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NON-HYPERBOLIC CLOSED GEODESICS

GUDLAUGUR THORBERGSSON*

On negatively curved compact Riemannian manifolds and more generally
on compact Riemannian manifolds of Anosov type the geodesic flow is ergodic
and every periodic orbit is hyperbolic. On the other hand it is known that there
exist stable periodic orbits in the geodesic flow of surfaces which are not too
dissimilar from a three-axial ellipsoid. Hence the geodesic flow is not ergodic.

The purpose of this paper is to find conditions which imply that the geodesic
flow behaves similar to the ellipsoid case. More precisely we will search for
conditions on a Riemannian manifold which ensure the existence of a non-
hyperbolic closed geodesic.

The main result will be that a Riemannian manifold for which the sectional
curvature satisfies

4max K < minK

has a closed geodesic of length <3z (max K)~'/? which is not hyperbolic. In
the two dimensional case it will be shown that

imax K £ minK

ensures the existence of an infinitesimally stable closed geodesic of length
<4 (max K)~"/2. This implies that the existence of a stable periodic orbit and
hence of a non-ergodic geodesic flow is an open and dense property in the set
of convex surfaces whose Gaussian curvature satisfies

imaxK < minK .

(See [11] for a discussion of stability problems and [7] or [6, p. 114] for a
perturbation theorem.)

In the literature the following results on non-hyperbolic closed geodesics are
known to us.

Poincaré [13], referring to his continuation method, asserted that an
infinitesimally stable closed geodesic without self-intersections exists on any
analytic convex surface. But the sketch of a proof he gave is rather

* This work was done under the program Sonderforschungsbereich Theoretische Mathematik
(SFB 40) at Bonn University.
Received April 15, 1978.



136 GUDLAUGUR THORBERGSSON

unconvincing and a satisfactory proof has never been given. (Morse discusses
some of the difficulties in connection with Poincaré’s continuation method in
[10, p. 305].)

In [6, pp. 165-166] it is shown that the shortest closed geodesic in a free
homotopy class cannot be hyperbolic when the sectional curvature is positive.

In [15] Ziller proves that every closed geodesic on a naturally reductive
homogeneous space is infinitesimally stable. He also gives an example of a
homogeneous space where this is not the case.

In section 1 we review some definitions and theorems which will be used in
the sequel.

In section 2 we extend a result of Klingenberg on the existence of short
closed geodesics on pinched spheres.

In section 3 we prove the theorem on (4/9)-pinched spheres mentioned
above. Furthermore we prove that short closed geodesics of odd index k
cannot be hyperbolic if the manifold satisfies a certain pinching condition
which depends on k.

In section 4 we study the influence of the isometry group on the existence of
non-hyperbolic closed geodesics. The main theorem in this section states that
the isometry group of a compact manifold is finite if all closed geodesics are
hyperbolic.

1. Preliminaries.

Let M be a Riemannian manifold. Let ¢, X, t € R, be a periodic orbit in the
geodesic flow in T, M. ¢, X is called stable, if for every tubular neighbourhood
 of ¢, X there is a neighbourhood ¥~ of X such that ¢,Y e % for every Ye ¥
and every t € R.

Let 2 be a hypersurface in T, M which is transversal to ¢, X in X. Then there
is a neighbourhood Z* of X in ¥ and maps #: Z* — X and T: Z* — R such
that 2(Y)=@q(y)Y for every Y € Z*. The map 2 is called a Poincaré map of
@, X. X is a fixed point of 2. Two Poincaré maps of ¢, X are locally conjugate.
The eigenvalues of d2y are therefore invariants of the periodic orbit ¢ X.

If d2?x has an eigenvalue 4 with |4 %1, then ¢,X is not stable.

The periodic orbit ¢, X and the closed geodesic n(¢,X) are called hyperbolic if
no eigenvalue of d2y has absolute value one; elliptic if all eigenvalues have
absolute value one and are #+1; degenerate if 1 is an eigenvalue; and
infinitesimally stable if all eigenvalues are of absolute value one.

If 2 is an eigenvalue of d2y, then also 4, A~! and A~ !. This shows that the
eigenvalues of d2y are either real or of absolute value one if dim M =2. Hence
a non-hyperbolic closed geodesic on a surface is infinitesimally stable.

The index of a closed geodesic c: [0,w] — M is equal to the index of ¢ as a
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geodesic segment plus concavity [8]. The concavity is =0 and < (n—1), where
n=dim M.

We will make a repetitive use of the Index Theorem for Hyperbolic Closed
Geodesics which we now shortly describe. The proof of this theorem which is
much easier than the general case in [6] can be found in [5].

Let ¢: [0,w0] — M be a closed geodesic with arc-length parameter and
assume that dimM =n+1. TTM has a canonical splitting into the so-called
horizontal and vertical bundles both of which are isomorphic to TM. This
splitting induces a Riemannian metric on TM.

Let V2"(¢) be the subspace in T, T; M which consists of all vectors which are
orthogonal to the tangent vector of the geodesic flow in é(t).

The splitting of TTM determines a splitting

V) = Vi@V .
V2"(t) also splits in a canonical way into dg,-invariant bundles
V() = Vi@vi)
where
Vi) 1= d(,o,(M(IDl V(l)) and V() := dq)'(pu@n V(A)).

V"(t) and V"(t) are called the stable and the unstable bundles, respectively. V(1)
is the generalized eigenspace of the eigenvalue 4 of d2;; 2 is defined with
respect to a hypersurface ¥ orthogonal to the orbit ¢(t).
Then the Index Theorem for Hyperbolic Closed Geodesics says that
indexc = ), dim (Vj(t) N V(1) .

0Zt<o
An immediate consequence is the property of hyperbolic closed geodesics that
index ¢" = nindexc .

The connection with Jacobi fields is as follows:

Let (v,w) € V2(0) (where v and w are horizontal and vertical components).
Then the horizontal component of dg, (v, w)= (Y (), VY (1)) € V2"(t) is a Jacobi
field. A Jacobi field with the property that (Y(t),VY(t)) € Vi(t) for every
t € [0, w] is called stable. Hence

dim (V(t) N V*(¢)) > 0

if and only if a stable Jacobi field vanishes in ¢'.
In section 2 we construct cycles in ITM mod II°M. IIM is the set of
unparameterized piecewise differentiable closed curves on M with the topotogy
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induced by the compact-open topology. Here an unparameterized closed curve
is an equivalence class of closed curves with respect to the equivalence relation
“c~d if and only if c=doa for an o € 0(2)”. For x>0 we denote by IT*M the
set of all curves in ITM which have energy <x.

2. Short closed geodesics on pinched spheres.
In this and the next section M will be a simply connected n-dimensional
Riemannian manifold for which the sectional curvature satisfies

imaxK < minK .

It is the content of the Sphere Theorem that these curvature conditions
imply that M is homeomorphic to S".

By multiplication by a constant it is possible to normalize the Riemannian
metric such that max K =1. Since this change of scale has no influence on the
properties of the geodesic flow which we are going to investigate, we will

assume max K=1 or
I<K<1.

For convenience we set :=min K and g:=6"1/2,

We will frequently use the fact that d(p, C(p))== for every p e M. (C(p)
denotes the cut locus of p.) This shows that the length of a geodesic loop on M
is 22n. The closed geodesics which we are going to study will be of length
<20m <4n. They are therefore obviously without selfintersections. For the rest
of this section we will assume that every closed geodesic on M of length <2on
is non-degenerate. (M is therefore in particular not a sphere of constant
curvature.)

The following theorem is due to Klingenberg.

2.1. THEOREM (Klingenberg). There is at least one closed geodesic of index k
on M for every natural number k in the interval [(n—1),2(n—1)] which is of
length <2am and therefore without self-intersections.

Proor. See [6]. The existence of n closed geodesics of length <27 is proven
in [4] and on p. 54 in [6] (without the non-degeneracy assumption). For the
claim about the indices see the proof of Theorem (2.5) below.

Our next aim is the construction of cycles in ITM mod IT°M which will be
used in the proof of Theorem (2.5) below. A necessary condition on the
sectional curvature will be
<é.

Ol

We begin with some preliminaries.
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Choose a real number # in the open interval ((26 —2)x, 7). This interval is
non-empty since 20 < 3. Fix a point r € M. The closed normal coordinate ball
B,,(r) is convex in the sense that for any two points s,s' € B, (r) there is a
unique minimal geodesic y connecting s and s’ and the image of y is contained
in B,,(r) [2, p. 160]. Let N be the boundary of B,,(r). N is a differentiable
submanifold. Define a differentiable involution 4: N — N as follows: p is
mapped into the first point in which the geodesic from p through r intersects N
again. Obviously d(p, Ap)=n.

2.2. LEMMA. Let s € M have the property that

d(s,p) = d(s, Ap)
for some p € N. Then d(s,p)=d(s,Ap)<m.

PrOOF. Suppose that d(s, p)=d(s, Ap)Zn. The circumference of a triangle on
M is <2on (Toponogov’s Theorem). Hence d(p, Ap) = 20m—2n<n=d(p, Ap)
—a contradiction.

We now define with help of the involution A: N — N the following sets for
peN.
M. (p):= {se M| dip,s)<d(4p,s)}
M_(p):= {se M| d(p,5)2d(4p,5)}
E(p):=M.(p)"M_(p).

2.3. LEMMA. A geodesic ¢ of length m emanating from p € N meets E(p) in
exactly one point.

ProoF. Let ¢: [0,71] — M be a geodesic with ¢(0)=p and ||¢(t)]| =1. ¢ must
meet E(p) at least once because the function

(1) := d(p,c(t))—d(Ap,c(t))

takes on positive and negative values as can be seen with the methods of the
proof of Lemma (2.2).
If ¢ meets E(p) twice, then there are 0<t<t'=mn such that

Ap,c(0)=d(p.et) = dApcO)~dpc(t) = 0.
Since the geodesic ¢ is minimal between each of its points, we have

d(p,c(t)) = d(p,c(t)+d(c(®),c(t)) .
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Hence d(Ap,c(t)) = d(Ap,c(t))+d(c(t),c(t'). This implies that the minimal
geodesic joining Ap and c(t') contains the geodesic segment c|[0,t]. Hence

d(Ap,c(t)) = d(Ap,p)+d(p,c(t)) > d(p,c(t)

—a contradiction.

We can now begin with the construction of the cycles in ITM mod I1°M
which we will use in the proof of Theorem (2.5) below. In I1S" mod IT1°S" we
have for 0<a<b=<n—1 the cycle {a, b} defined as follows: {a, b} consists of all
circles parallel to a great circle in the subsphere S**'=8"N{x,,,=...=x,
=0} which meets the subsphere S*=S5"N{x,,,=...=x,=0}. dim{a,b}=
a+b+n—1 (see [6, p. 51]).

The cycle {0,a} is homologous to the cycle z(0, a) which is defined as follows:
A non-constant circle in {0,a} is replaced by the curve which consists of the
two meridians through the two points of intersection of the circle with the
subsphere $"N {x,=0}. A point-curve in {0,a} is replaced by the curve whose
image is the meridian through the point. Finally we add the curves whose
images are the segments of meridians which have equally long parts in each
hemisphere. (These curves include constants.) See [4] and [6, p. 54].

Let R, be the set of rotations which move points in the (x,, x,)-plane, but
keep its orthogonal complement fixed. Define

z(L,n—1) = {roc | re Ry, cez(0,n—-1)}.
z(1,n—1) is homologous to {1,n—1}; see [6, pp. 168-170]. We also define the
projection
ny: z(I,n—1) — P;(R): rec +— (r(north pole), r(south pole)) .

Let R, be the set of rotations which move points in the (x,, x,)-plane, but keep
its orthogonal complement fixed. Define

z(,n—1) = {roc| re Ry cez(l,n—1)}.
z(2,n—1) is homologous to {2,n—1}. As above we define
z2(2,n—1) — P,(R)

by mapping r,or,oc € z(2,n—1), where r, € R,, r, € R,, ¢ € z(0,n—1), onto
(ryory (north pole),r,or, (south pole)).

Recursively we thus define the cycle z(k,n—1) for 1<k<n—1 which is
homologous to {k,n—1} and the projection m,: z(k,n—1) — P,(R).

Let h: §" — M be a homeomorphism which is everywhere differentiable
with the possible exception of the south pole and which maps $"~!=$"N{x,
=0} onto N such that (h|S""')"'oAo(h|S""") is the antipodal map of S"~!.
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Such a map can be constructed similar to the map in the Sphere Theorem with
respect to r and its diametral point except that it must be smoothed out on the
equator.

Let h,: IIS" — IIM be the map induced by h: " —> M.

24. LemMMA. The cycles h,(z(0,k)) and h,(z(k,n—1)), ISk<n—1, can be
deformed such that the length of every curve in them becomes <4m.

ProOF. Let ¢ € h,(z(k,n—1)). (The case ¢ € h,(z(0,k)) can be treated in a
similar way.) Then m,(h;(c)) is a pair of antipodal points (¢, —g) on S*. Set
p:=h(q). Then Ap=nh(—gq). c either passes through the points p and Ap or
is a part of such a curve in h,(z(k,n—1)). Having defined the deformation on
the first kind of curves it can be extended to the rest in an obvious way.

Note that ¢ has possibly a corner in p and Ap.

Let ¢, (respectively c,) be the geodesic hinge (i.e. a once broken geodesic)
with corner in p (respectively Ap) which begins in E(p), is tangential to ¢ in p
(respectively Ap), and ends in E(p).

It follows from (2.2) and (2.3) that M, (p)—{p} (respectively M _(p)—{Ap})
can be projected from p (respectively Ap) along geodesics into E(p). ¢ minus p
and Ap consists of two curves ¢ and cj,. Project the parts of ¢; and ¢, which lie
in M, (p) (respectively M _(p)) from p (respectively Ap) into E(p). Call the
images of ¢} and ¢}, under these projections c; and c,. Now move the endpoints
of the hinges ¢, and ¢, along the curves c; and c, into the midpoints of c; and
Ca-

The image of ¢ under this deformation— which depends continuously on
c¢—is a closed broken geodesic which consists of four geodesic segments each
of length <.

2.5. THEOREM. If 8> (4/9), then there is at least one closed geodesic of index k
for every (n—1)<k<3(n—1) which has length <2on and therefore no self-
intersections. (In particular we have at least 2n—1 geometrically different closed
geodesics on M of length <2om.)

Proor. Deforming the cycles
h,(2(0,0),...,h,(z(0,n—1)),h, (z(1,n—=1)),.. ., h,(z(n—1,n— 1))

first as in Lemma (2.4) and then either as in part (1) of the proof of (3.2) in [14]

or with the Hilbert manifold theory in [6] will give us closed geodesics of
length <4n. The index of the shortest closed geodesic at which the cycle

h,(z(0,k)) (respectively h,(z(k,n—1))) “remains hanging” is equal to
dimh,(z(0,k))=k+n—1 (respectively dimh,(z(k,n—1))=k+2(n—1). This
conclusion is independent of the curvature assumption and can be used in the
proof of (2.1).
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It is left to prove that the closed geodesics have length <2gn. This will
follow from Lemma (2.6) below.

ReMARK. Using a technique of Klingenberg [6, pp. 174-175] it is possible
to use the above theorem to prove the existence of 2n—1 closed geodesics of
length <2¢n on Riemannian manifolds satisfying the same pinching condition
but without any non-degeneracy assumption. But then nothing can be said
about the indices of the closed geodesics. This is independent of the most
difficult part of Klingenberg’s method to prove the existence of many closed
geodesics which is his statement about the behaviour of multiplicities of certain
closed geodesics. We can avoid this since their multiplicity is equal to one in
our case.

2.6. LEMMA. Let M be a simply connected n-dimensional Riemannian manifold
with

Then there are no closed geodesics on M with length in the interval [2om,4n), if
M is not a sphere of constant curvature 9.

Proor. Suppose that c: [0,w] — M is a closed geodesic on M with arc-
length parameter and w=L(c)220n. Set p:=c(0). We consider the function

f(®) 1= d(c(®),p) -

The injectivity radius of the exponential mapping is ==, so we have f(t)=t for
t € [0,7] and f(t)=w—t for t € [w—m, w]. Note that 3o <. If f(t) would not
have a local minimum, then we could construct a geodesic triangle with
circumference =207 which is in contradiction with Toponogov’s Theorem. (A
geodesic triangle with circumference =20n does only exist on spheres of
constant curvature d.) The local minimum must therefore be in the open
interval (m,w—m). If a geodesic t:[0,1] - M with d(p,7(0))=0on/2 and
d(p,t(l))>on/2 is such that the function d(p,7(t)) has a local minimum, then
L(t)>on [1, p. 114]. This shows that the local minimum of f (t) must be smaller
than on/2 which implies that it is attained in the interval (2n—(om/2),
w—2n+ (om/2)) and that the length of this interval is =2 on. Hence

(w—=2m+ (om/2))— (2n—(o7/2)) = om .

So L(c)=w=4n which proves the lemma.

3. Non-hyperbolic closed geodesics on pinched spheres.
In this section we show that some of the closed geodesics whose existence
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was proven in section 2 cannot be hyperbolic. We use the same notations as
there (see the beginning of section 2) and continue to assume that all closed
geodesics of length <2om are non-degenerate.

Note that the theorems in this section imply the existence of non-hyperbolic
closed geodesics on manifolds which are not simply connected because a
covering of a hyperbolic closed geodesic is hyperbolic.

3.1. THEOREM. If 6> (4/9), then a closed geodesic of length <2an and index
3(n—1) cannot be hyperbolic. (The existence of at least one such closed geodesic
was proven in (2.5).)

Proor. Suppose that ¢ is a hyperbolic closed geodesic of length <207 and
index 3(n—1). Choose a rational number p/q such that
p 3

g<=< 3

L(c% <2pn so we can use the Comparison Theorem of Morse-Schoenberg
[2, p. 176] which says that the index of ¢? as a geodesic segment is
< (2p—1)(n—1). The index theorem in [8] says that the index of ¢? as a closed
geodesic is equal to its index as a geodesic segment plus concavity which is
< (n—1). Hence we have

indexc? £ 2p(n—1).
Since ¢ is hyperbolic we have that index ¢?=gqindex c. This implies
2

Pin—1) < 3(n—1)
q

indexc <
—a contradiction.

3.2. THEOREM. If (k/k+1)*<S8<K <1, where k is an odd number in the
interval [(n—1),3(n—1)], then a closed geodesic of length <2an and index k
cannot be hyperbolic. (For the existence of such closed geodesics see (2.1) and

(2.5))

Remark. (1) Note that a short hyperbolic closed geodesic can have an odd
index as an example of Poincaré shows [13, p. 260]. His example is a disturbed
ellipsoid of revolution with a pinching constant =1/16. The index is equal to 1.

(2) The shortest closed geodesic ¢ on a surface satisfying 1/4<K<1 has
index 1 if the closed geodesics of length <4n are non-degenerate. Using the
fact that L(c)> 2n we can show with the methods of the following proof that ¢
is non-hyperbolic and hence infinitesimally stable.
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Proor. Suppose that c¢: [0,w] — M is a closed geodesic of length w<2on
and index k. The Index Theorem for Hyberbolic Closed Geodesics says that
indexc = ) dim(V,(t) N V,(2)) .

CZt<ow
Let t, € [0, w) be such that dim (V(¢,) N V,(t,))>0. Then there is a non-trivial
Jacobi field Y along ¢ with (Y (¢), VY (1)) € V,(t) and Y(t,)=0. Since K >0 there
is an infinite sequence of distinct positive numbers {t,,} such that Y(t,,)=0 and
{t,,} contains all positive zeros of Y. Let t,, € [0, w) be equal to ¢,, modulo w.
Obviously

dim (V,(t, )N V,(t,) > 0 for every m .

The sequence {t,,} has only finitely many values because the index of ¢ is finite.
So there is a smallest I € N such that Y(t;+Iw)=Y(t;)=0 for some j and every
positive zero of Y is equal modulo w to some of its zeros in [t;,t;+ le»). Without
loss of generality we can assume that t;=0.

Denote the number of zeros of Y in the interval [0,lw) by i. We want to
show that i is even which means that the contribution of a single stable Jacobi
" field to the index is even. So assume that i is odd.

It follows from our considerations above that i<indexc=k. The Rauch
Comparison Theorem implies that the ith positive zero of Y is contained in the
interval [iz,ion]. Obviously

k1 _ i+l i
< =< .
STk =TT i

Hence

oi <i+1 and oa(i—-1)<i

i—tl—lw<i7t<ia7t< ﬁ
2 2 )¢

Here we have used that 2n < w<207n. p:= (i + 1)/2 is a natural number since i is
odd. The above calculations show that the ith zero of Y — which is loo—lies in
the open interval ((p— 1)w, pw)—a contradiction. So we have shown that i is

even.
The proof of the theorem is finished, when we have proved the following:

Suppose that

and therefore

dim (V,(t)NV,(t) :=m = 2.
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Let Y,,..., Y, be linearly independent stable Jacobi fields which satisfy
Yi®)= ... =Y,()=0.

Let Y be some stable Jacobi field which vanishes in ¢. Then Y does not
contribute anything new to the index of c. Le. if Y vanishes in a point t*>¢,
then some of the Y; vanishes there too and

VY(t*) = Y VY, (%), Y, (t*) =0.

Let Y,.4,..., Y, be Jacobi fields which vanish in t' and form a linearly
independent set together with Y,,...,Y,.

" The next zero of Y or of one of the Y,, 1 £i<n—1, after ¢’ lies in the interval
[t +m,t +on] and neither Y nor the Y; have more than one zero in this
interval because ¢ <2. The index of the segment c|[t,t'+2n] is = (n—1), see
[2, p. 176].

The first zero t” of Y after ¢ must be equal to the zero of some of the Jacobi
fields Y,,...,Y,, since the index of c|[t,t' +2n] would otherwise be too big.

Furthermore

VY(t) = Y VY, (), Y, () =0 i<m,

J

for the same reason.

4. Some remarks on isometries and closed geodesics.

The purpose of this section is to investigate the influence of the isometry
group on the existence of non-hyperbolic closed geodesics.

It is well known that all closed geodesics on a negatively curved compact
manifold are hyperbolic and that its isometry group is finite. The same is true
for Anosov manifolds [5]. The next theorem generalizes these results.

4.1. THEOREM. (a) Let X be a non-trivial Killing vector field on a Riemannian
manifold. Then all hyperbolic closed geodesics on which X does not vanish have
index equal to 0.

(b) Let M be a compact Riemannian manifold all of whose closed geodesics
are hyperbolic. Then the isometry group 1(M) of M is finite.

PrOOF. (a) Let ¢ be a hyperbolic closed geodesic on M and let X be a non-
trivial Killing vector field on M which does not vanish on c. If there is some ¢
such that X (c(t)) and ¢é(¢) are linearly independent, then X restricted to ¢ isa
periodic non-trivial Jacobi field along ¢ and ¢ would be degenerate. Hence the
1-parameter group ¢, of isometries which X generates translates c.

indexc = Y dim(V,()NV,(@1),

0sSt<ow

Math. Scand. 44 — 10
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where o is the length of c. ¢, induces a bundle automorphism of ¥*"~% — §!
which leaves V, and V, invariant. Moreover there is an s € R for any t,,t, € S*
such that the induced automorphism maps the fiber ¥2"~2(t,) into V2"~2(t,).
This implies that dim (V,(¢)N V,(t))=const. This constant must be equal to
zero because the index is finite.

(b) Suppose that I(M) is not finite. The isometry group of a compact
Riemannian manifold is compact, so it must have an 1-parameter subgroup
when it is not finite. The closure of this 1-parameter subgroup in I(M) is a
compact abelian Lie group, i.e. a torus. In the torus there is a subgroup which
is homomorph to S'. Let X be the Killing vector field which generates this
group. The integral curve through the maximum of | X| is a closed geodesic
[9]. It has index >0 because it is non-degenerate. It follows from (a) that this
closed geodesic cannot be hyperbolic.

In the next theorem we investigate isometry invariant geodesics. Grove et al.
have made an intensive study of the subject in recent years, see e.g. [3]. We will
use an existence result from [12].

4.2. THEOREM. Let M be a compact n-dimensional Riemannian manifold with a
non-trivial isometry A: M — M which satisfies Ap ¢ C(p) for every p € M. Let q
be a maximum of the displacement function of A.

Then the unique minimal geodesic c,4,: [0,1] — M connecting q and Aq is
invariant under A (i.e. A, maps ¢(0) onto ¢(1)).

Let c: R — M be the extension of c 4, to R.

If A is of finite order, then c is a closed geodesic which is not hyperbolic when n
=2. It is not hyperbolic in the case n>2 when 2d(p, Ap)<d(p, C(p)) for every
peM.

PrOOF. A proof of the invariance of ¢ 4, under the isometry A can be found
in [12].

So it is left to prove that the closed geodesic ¢ cannot be hyperbolic.

(1) We first treat the case n=2. The index of ¢ as a closed geodesic is greater
than zero or q is a degenerate maximum of the displacement function. In the
second case c is degenerate. So we can assume that the index of c is greater
than zero. Suppose that c is hyperbolic. Let Y be the stable Jacobi field along c.
Since the index of c is positive, Y must be zero in some point, say in t,. 4, Y is a
stable Jacobi field along Ac(t)=c(t+ 1) and since the space of stable Jacobi
fields is one-dimensional on surfaces, it follows that X (¢):=A4,Y(¢—1) and Y (¢)
must be linearly dependent. X is zero in ¢ty + 1 and Y therefore too. This implies
that c(t,) and c(t, +1)= Ac(t,) are conjugate along ¢ which is a contradiction.

(2) We now assume that 2d(p, Ap) <d(p, C(p)). The index of c 4, and c 42, in
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the variational problem of 4- (respectively A%-) invariant geodesics is obviously
in both cases = (n—1) (assuming non-degeneracy). From [8] we know that the
index of an isometry invariant geodesic is equal to the number of conjugate
points plus concavity. The concavity is < (n—1) and the number of conjugate
points of ¢ 4, and c 42, is =0 because of the assumption 2d(p, Ap)<d(p, C(p)).
Hence the index of ¢ 4, and c 42, as isometry invariant geodesics is = (n— 1) in
both cases.

We can identify points which lie in the same orbit of 4 in an A-invariant
tubular neighbourhood of c. ¢4, becomes a closed geodesic of index (n—1)
and c,4, its double covering which also has index (n—1). Since the index of a
hyperbolic closed geodesic grows linearly it follows that the closed geodesic ¢
cannot be hyperbolic.

ReMARK. The following fact is related to the last part of the above proof (but
independent of the cut locus assumption in the theorem): Let M be a
Riemannian manifold, A: M — M an isometry of finite order, c: R - M a
hyperbolic closed geodesic which is invariant but not fixed under A4. Let n be
the order of A on c. Then the index of ¢ divides by n.

On an ellipsoid which is not too dissimilar from a round sphere, the closed
geodesics in the intersection with the coordinate planes have indices 1, 2 and 3.
Now it follows that the two of index 1 and 3 cannot be hyperbolic since they
are invariant under an isometry of order 2.
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