P)" "1 dP < C( j 11 dP)“ ,
E s
where E={P € S : |Gf (P)|2u(P)} and G is the Green function of V=V(¢).

ProoF. It is no loss in generality in assuming >0, otherwise we replace f
with |f|. We put |5 fdP=¢ and F(x,y)=f(x,y +’(p(x)). We shall assume that ¢
<¢&(M), where &(M) has been chosen so small that [k |IFIdP£Ce<Ce(M)=1,
where

K = {(xy): llxl<1,0<y<2}.

Observing that f (x,y) = F(x,y — ¢(x)) for P=(x,y) € S we see that if we make a
Calderon-Zygmund decomposition of F, see Stein [9, Chapter I], then we can
write f=f, +f, where [g|f,[PdP<Csfor all p=1 and f, =3 b, where each b; is
supported on an S; € 4, S;c, the ;s are pairwise disjoint with Usj|=Ce
and Y {|b;|dP < Ce. Put k(P)= (u(P)/d(P))"*~! and define A(E)=[gkdP. By
putting

E, = {PeS: Gfi>3u(P)}

we see that
(33) Ec E,UE,.
Letting U=S—(U10S)) we see from Lemma 7 that

n—1)/n
q IGb,-(P)/d(P)l"’""’dP)( 7 s C[ |bjldP,
U S

which yields that

(n—1)/n
(34) )h(E2 n U)(n—l)/n < (Cj. |Gf2(P)/d(P)|n/n—1 dP)
U

IIA

czﬁuwch
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From Lemma 5 and Harnack’s inequality follows that A1(10S;) < CA(S;). Hence
A(E,—U)SCX A(S)). We now observe that if p=3(n—1)/n>1, n=2, then it
follows from Lemma 5 that

1/p
(j k»dp) <c.
E

Hence for any set EcS we have

1/p
AME) = j kdP £ (J k"dP) |E[r P,
E N

which implies that

ME,~U)SCYAS) S CYAMUS) < CUSI < Ce,
which taken together with (3.4) shows that
(3.5 AME,) = Cé*.

It now remains to show A(E,)< Ce* and we now observe that it’s sufficient to
treat the case when ¢ is smooth and f is smooth with compact support and
show that the constants only depends on M and n.

Let g be the Green function of D= D(¢). We have Gf, =gf; + h, where 120 is
harmonic in D with vanishing boundary values on {(x, ¢(x)) : |x| <10}. Since

h(Py) < J; SUP{G(P, Py : Pe S}fl(Q) dQ < C,
it follows from Lemma 5 that
j (h(P)/d(P))""~1dP < Ce"m~!
s

which yields that
MPeS: h(P)>iu(P)} £ Ce""~ 1,

Since E,c{P €S : h(P)>u(P)/A}UE,, where E;={P €S : gf,(P)>u(P)/4}
and [|f|*"dP < Ce we see that the lemma follows if we can show that for any
smooth /=0 supported on S we have

(3.6) lef/dll; = Cllfllzm»

where || f|l,= (Js|f|PdP)!/? and C only depends on M an n.

We shall now prove (3.6). Let v=0gf/on, where 0/dn denotes differentiation
with respect to the unit inward normal of dD. For k € L(éD, o) let Hk denote
the Poisson integral of k. It follows from Green’s formula that
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3.7 j kvde = J Hk fdP .
aD D

It follows from (2.3) that [ |Hk|*dP < C [3pk*do which taken together with
(3.7) gives that [,pv?*do < C[p, f2dP. Let y=y(n) be such that if

If(P) =y Jf(Q)IP—QIZ'"dQ

then AIf=f. Letting z=gf—If we see that z is harmonic in D and since gf=0
on 0D we have that

1/2 1/2 1/2
<j |Vz|? da> < (J v? da) + (J IVIf| do) .
D D oD

Furthermore, since

(3.8) IVIf] = Clfllzn

we have that

f IVzPdo < C|fl3 -
oD

If we for P=(x,y) € S put P*=(x, ¢(x)) and F(P)=suprps+)|Vz], then it follows
from (2.3) that

1/2
IFl, = C(J IVZIZdU) S Clflzn -
oD

We now have from (3.8) that

lgf (P)/d(P)| = C(F(P)+ I fll24)
which yields (3.6). Lemma 8 is proved.
We have the following consequence from Lemma 8.

LEMMA 9. Let u be as in Lemma 8 and put k(P)= (u(P)/d(P))""~'. There are
constants C and a, only depending on M and n such that for any S € A such that S
<S(¢p, 1) and any integrable f supported on S satisfying

IlfldP < s(f de>(n_”/n
S N

we have that
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J‘ kdP = Cs‘J. kdP,
E s

where G is the Green function of V=V (¢) and E={P € S : |Gf (P)|>u(P)}.

Proor. It is no loss in generality in assuming f>0. It is also no loss in
generality in assuming that the center Z of S is (0,7), 0<r<1. We start by
observing that

C'r<d2 £ Cr
for some constant C=C(M). We now make a change of scale and put S*
={P :rP e S}, v(P)=Gf (rP). Let d*(P) denote the distance from P to oV'*

(notice rd*(P)=d(rP)), G* denotes the Green function of V'*. Putting q(P)
=u(rP)/u(Z) and k*(P)=(q(P)/d*(P))""! we see that

(39) J kdP = r"(u(Z)/r)"/""-[ k*dP .
E *

E
Hence the lemma follows if we establish that

J‘ k*dP§Ca‘j k*dP .

We notice that

(3.10) E* = {Pe S* : v(P)>u(Z)q(P)}
and if we define F by v=G*F then F(P)=r*f(rP) and it follows from (3.9) that
j F(P)dP = rz'”j fdpP
s* s

I\

erz‘”<j k dP)"" Dn
s
(n=1)/n
eu(2) (I k*dP) .
s‘

Putting h(P)=F(P)/u(Z) we therefore have from (3.10) that
E* = {PeS*: G*h(P)>q(P)} and

(n=1)/n
[ nap o[ wear)™
st *

From Lemma 5 follows the existence of a constant C=C(M) such that

(3.11) Cs* = f k* < C|S¥| .
s'
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There are now two cases to consider.
If 5SN V= it follows from Harnack’s inequality that k(P)<C in S* and
qg(P)=C>0 in S*. Hence

E* < {Pe S*: G*h(P)2C}
and since G(P,Q)<C|P—Q|' " in S* it follows from Lemma 4 that

j k*dP < CIE¥ < C{P : L,h(P)2C}|
Et

< Cemt J k*dP .
S*

If 5SNV+F we may without loss of generality assume that the bottom
boundary touches dV. Since in this case C~!<|S*| < C for some constant C
=C(M) it follows from (3.11) and Lemma 8 that

J k*dP < Ce"J‘ k*dpP ,
E* s*

which proves the lemma.

We shall now fix a positive harmonic function u in D(¢) with vanishing
boundary values on {(x, ¢(x)) : |x| <10} taking the value 1 at (0,1). For fan
integrable function supported on S;=S(¢, 1) we define for P € S,

Tf(P) = Gf(P)/u(P),

where G is the Green function of V(¢), and

Kf(P) = sup L |f1dQ/(A(S) "~ DM,

where the sup is taken over all S € A such that P € S<5S, and 4(S)=[skdP,
k(P)= (u(P)/d(P))""~!. The maximal function Kf is related to the maximal
function

sup {f If1dQ/|QI" 2" . PeQ, Qa cube}
Q

introduced in Muckenhoupt-Wheeden [7] for studying the operator I,.

LeEMMA 10. There are constants A, B and o, which can be taken to depend only
on M and n with the following property. If S € A is contained in Sy and f20 is
integrable on S, and if Tf(P)<1 for some P € S then

MPeS: Tf(P)2B, Kf(P)S¢&} £ C&A(S) .

Math. Scand. 44 — 11
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ProoF. We start by observing that if Q ¢ 10S then
(3.12) sup G(P,Q)/u(P) £ C inf G(P,Q)/u(P).
PeS PeS

For if 5SN0V=(F this is a consequence of Harnack’s inequality. If 58NV
4 (¥ it is a consequence of Lemma 3.

Let g=fin 10S and zero otherwise and put h=f—g. If P, € S is chosen so
that Tf(Po)<1 we have from (3.12) that

sup Th(P) £ CTh(Po) < CTf(Pg) = C.
PeS

Hence if B is chosen large enough then
{PeS: Tf>B,Kfse} « {PeS: Tg>1, Kf<e} = E.
If E+ and P, € E we have that

JgdP < CKf(P)(A(S)" " < Ce(AS)™ D,

which together with Lemma 9 yield Lemma 10.
It is well known that from Lemma 10 follows that for all g>1 such the
reversed Holder inequality in Lemma 5 holds we have the estimate

(3.13) IhTf 1, £ CIhKSfll, b = w/d,

where C is independent of f and | fll,=([s,|f |9dP)'/a see e.g. Coifman—
Fefferman [1].

LeEmMMA 11. Let ¢>n/n—1 and put h(P)=u(P)/d(P). Suppose that there is a
constant N such that

1/q
(lSl"f h"dP) < N|S|"‘.[ hdP
N S

for all S € A contained in 5S,. If p is determined by 4~ 1=p~'—n~! then we have
for all functions f supported in S, that

IGfdll, < CIfllp»
where C only depends on N, M, q and n.

Proor. It is well known that it is possible to find positive constants o and B,
only depending on N, g and n such that if —a<r<q+p and r+0 then

i/r
(3.14) C'4A = (|S|'1 J h'dP) S CA,
S
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where A=|§|™! js hdP and C is independent of S, (see Coifman—Fefferman [1]
where the case —a<r<0 and 1=<r<gq+p is treated. The remaining case
follows easily from this and Holder’s inequality). Define Hf = K (fh'*9"). Let ¢
>0and put E={P € S, : Hf (P)>t}. If E+ (¥ then E can be written as a union
of at most countably many pairwise disjoint sets S; € A.

Let g’ be close to q and determine p’ by (¢) = (p)"! —n~!. We shall use
the following notation:

Y= (a/q)-1, o =1+(q/n),

k(F) =J hidP and A(F) =J pin=1gp
F F

With this notation we have that p'/q' <1 and hence

(HE)T < Y (u(S)IF™ .
Since 1<¢71A(S)" "~V {5 fh®dP we have that

(#(E))p’/q' < P Z (H(Sj))p’/q’(l(sj))—p’(n—1)/"<fs fh"dP)p .

Holder’s inequality gives that

ffh"dP = J fh*"h~rdpP
s s

s (J,weorae)”([rrer)”
N N

where r is determined by r~'+ (p’)"! =1. Since p’(6 +y)=q we find that

(WE)1T < t7P Y B,-J fPhiapP
S,

J

where

B; = (u(S,-))P'/"’(,1(sj))—v'<n—wn( j

S;

From (3.14) follows that if —a< —yr<gq+f then
B; < C|sj°4%,

where Aj=|Sj|"jslth. Here we have a=p'((¢)"'—r '—(n—1)/n)=0and b
=p'((9/q)—1—v)=0, which implies

q'/p
H(E) £ C(t“"f f"'du) :
So

p'lr
h= dP) .
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Hence the operator H is of the weak type (p',q') with respect to the measure p,
whenever p’ is sufficiently close to p. Hence it follows from Marcinkiewicz

interpolation theorem (Zygmund [10, Vol. II, p. 112]) that

(j (Hf)"h"dP)l/q < C<J f"h"dP)llq.
So So

Since Kf=H(fh™% and pd=q it follows that
[hKflly, = ClfIl, -
Recalling (3.13) and observing that hTf=Gf/d yields the lemma.

We shall next obtain the weak type estimate for p=1.

LemMa 12. If f is supported on S, and t>0 then
|{P e S, : |GF(P)>td(P}| < C M IfI)™ ",
where C only depends on M and n.

Proor. Using a Calderon-Zygmund decomposition, we can to any given z
>|Ifll, find S; € S contained in S, such that the S;’s are paurwise disjoint,
IUS|<Clfly/z and |f|Sz outside US, Put g=fin So—US; and zero
otherwise and let h=f—g. Let p=3n/(n+3) and ¢=3. From Lemmas 5 and 11
follows

IGg/d|l, < Cligl, £ C2* P fI” .
If E,={P:|Gg(P)|>td(P)/2} we therefore have
|Ej| < ClfI{Pz~4Pt71.

Let U=S,—U (10S)). It follows from Lemma 7 that

(n—1)/n
(J |Gh,-|""'“dP> =< CI |h;|dP
U So

where h;=h in S; and zero otherwise. Hence

(n—1)/n -
(J |Gh"" 1 dP) < Clflly
U

which implies that
|E,NU| £ C(ISfllg~ )",
where E,={P € S, : |Gh(P)|>td(P)/2}. Since
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IE;N(U=S8)l < C YIS < Clifllz™!
and ,
E = {P: |Gf(P)|>td(P)} < E, UE,
we have that
IEl < C(IA 1Pzt (I f ™)™+ 0 f 27

Choosing z=t"""1|| f|{ /"~ ! yields the lemma. We can now give a preliminary
version of Theorem 1:

LeMMA 13. Let p, be as in Theorem 1 and let D =R" be a Lipschitz domain.
Then there is a number p,=p,(D) such that p,<p,<n and if 1 <p=<p, then

IGf/dlly, = Cllfll,»

where d(P) denotes the distance from P to oD, || f||,= (Jp|f|”dP)'/? and q=pn/n
—p. If p=1 then

{PeD: |Gf(P)>td(P)}| < C M| fll)"" 1.

Here the constants C only depend on p and D.

Proor. We can find finitely many open sets Qg,Q,,...,Qy such that D
=UQ, Q,NoD=¢F and if 1<i< N then Q,< B(P,,¢) for some P; € D. Also
we may assume that each i=1 there is a coordinate system (x,y) and a
Lipschitz function ¢ such that V(ep)NL;=DNL, for some right circular
cylinder L, with its axis along the y-axis and P; corresponds to the origin in the
coordinate system. Since G(P,Q)<C|P—Q|' " in D it follows from Lemma 4
that we only have to estimate Gf/d in U5, Q. We may without loss of
generality assume that there are positive number r; and R; such that

Q; = S(p,r) < riD(p;) = S(¢iRy)
2RD(py) = L; < D_Qo

where RD(¢)={(x,y) : |x| <10R, ¢(x)<y<aR} and a is in the definition of
D(¢p) and that f=0.

If f has its support outside D;=r;D(¢;) then Gf is a positive, harmonic
function in r,D(¢;), vanishing on the bottom boundary of D; such that

Gf(Z) < sup{G(P,Z) : PeD-Dj}lfl:,

where Z, is the center of S(¢,,r;). Hence it follows from Lemma 5 and (3.13)
that
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1/q0
(J;) (Gf(P)/d(P))"") < Clflly for some go=go(D)>q, ,

where g, is given by g, ! =p, ! —n~ 1. If fis supported in r;D (¢p;) we observe that
Gf=gf+h in S(p;,R,) where g is the Green function of S(¢; R;). We may
without loss of generality assume that the center of S(¢;, R;) is outside r,S(¢;, 1))
arguing as above we see that

1/q0
(L (h(P)/d(P))“°) = Clifly -
An application of (3.13), Lemmas 5, 11 and 12 yields the lemma.
We can now give the proof of Theorem 1.

ProoF oF THEOREM 1. It is no loss on generality in assuming f'is nonnegative
and smooth. For P € D let B= B(P,d(P)/2), where d(P) denotes the distance to
oD, and denote by h the characteristic function of B. Let f,=fh and f,=f(1
—h). Since Gf, is harmonic and positive, we have that

IVGf,(P)l < CGf,(P)/d(P) = CGf(P)/d(P).
It is easily seen that
IV,G(P,Q) < CIP-Q|'™" for QeB.

This implies that |VGf,(P)|<ClI, f,(P)<CI, f(P). Combining these estimates
we find that

IVGf(P)l = C(I,f(P)+Gf(P)/d(P)) .

The theorem now follows from Lemmas 4 and 13.

In conclusion we remark that for the case when D is assumed to be C, then
(1.3) holds for the range 1<p<n. This is so because given £¢>0, we can
represent 0D locally by domains V (@), where |@(x) — @ (2)] S e|lx —z|. As is easily
seen, the best exponent q for which Lemma 5 holds, tends to co as ¢ = 0,
which in view of Lemma 11 justifies the remark.

4. Concluding remarks.

We shall first give examples to show that Theorem 1 is sharp. We begin
with the case n=2. We shall write z=x+iy=re, —n<0<mn, r=|z|. Fix a, n
<a<2m, and put

D, = {re"® : O<r<1,|0|<a/2}, u,(z) = r*'*cos (On/a) .
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Now u, is harmonic in D, and vanishes on dD,N{z : |z <1}. Pick a smooth
function ¢ such that ¢(z)=1 for |z <1/2 and ¢(z)=0 for |z| >3/4 and define v,
= u,. It is easily seen that v, vanishes on 0D, and Av, € L*(D,). Since

IVoa(2)] Z Cle| ™1+

we have that Vv, ¢ L?(D,) where B=2(1—n/a)"". Since f — 4 as a — 2n we
see that Theorem 1 is sharp for n=2.

We shall next consider the case n=3. Fix 4, 0<i<1, and let P, be the
generalized Legendre function of degree 4, ie. P, is the solution of the
differential equation

A =xPu"(x)=2xu' (x) +A(A+Du(x) = 0, —-l<x<1,

normalized by P,(1)=1. It is well known that P, has at least one zero in —1
<x<1, see Hobson [5, p. 386] and if

a, = sup{t: —l<t<l, P,()=0}
then —1<a;<1. Put
D; = {x=(x2,%3,%3) : Ix|<1, x;>a,|x[}

and define v, (x) = @ (x)|x|*P,(x,/|x]), where ¢ is smooth, vanishing for |x|>3/4
and identically 1 for |x| < 1/2. Arguing as above shows that du; € L*(D,),v;=0
on JD; and Vv, ¢ L?(D,), where f=3/(1 —1). Since f — 3 as A — 0 we see that
Theorem 1 is sharp also when n=3. Finally, considering the function
u(xyg,. .., X,)=0;(Xy,%,,%3) in D; x R"™3 yields that Theorem 1 is sharp for n
=4.

We shall next construct an example showing that there is no analogue of
(1.2) for Lipschitz domain.

Let

K = {z=x+iy: —|x|<y<2, |x|<1}

and put T={x—ilx|: |x|<1}. We have the following estimate

LeMMA 14. There is a constant C>0 such that if u is a positive, harmonic
function in K vanishing on T then

4.1) Cu(i) .[ |V,uldP .
K

PROOF. Let V be the class of positive harmonic functions in K which vanish
on T and assume the value 1 at i.
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Suppose (4.1) is false. Then there is a sequence u; € V such that [ |V,u;|dP
— 0. Since V is a normal family we may assume u; — u € V uniformly on
compact subsets of K. Since the derivatives of u; also converge uniformly on
compact subsets to the corresponding derivatives of u, we have that [ |V,u|dP
=0, which means that u=A + Bx+ Cy. Since u vanishes on T it follows that
u € V is identically vanishing. This contradiction yields Lemma 14,

We can now construct the example mentioned in the introduction.

THEOREM 2. There is a Lipschitz domain D = R? such that for some f € L*(D)
we have that

j IV,Gf|PdP = o0  for all p>1.
D

ProoF. Let
r, =n"'(log(n+1)"* and 6,=Nn"'(log(n+1))~2,

where N is a constant to be chosen later. Put

0, = Y (6;+2r) for n21, g4=0.

i=1
We define ¢(x) by ¢(x)=0for x<0, ¢'(x)=1 for g, <x<@,+7,+1, @ (x)=—1
for Qn+rn+1<x<gn+2rn+ly (P,(X)=O for Qn+2rn+l<x<gn+2rn+1+6n+l, n
=0,1,2,... We also put ¢'(x)=0 for x>Y'{ (6;+2r). Let x,=¢,_,+r, and
put z,=x,+ir,, (Notice ¢(x,)=r,) We now put
Q={z: px)<y}, U= {z: x*<y}
and U,=U +z, We claim that if N is chosen large enough then
4.2) U, Q for nz1

We shall prove (4.2) by induction. We start by observing max ¢(x)=r, which
implies that U, = Q. Since ¢(x)<r, for x=x, it follows that

{zeU,: x2x,} = Q

and therefore it remains to show that the left “half” of U, is contained in €.
Assume now that U,< Q. Put t,=x,+r, and notice that ¢(x)<r,,, for t,<x
<r,+:- Hence

{zeU,4 @ t,Sx} < Q.

Putting ¢,(x)= (x — x,)? +r, we see that dU, is the graph of ¢,. We now have
that
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Pni 1) = Pulty) = (Fass+0,)* = (rg=Tpsy +77)
> Op = (ry=Tusr +73) .
Since
Fo—tor1+72 < Cn~%(log(n+1)~*

we see that if N has been sufficiently large then ¢, (t,) > @,(t,), which implies
that

{ZEU,H_II X§t,,} < Unc Q,

which yields (4.2).
We now define

D = {z: o(x)<y<A4,|x|<A},

where A is a large constant. If 4 has been chosen large enough then UK, =D
and there is a square §’ such that §'<D and $' N (UK,)=, where K,=r,K
+z, and K is as in Lemma 14. Let

V={z: x*<y<10}
and put
V,=V+z, S,=S8+z,,

where S={z € dv : y=10}. Fix a bounded function f supported on S’ such that
[ fdP>0. If A has been chosen large enough we have that V,c=D and

inf{Gf(P): PeUS,} =L>0.

If @ denotes the harmonic measure of S with respect to V then since dV is
smooth near 0 we have

4.3) wliy) 2Cy, 0<y<10.

Since Gf is superharmonic we have that Gf(z)=Lw(z—z,) for z€ V,. In
particular, we have from (4.3) that Gf (z, +ir,) 2 Cr,. If 1 <p<oo0 it follows from
Lemma 14 that

CGf (z,+ir,) £ j |V,Gf|dP
K

1/p
crgu-l/wq |Vszl"dP) ,
K"

which gives [x |V,Gf|PdP2Cr; *. Since the K,’s are pairwise disjoint it
follows that

IA
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I |V,Gf|?dP = CZrﬁ’P = 00,
D
which proves the theorem.
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