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ON FOURIER-STIELTJES TRANSFORMS,
INTEGER-VALUED ON A GIVEN SUBSET

ERIK SVENSSON*

0. Introduction.

Throughout this paper standard notations of harmonic analysis as found e.g.
in Rudin [10] will be used. In particular, for every locally compact abelian
group (LCAG) I with dual G =T, B(I') is the Banach algebra of all functions on
I' which are Fourier-Stieltjes transforms (FSTs) of elements in M(G), the
Banach algebra of all bounded regular complex-valued Borel measures on G.
Also if I' is an LCAG, then I'; is the group I' with the discrete topology.

The Cohen Idempotent Theorem (Cohen [2]) and the Kessler Semi-
Idempotent Theorem (Kessler [7] and [8]) made us interested in the following
problem.

Let I' be a given LCAG and let Q be a given open subset of I'. If we
(*) suppose that i € B(I',) is integer-valued on @, then how can the restric-
tion filo of 4 to Q look.

The first of two main results of this paper gives a partial solution to
problem (*) in the general case when I' and Q are arbitrary. The second
completely solves problem (*) in many cases when I'=R". Before stating these
two results explicitly we shall recall the Idempotent and the Semi-Idempotent
Theorem and explain our interest in problem (*).

The version, suitable for this paper, of the Idempotent Theorem which we
shall give is a slight modification of Cohen’s original one.

DEeFINITION. Let I' be an arbitrary abelian group. Let E be a subset of I'. A
function ¢ is called canonical on E (in I') if ¢ satisfies

1°. ¢ is defined and integer-valued on E— E+E.
2°. Theset {@(* +9)(g-F | y € E and ¢(y)+0} of restrictions of translates of
@ is a finite set.

DEFINITION. Let G be an arbitrary LCAG with dual I'. A measure u € M(G)
is called canonical (on G) if u can be written du(:)=(n,(-,y,)+...
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+ny(,7n))dmy(+), where ny,. . ., ny are integers, y,,. . .,yy € I', H is a compact
subgroup of G, and my, is the normalized (my(H)=1) Haar measure of H.

The following is our version of the Cohen Idempotent Theorem.

THEOREM. Let I' be an arbitrary LCAG with dual G.
(a). Let @ be a function defined on I'. Then the following two conditions are
equivalent.

1°. ¢ is integer-valued and ¢ € B(I).
2°. @ is equal to a finite sum of functions, each being continuous and canonical
onlT.

(b). If the function v is continuous and canonical on T, then  is the FST of a
canonical measure in M(G).

Amemiya and Ito [1] pointed out and used in their proof of the Cohen
Idempotent Theorem the fact that if Y € B(I') is canonical on T, then ¥ is the
FST of a canonical measure in M(G) (G=1T). But as stated in (b) above the
same conclusion still holds even if  is only continuous and canonical on I'. We
shall later prove this observation (Lemma 1.2.1). The above theorem can be
considered as the FST version of the Idempotent Theorem in the formulation
of Amemiya and Ito combined with this observation and the trivial fact that
the FST of a canonical measure in M(G) is canonical on I'=G. The Cohen
Idempotent Theorem applied to the discrete version of an arbitrary LCAG
solves problem (*) for an arbitrary LCAG when the open subset is the whole
group.

In his Semi-Idempotent Theorem Kessler proved

THEOREM. Let I' be an arbitrary totally ordered discrete abelian group.
Suppose fi € B(I') is integer-valuedon I' , ={y e T , y>0}. Then there exists an
integer-valued v € B(I') such that ji=V on T ,.

The special case I'=R, of Kessler’s theorem gives, when combined with
Cohen’s theorem, a solution to problem (*) when the group is R and the open
subset is {y € R | y>0}.

DEFINITION. An open subset Q of R" is called an open half-space of R" if
there exists an affine mapping T of R" onto R" such that
T(®Q) = {(1,.. ..y €R"| 7,>0}.

Using Kessler’s theorem, it is moreover not hard to see that we have



ON FOURIER-STIELTJES TRANSFORMS, INTEGER-VALUED ON A GIVEN SUBSET 105

THEOREM. Let Q be an open half-space of R". Suppose fi € B(RY) is integer-
valued on Q. Then there exists an integer-valued v € B(R%) such that i="% on Q.

Here is the easy proof: Let T be an affine mapping of R” onto R” such that
T(Q) = {(y1,..-,7,) €R"

Define a total order > on R”", by saying that a>f (a, f € R") if d;,>0 where
Ta—TB=(4,,...,0,) and i,z =min {i | 6;+0}. Then Q< (R}), = Q, where (R%),
={y e R" | y>0} and Q is the closure of Q in R Since Q= Q\ Q is a coset of
a subgroup of R” (it is a hyperplane in R"), the characteristic function y;, of 0Q
is in B(R}). Consequently the function fi— jiy;q is in B(R%) and since it is also
integer-valued on Q> (R%), we get applying Kessler’s theorem an integer-valued
v € B(R}) such that ji—fiyso=" on (R%),. In particular i=+v on Q for this J.

y,>0} .

This last theorem and the Cohen Idempotent Theorem are our main reasons
for considering problem (*).
The first main result of this paper is

THEOREM A. Let I' be an arbitrary LCAG. Let ¢ be a function defined on a
neighborhood of a point y in I'. Then the following two conditions are equivalent.

1°. There exists a neighborhood Q, of y such that ¢ on Q, is integer-valued and
coincides with a function in B(I,).

2°. There exists a neighborhood Q, of y such that ¢ on Q, coincides with a
finite sum of functions, each being canonical on Q,.

Theorem A can be considered as a local version of Cohen’s theorem.
However, for an arbitrary LCAG I" we have no simple explicit characterization
of the functions which are canonical only on a neighborhood Q of I'. The set of
all such functions clearly contains the restrictions to Q — Q+ Q of all functions
which are canonical on the whole of I', but is in general larger. We shall later
give an example (Example 4.1.2) showing this. The example also shows that
“each being canonical on £,” in 2° of Theorem A cannot in general be replaced
by “each being canonical on I'”. For an arbitrary LCAGT and an arbitrary
open subset Q of I', Theorem A determines the local behavior on Q of a
function in B(I'y) which is integer-valued on Q. Theorem A therefore gives at
least a partial solution to problem (*) in the general case.

When the group in problem (*) is R", we have in many cases results similar
to Kessler’s theorem.

DEFINITION. An open convex subset  of R" is called an open convex slice of
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R" if there exist an affine mapping T of R" onto R", non-negative integers k
and [ with k+I/=n, and a bounded open convex subset 4 of R¥ such that
T(Q)=4 xR

The second main result of this paper is

THEOREM B. Let Q be an open convex slice of R". Suppose ji € B(R}) is integer-
valued on Q. Then there exists an integer-valued v € B(R%) such that i=" on Q.

It should be observed that Q in Theorem B can in particular be allowed to
be an arbitrary bounded open convex subset of R, for every such set is an open
convex slice of R". However, no open half-space of R” is an open convex slice of
R". The corresponding theorem for an open half-space of R" given above is
therefore not implied by Theorem B. It is conceivable that Q in Theorem B can
be allowed to be an arbitrary open convex subset of R”, but we cannot prove
that. An example and three remarks given at the end of this paper (Section 4.2)
will further illustrate the situation on R".

Both the Theorems A and B are consequences of the following theorem.

THEOREM C. Let Q be a bounded open subset of R". Let I' be an arbitrary
LCAG. Suppose ji € B(R}x I') is integer-valued on Q x I'. Then for each point
y € Q there exist a neighborhood @ of 7' and an integer-valued v € B(R} x I')
such that i=7V on Q' xT.

Theorems A and B follow from Theorem C using respectively structure
theorems for LCAGs and a patching argument partly based on Davenport [3].
The proof we shall give of Theorem C is inspired by Amemiya’s and Ito’s [1]
short and elegant proof of Cohen’s theorem. A detailed description of their
method can be found in Meyer [9, p. 199]. Here also note that Theorem C
(with I'={0}) shows, when combined with Cohen’s theorem, that if '=R" in
Theorem A, then “each being canonical on 2, in 2° of Theorem A can be
replaced by “each being canonical on R".

In what follows the following conventions will be made. I and G (with
corresponding indices) is a pair of dual LCAGs, and if not otherwise is maid
clear, the dual pair is arbitrary. G is regarded as a subgroup of G=(I';), the
Bohr compactification of G. A y € I' is sometime thought of as simply a point
in I', sometimes as a character on G, and sometimes as a character on G. It will
be clear from the context what is meant. The Haar measure of a compact
group is always normalized so that the whole group has measure one. The
empty set is considered as a linear subspace of R". The circle group T is
identified with R/Z.

The following facts will tacitly be used. If K =G is compact in the topology
of G, it is also compact in the topology of G (this follows e.g. from Rudin [10, p.
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30, Theorem 1.8.2]). M(G) can be naturally embedded in M (G) (see e.g. Hewitt
and Ross [5, p. 303, Theorem 33.19]).

Finally, I wish to thank professor Yngve Domar for his support and kind
interest in my work.

1. Theorem C.
1.1. A convergence theorem (Theorem 1.1.4).

In their proof of Cohen’s theorem Amemiya and Ito [1] used the following
consequence of Helson’s translation lemma (for Helson’s translation lemma,
see ¢.g. Rudin [10, p. 66, Lemma 3.5.1]). If u,v € M(G), if v is canonical, and if
the net {y,u} converges to v in the weak * topology of M (G) (the o(M (G), Co(G))
topology), then y,uly=v eventually, where H is the support group of v.
Theorem 1.1.4 is our substitute for this. It is what we need in our proof of
Theorem C. We begin with some measure theoretic considerations.

LemMma 1.1.1. Suppose G is a LCAG, F is a g-compact and H a closed
subgroup of G, and F N H={0}. Then F +E is a Borel subset of G whenever E is
a Borel subset of H. (H is endowed with the restriction topology from G)

Proor. The Borel subsets of a topological set is the g-algebra generated by
its closed subsets. Since F N H = {0}, and since H is a closed subgroup of G, it is
therefore enough to prove that F+E is a Borel subset of G whenever E is a -
closed subset of G and E < H. But, since F is g-compact, this is evident, using
the fact that the sum of a compact and a closed subset of a LCAG is closed.

Now, let G, F and H be as in Lemma 1.1.1 and let 7 € M (G). Define the set
function nz on the Borel subsets of H by nt(E)=1(F + E) whenever E is a Borel
subset of H. Lemma 1.1.1 shows that this definition is consistent with ¢ being
defined only on the Borel subsets of G. With these notations we have

Lemma 1.1.2. nt € M(H).

Proor. Since F N H = {0}, nt is countably additive on the Borel subsets of H,
and therefore a Borel measure on H. Obviously, ||nt| < 7| <0co. We now
prove that nt is inner regular. Let E be an arbitrary Borel subset of H and
choose an arbitrary ¢>0. Since 7 is regular there is a compact subset K of G
such that KcF+E and |t|(F+E)<|t|(K)+eé. Clearly, KcF+KcF+E. It
follows that |t|(F+E)<|t|(F+K)+e. Since FNH={0}, we have F+K=
F+(HN(F+K)). We conclude that HN(F+K)<E. But F=UX, C; for
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certain compact subsets C,,C,,... of G. Thus

s

HN (F+K) = Hﬂ((.

i=1

c,.)+K> = UHN(C+K).
i=1

]

Choose N so large that
00 N
[t|(F+K) = lrl(F+ UHN (C,-+K)> < |T|<F+ UHN (C,-+K)>+s.
i=1 i=1

Set D=UN.  HN (C;+K). Then D is a compact subset of H and D<E. Also
[nt|(E) = |t|(F+E) < [t|(F+K)+¢ < |t|(F+D)+2¢ = |nt|(D)+2¢ .

Hence nt is inner regular. Since ||nt|| < 0o, outer regularity follows from inner
regularity.

DeriNiTION 1.1.3. If E is a subset of R"x I let P(E)=P, (E) be the
projection of E onto R" and let CLP (E)=CLP, | (E) be the closure of P(E) in
R™,

We can now prove

THEOREM 1.1.4. Let p € M(ﬁ" x G). Let v € M(ﬁ" x G) be a canonical measure
such that CLP (v~'(Z\{0})) is a non-empty linear subspace of R" Let
0 € M(R") = M(R" x G) be such that 0(0,0)%0. Let {y,=(y,,7,), « € A} be a net
in RG x I' such that lim, y,=0 in the topology of R". Suppose lim, {y,(0 * 1)} =g *v
in the weak* topology of M (ﬁ" X G). Then there exists a g-compact subgroup F
of R"x G such that

lim ||y, (@*p)lr—egx*vl|l = 0.

PROOF. Set A=CLP (¥~'(Z\ {0})) and let X be the orthogonal complement
of A in R" Then R"=A+Z2, and ANZ={0}. Let Q be the orthogonal
projection of R" onto A. Q is a continuous homomorphism of R" into R”.
Define the function ¢ on R"x T by

e,y = 0(Q()y")  ((.y") e R"xT).

Then ¢ € B(R"xT) (see e.g. Rudin [10, p. 79, Lemma 4.2.1]), i.e. (p=QA_' for
=0
(*0).

some o' € M(R"x G)c M (ﬁ"x G). Note that ¢’ is constructed so that o’
whenever ¥40. Thus g'*xv=gpxv. We also have ¢'(0,0)=4(0,0) (%
Moreover,

Q(y+ZxI) =gy forall yeR"xTI .
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Hence supp (¢') is included in the annihilator of £ x I in R" x G (see e.g. Rudin
[10, p. 53, Theorem 2.7.1]), i.e. supp (¢) = A x {0} (R"=A+£, AN £ ={0}). Let
H<R"x G be the support group of v. We claim that the theorem is true with F
= (A x {0})+ H. Note that A x {0} is a o-compact and H a compact subgroup
of R" x G. Therefore F is a g-compact subgroup of R" x G. Now suppose x € (A
x {0})N H. Since x € H, (x,y)=1 for all y e H*, where H* is the annihilator of
Hin R} x I (1). Set 4=P(H"). Since v is canonical, P(¥~!(Z \ {0})) is the union
of finitely many translates of 4. We conclude that A is dense in A4 in the
topology of R" (2). Since x € A x {0}, x considered as a character on R%x I' is
continuous in the topology of R" x I' and independent of X x I" (3). Combining
(1), (2), and (3) we see that ((x,y)=1 for all y € R"x I', and consequently x=0.
We have shown that (A x {0})N H={0}. If T € M(R"x G), we define the set
function 7t on the Borel subsets of H by setting

nt(E) = t((A x {0})+E)

whenever E is a Borel subset of H. Lemmas 1.1.1 and 1.1.2 show respectively
that this definition is justified and that nt € M(H). Set u’ = (o *p)|r. Let the
functions k: (A x {0})+H — A x {0} and h: (A x {0})+ H — H be such that x
=k(x)+h(x) when x € (Ax{0})+H. Since (Ax{0}))NH={0}, k and h are
uniquely defined. The rest of the proof is divided into five steps.

StEP (i). Let K = A x {0} be compact. Then k|x . 5 and K|, y are continuous
as functions of K + H (endowed with the restriction topology from R x G) into
R"x G.

Endow K, H and K + H with their respective restriction topologies from R"
x G. Using (4 x {0}) N H={0} it is easy to see that the function K x H 3 (x, y)
— x+ye K+H is a continuous injection of a compact space onto a
Hausdorff space. But as is well-known such a mapping has a continuous
inverse. Since the inverse is the mappmg (Kl + oMk +5): K+H — K x H, this
proves Step i.

Step i will tacitly be used in the remaining parts of the proof.

STEP ii. lim, 7(yu') =@ (0)v in the weak* topology of M(H).
Let E be an arbitrary Borel subset of H. Using supp (¢')= A4 x {0}, supp (v)
cH, and (4 x {0})N H={0}, we get

(@' *V)(E) = (' *W((A x {0})+E) = jﬁ_ . @' (A x {0})+ E—x)dv(x)

= Lg’((zix {0)+E—x)dv(x) = ¢'(0) L dv(x) = ¢ (O (E).
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Hence 7 (¢’ *v)=¢ (0)v. Now fix an arbitrary f € C(H) and choose an arbitrary
£>0. Since both y' and ¢’ xv are concentrated on (A x {0})+ H, and since 4 x {0}
is 6-compact in the topology of R" x G, there is a subset K of A x {0} such that
K is compact in the topology of R" x G, and

IW—Kik+nl <& and  [@'*v—(¢"*V)ksnll < €.

Set A=y'|x,n and o= (0" *v)|x, y. Define the function g on K+ H by g(x)
=f(h(x)), x € K+ H. g is a continuous complex-valued function on K + H, and
K+ H is a compact subset of R"x G. Tietze’s extension theorem shows that g
can be extended to a continuous complex-valued function which is defined on
the entire R"x G, vanishes at infinity, and has supremum norm equal to
SUP,ck+H 18(X)| =sup,.y|f(x). Fix such an extension and call it g, too. We
have

U gy du — f f d(n(vau’))' < ‘ f gy, dA— f f d(n(vai))‘+2||flloo8-
R*x G H K+H H

But
f g, dA = J fd(r(yA),
K+H H

as is easy to see. Thus

() f gy di — j f d(n(vau'))\ < 2] fll ot -
R"x G H

Similarly we get

J gd(Q'*v)—é'(O)J fdv
R"xG H

j gda—J fdno
K+H H

Since {y,(¢*u)} converges to g*v=¢ *v in the weak* topology of M(G), it is
easy to see that {y,u'} converges to ¢ *v in the weak* topology of M(G). (Recall
that u’' = (¢ *u)|r and supp (¢’ *v)= F.) Hence there exists an o, € A4 such that

3 U gvadu'—j_ gd(g' *v)
R"x G . R"x G

Combining (1), (2), and (3) we see that

‘ f fd(v,u'»—e“m)f fv
H H

@

J_ gd(Q'*V)—J fd(r(g *v))
R*x G H

<

+21f oot = 20 S ot -

<e¢ ifaza,.

< 4||flle+e if a2ap.
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This proves Step ii.

Step iii. lim, |7(yu)—ymud|| =0.

Choose an arbitrary £>0. As in Step ii, there is a subset K of A4 x {0} such
that K is compact in the topology of R"x G and ||y’ —p'|x +ull <e Set i=
Wk, n Since K< A x {0} and K is compact in the topology of R"x G, and
since lim,y, =0 in the topology of R", there is an «, € A4 such that |(x,y,) — 1| <e
if x e K and a=0a, We have for a=a,

(7 (palt) = Vaml || = [ 7(yapt) = 7 ((poo )W)
[yalt = Qoo | = I1((peok)— 1)’
[((paok) = 1)1 = D+ 1((7o0k) = DA < 2e+ [ Alle < 2e+['e .

A

lIA

This proves Step iii.

STEP iv. {y,ly, @ € A} is eventually in a finite set of H.

Write ,lg =71, Sdppose {yf1} is not eventually in any finite subset of H.
Then there is a subnet {y¥} of {yH} such such that {y¥} is eventually in the
complement of each finite subset of A (see e.g. Kelley [6, p. 70 Lemma 5]).
Steps ii and iii together show that lim, {y#nu'} =¢'(0)v in the weak* topology
of M(H). Since {y!} is a subnet of {yf'}, also lim, {y#nu'} = ¢'(O)v in the weak*
topology of M(H). Using that the trigonometric polynomials are dense in
C(H), we conclude that ¢’ (0)v is singular with respect to my, the Haar measure
of H. (Compare Lemma 3.5.1 (Helson’s translation lemma) in Rudin [10, p.
66].) But we have chosen H to be the support group of the not identically zero
canonical measure v, and therefore v+0 and v is absolutely continuous with
respect to my. Also ¢'(0)+0. It follows that our assumption that {yf} is not
eventually in any finite subset of H is false.

This proves Step iv.

STEP V. lim, ||y, 4 —@*v| =0.

Choose an arbitrary &> 0. As in step ii, there is a subset of K of A x {0} such
that K is compact in the topology of R" x G and ||’ — i|g 4 yll <&.Set A=p'|k 4 -
As in Step iii, there is an a, € 4 such that |(x,y,)—1]<e¢ if x € K and a=a,.
By Step iv {7,ly | a« € A} is eventually in a finite subset, say {6,,...,0y}, of H.
After a renumbering if necessary we may suppose that {y,ly | ae A} is
frequently in each of the sets {6,},. .., {0y}, and not frequently in any of the
sets {Op41}s- - -, {On} (for some M, ISM < N). For eachi € {1,...,M}, set 4;
={aeA ] yJm=0,). Then each A,,. . ., A is a cofinal subset of 4, and UM, 4,
is a residual subset of A.

Now fix an arbitrary i € {1,...,M}. Choose a,; € 4; so that a;; > a,. This is
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possible since A, is a cofinal subset of 4. If a € 4; and a2a,; we have

)] 17abt = Vel < 26+ [74A = Vo Al

mj 10, 7 (50, 70— (G0, 70 ) (B 7] AN )
K+H

= 26+L ; [(k(x), ) — (K (x), 72, )| dIAl(x) < 2e+2]Alle < 2e+2]]le .
+
Choose f; € Co(R" x G) with | fi o<1 such that

@

<e.
X

Vet — @ *vIl — .[Fv . [i(Yay A —d (@' #v))

Since lim, y,u' =g’ *v in the weak* topology of M (R" x G), there is an ay; € 4;
such that for a2 a,;

< €.

3 U [y dp —d (@ *v))
R"x G

Choose a,; € A; so that ay;2a,; and as;=ay;. Using (1), (2), and (3) we get if
o€ A; and a=ay;

Iy =@ #vll < 26+2[ 1 e+ 70,0 — @ *V
r

< 3o+t || Sl —d(e +)

< 3e+2|plle+ " Ji(va, dp —d(@' *V))
G

L nx

+ ‘J_ fi(v::n - yag‘) dﬂl\
R"x G

< de+2|ple+|] . fi(va,,—va,,.)du"+’ J fi(va.,—va,,.)du"
J R"xG)\ (K+H) K+H

~

< 6e+2|ulle+ . Hf.-(x)((k(X), Vard (B00) Vay) = (K (X), 7, ) (B (%), Vs, ) ' (%)
J K+

= 6e+2| e+ Y S ((k(x), Va,) — (k(x), Va,)) A’ (x)
+

JK

< 6e+4|yle .

But we had fixed an arbitrary i € {1,..., M}. Thus, for each i € {1,...,M} we
have proved that there exists an as; € 4; such that if « € 4; and a2 a3, then
lly' — @ *v|| <6e+4| | ||e. Choose oy € A so that a0y, .., 04 2 A3p- Then,
if « € UM, 4; and a2a,, we have

llye —@ *ull < 6e+4| e .
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Since UM, 4, is a residual subset of A, this proves Step v.
Since u' = (¢ *u)|r and ¢’ *v=g=v the theorem is proved, too.

1.2. A theorem for an integer-valued function (Theorem 1.2.3).

In this section we essentially show that if a function is canonical on a vertical
strip in R"x I', then on a narrower vertical strip it coincides with a function
which is canonical on the whole of R" x I'. Theorem 1.2.3 of this section gives a
somewhat more precise result, necessary for our proof of Theorem C. We begin
with two lemmas. The first of which we referred to when we stated our version
of Cohen’s theorem.

LeMMa 1.2.1. Suppose the function ¢ is continuous and canonical on I'. Then ¢
is the FST of a canonical measure belonging to M(G).

Proor. If ¢ =0 the lemma is trivial. We suppose
A ={p(+n]| yerl and p()*0}

has N (N >0) distinct elements. We can write A={¢@(* +7,),...,¢(- +yy)} for
certain y,,...,)y € I'. Set A;={ye ' | o +=0(C+7)} (i=1,...,N). Now
note that

1°. Aj—vyi=...=AN—7N-

2°. Since ¢ is continuous, each of the sets 4; —y;,...,Ay—7yy is clopen.

3° If 9,7 € Ai—7ys then @i +7i—y +D =0 (=7 +7)=

=@+ =+ =i +) ie. yi—yi € A=

1°, 2°, and 3° together imply that there is a clopen subgroup A of I' such that
A =7,+4,...,Ay=yy+A4. Let H be the annihilator of A in G. Since 4 is
open, H is compact (see e.g. Rudin [10, p. 35, Theorem 2.1.2]). Set u= (¢ (,)7;
+ ...+ @(yn)in)my, where my is the Haar measure of H. Then u € M(G), p is
canonical, and as is easy to see @ =ji.

LemMMA 1.2.2. Suppose p € M(ﬁ" x G) is canonical. Then there exist a
canonical measure v € M(R"x G) with CLP (¥~'(Z\ {0})) equal to a linear
subspace of R" and a neighborhood Q of the origin in R" such that 1=V on Q x T

Proor. Set A=CLP (i~ *(Z\ {0})). Since u is canonical, 4 is either the
empty set or is the union of finitely many translates of a closed subgroup of R".
Hence there is a unique linear subspace A of R" such that ANQ=ANQ
whenever Q is a sufficiently small neighborhood of the origin in R". Let H be
the obviously compact subgroup of R" x G which is the annihilator of A x I' in
R"x G (H should be interpreted as R" x {0} if A=(Z.) Set v=p*my, where my
is the Haar measure of H. Then, as is easy to see, v is canonical,

Math. Scand. 44 — 8
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CLP ($~1(Z\ {0})) equals the linear subspace A of R", and ji=V on Q@xI'
whenever Q is a sufficiently small neighborhood of the origin in R".

We can now prove

THEOREM 1.2.3. Let Q be a neighborhood of the origin in R™. Let ¢(y',y"") be an
integer-valued function on (Q+Q)x I which for each fixed y' € Q+Q is
continuous on I (y=(y',y") € R"x I'). Suppose the set {¢(. +V)oxr l yeQxT
and @(y)*0} is finite. Then there exist a canonical measure p € M (ﬁ" x G) with
CLP (i~ '(Z\ {0})) equal to a linear subspace of R" and a neighborhood €' of the
origin in R" such that ¢=f on Q@ xT.

ProoF. For h>0set Q,={y" € R" | |y'|£h}. Choose hy, >0 so that Q, +€, >,
cQ. Set Qo=Q,, @,=9,,,, and Q,=8, ,, Let 4 be the set of all points
y € Q, x I' such that ¢(*)=¢(* +7) on Q, x I'. Let A be the linear span of P(4)
in R”. Now suppose there exists an infinite sequence (y; = (y;, y!)){z; =2, x I'such
that each @(y,)+0, each y; ¢ A4, and lim;y;=0. Since each ¢(y,)+0, and since
{o(- +Vlaxr | y € @ x T and @(y)#+0} is finite, it is easy to see that there is an

infinite subsequence (y;)§2; of (y)iZ, such that

8y o(-+v,) = o(-+y,) = ... on QxI.
Since 2>5Q,—,, (1) implies that
V)] o) = @ +v,—7,) = @ +y,—7) = ... on QyxI.

Since 2,—Q,<=Q,, (2) shows that each y;, —y; € 4. In particular each y;
—yi, € A. Since y;, ¢ 4 and lim;y; =0, thisis a contradiction. We conclude that
there is a neighborhood Q5 of the origin in R” such that if y=(y',y") € Q3 x I’
and @(y)+0, then y € A. Let m be the dimension of A. Choose a
= (o), &), - - Oy = (0, %) € 2, x I' s0 that each @ (- +a)=¢() on @y x I', and
so that «},. . .,a,,span A. This is possible because of the definition of A. Let E
be the set of all y € R" which can be written y' =¢,a; + . .. +¢,2,, where each
¢; € ]—1,4]. Note that

ho

'~n—§h0 = 7 eQ,.

N =

Yy e E+E = |y| £ 2:m-

It follows that each ¢ (- +a)=¢(-) on (E4+E)xT.
Define the function £ on R"x I" by

_Jo@y) ifyeExI
o) = {0 elsewhere .
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Then define the function n on R"xI' by

ny = Y E(y+ijo+ ... +i,), 7yeER™XI.
(igs- . i) €Z™
n is a well-defined function, because for each y e R"xI" we have &(y+ia,
+...+i,,)*0 for at most one m-tuple (iy,...,i,) € Z™. It is also clear that »
is integer-valued and continuous in the topology of R% x I. We now prove that

Ty = {n(-+7) | y e R"xI and n(y)+0}

is finite. By the construction of # the cardinality of T is equal to the cardinality
of

T, = {(n(- +lexr | y€ ExI and n(y)#0} .

Now observe that since each n(- +a;)=n(-) on (E+ E) x I', the construction of
n also shows that ’7|(E+E)xr :(Pl(E+E)X r Thus

T, = {¢( +lexr | v € ExT and ¢(3)+0},

and the cardinality of this last set is finite, since it is obviously less than the
cardinality of {@(- +9)loxr | ye QxI and ¢@(y)+0}, which is finite by
assumption. We have proved that T, is finite, or in other words that # is
canonical on R" x I'. Let 2 be the orthogonal complement of A in R" and set Q,
=(E+2)N Q;. Then Q, is a neighborhood of the origin in R". Since ¢ =n on
Q, xI', Theorem 1.2.3 now follows from Lemmas 1.2.1 and 1.2.2.

1.3. A theorem for a set of measures (Theorem 1.3.4).

In Amemiya’s and Ito’s proof of Cohen’s theorem, for a canonical measure
i € M(G), properties of the weak* closure of {ju | f(y)#0} in M(G) played a
crucial role. In our proof of Theorem C, for a u € M(R" x G) whose FST ji is
integer-valued on a set Q x I' where Q is a neighborhood of the origin in R",
similar properties of the set Sg.g(u) (see Definition 1.3.1 below) play a
corresponding role. Theorem 1.3.4 (with G'=R", G'=G) gives the relevant
propertie of Sg» ().

DeriniTION 1.3.1. Let p € M(G', G”). We define Sg g-(1) to be the set of all
measures v € M (G’ x G”) for which there exists a net {y,=(y,,7,)} in I'yx I
such that lim,y, =0 in the topology of I'"", each fi(y,) %0, and lim, 7,u=v in the
weak* topology of M (G’ x G").

DEerINITION 1.3.2. Let u € M(G' x G”). We say that u has property Lg g~ if
there exists an infinite net {y,= (y;,7;)} in I';x I'"" such that lim,y,=0 in the
topology of I', each [i(y,)*0, and ||y, u—7,-ul=1 for all &,a” with o' Fa".
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The following lemma (due to Ito) is given in Glicksberg [4].

LeMMA 1.3.3. Let X be a locally compact Hausdorff space. Let uy € M(X). Let
E be a family of unimodular Borel functions on X for which (Ep)~, the weak*
closure of Eu in M(X), consists of measures all of norm= ||u||. Then the weak*
and norm topologies coincide on (Eu)~.

We can now prove

THEOREM 1.3.4. Let € M(G' x G"). Then the following is true for Sg (1)

1°. Sg . g-(u) is a weak* compact subset of M (G x G"),

2°. If 0 € Sg, g (), then Sg. +(0)< S, (1),

3°. If u has property Lg (), then Sg g-(1) contains a measure o such that
loll <llull (strict inequality).

PRrOOF. 1°. Since S ¢-(w) clearly is a subset of the weak™ compact set of all
measures in M (G’ x G”) with norm less than or equal to ||, it is enough to
prove that Sg (1) is weak* closed. We now do that. Let {4, o € A} be an
arbitrary net in Sg ¢~ (1) and suppose lim, 4, =4 w* (in the weak * topology of
M(G’ x G")). We have to show that A € Sg ¢~ (n). Since each 4, € Sg ¢~ (1), there
is for each fixed x € A a net {y,5= (Vs Vaph B € B,} in I';xI" such that
lim {y,4, B € B,} =0 in the topology of I'", ii(y,5)+0 for all « € 4 and f§ € B,
and lim {74, p € B,} =4, w*. Now note that lim, lim; y,,=0 in the topology
of I', i(y,p)+0 for all « € A and p € B, and lim, lim;7,gu=v w*. Thus, by a
well-known result for iterated limits of nets (see e.g. Kelley [6, p. 69, Theorem
47), there is a net {y;= (7}, 75)} in I'; x I'" such that lim, ;=0 in the topology of
I, each [i(y;) #0, and lim;7,u=4 w*, and therefore 1 € Sg ¢ (W)

2°. Let 0 € Sg, (1) Choose an arbitrary ¢ € S, -(0). We have to show that
0 € S¢', 6" (p). Since @ € Sg, (o), there is a net {yaw(ya,y ae A} in [yxI”
such that lim {y,, « € A} =0 in the topology of I'"", each 6(y,) +0, and lim {70,
a € A} =¢ w*. Furthermore, since o € Sg (1), there is a net {vs= (73, 7p),
B € B} in I';x I'" such that lim {y}, § € B} =0 in the topology of I", each i(y)
40, and lim {j;u, B € Bj=0 w*. Now note that for each a € A we have
limg fi(y,+75) =36 (y,) +0. Thus for each o € A there exists a §, € B such that
fi(y,+7,)%0if B2 B,. For each a € A set B,={f € B | B=B,} and give each B,
the induced order from B. This makes each B, a directed set. Also set y,z=
Ya+75 When a € A and p € B,. Then it is easy to see that lim, 4limgcp ¥y =0in
the topology of I, fi(y,s)#0 for all « € A and B € B,, and lim,. 4 limg.p Foppt
=0 w*. Repeating an argument from the proof of 1° we see that ¢ € S¢ ¢ (W)

3°. Let {y,= (7, Y,)} be an infinite net in I'; x I'" such that lim, y,=0 in the
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topology of I", each /i(y,) 0, and |7, —7,-pl 21 for all o, a” with o’ +0o". Set
E={7,u}. Since {y,} is an infinite net, and since |7, 4 —7,-p| 21 if o' +0o”, E is
infinite. Let E be the weak* closure of E in M(G' x G”). E is weak* compact
and infinite. Hence E has at least one cluster point. It is easy to see that each
cluster point belongs to S ¢-(u). Let o be a cluster point. There is a subnet
{741} of {7,u} such that lim;jzu=0c w*. Clearly |o| = ul. Now suppose that
loll=lpll. Then by Lemma 1.3.3 applied to the net {yzu} we have limg |71
—o{ =0, and therefore there is a f, such that [[y,u—7, ull <1 if B=B,. But,” ‘
since {744} is a subnet of {7,u}, this contradicts |7, u—7,-ul 21 for all o/, a” ’
with o +a”. We conclude that ||o|| <|lpull.

1.4. ProoF oF THEOREM C. After the above preparations we are now in a
position to prove Theorem C.

TueoreM C. Let Q be an open subset of R™. Suppose ji € B(R} x I') is integer-:
valued on Q x I'. Then for each point y, € Q there exist a neighborhood Q, of v,
and an integer-valued ¥ € B(R} x I') such that =7 on Q,x I

ProOF. After a translation if necessary we may suppose y,=0. For h>0 set

Q, = {y eR"| IyI<h}.
Choose hy>0 so that Q, +Q, <Q. For h € ]0,h,] set

B, = {ii( +7la,xr | 7€ QuxT and fi()+0} .

We get two cases.

Cask i. There is an h € J0, h,] such that B, is finite. Then it follows from
Theorem 1.2.3 that there exist a canonical measure v e M(r{" x G) (with
CLP (v'(Z\ {0})) equal to a linear subspace of R") and a neighborhood @, of
the origin in R” such that fi=7 on Q, x I'. The theorem is proved in Case i.

CasE ii. B, is infinite for all h € ]0, hy]. For h € ]0, hy] set

A, = {ye QxT| a(y)=+0}.

Since B, is infinite for all h € ]0,h,], so is A,. We now construct an infinite
sequence (7,);o. Choose y, € 4,,. Then choose y; € A4, such that aly+y1)
+[i(y+7,) for some Q, xTI. Then choose y, € A, ;2 such that fi(y+y,)=+
f(y+70) for some yeQ, xI', and fi(y+y,)*ji(y+7y,) for some yeQ, xI.
It is obvious how the construction should be continued. Since A4, (h € ]0, hy])
and B, are infinite, the construction can always be carried out. Note that since
f is integer-valued on (2, +,)x I" we have

IAC +y)— a0+l 2 1 if k1.
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Thus in Case ii there is an infinite sequence (y,= (Yi, 7))tz o such that lim, 7, =0
in the topology of R", each f(y)#0, and |[Ju—7ul21 if k#1, ie. p has
property Lg- ¢ in Case ii. By Theorem 1.3.4 the set Sg» () is weak* compact
and contains a measure with norm strictly less than |u|. Now recall that the
function norm is a lower semi-continuous function in the weak* topology.
Thus there is a measure with minimal norm in Sg» () and this minimal norm
is strictly less than | u||. Let o € Sg» (1) be a measure with minimal norm. Note
that

o€ Spgl) = 1601 2 1.
Also note that
AG) £ 0Vye QxT = a(y) # 0 Vye QxI'  (we suppose y,=0) .

Now restart from the beginning with p replaced with ¢. There are two
possibilities.

(a) We end up in Case i with o. Then there are a canonical measure v €
M(R" x G) with CLP($~*(Z\ {0})) equal to a linear subspace of R" and a
neighborhood €, of the origin in R" such that g=von Q xTI.

(b) We end up in Case ii with . But since Sar,6(0) = Spn 6 (W) (Theorem 1.3.4)
this would imply that there is a measure in Sg» (1) with norm strictly less than
loll. A contradiction. Hence (b) is impossible.

Taking into account that o € Sg» g(p) we get summing up Case ii, a net {y,
=(y,,74)}, a measure 6 € M (ﬁ" x G) with |6(0))=1, a canonical measure
v € M(R" x G) with CLP ($~'(Z\ {0})) equal to a linear subspace of R”, and a
neighborhood €, of the origin in R" such that: lim, y, = 0 in the topology of R",
(each fi(y,) %0), lim, j,u=0 w* (in the weak* topology of M (R"x G)), and 6=
on @, x I. Since ¥(0)=§6(0)*0, CLP (¥*(Z\ {0})) is non-empty. Now choose
o€ M(ﬁ")c:M(ﬁ" x G) such that supp (§)= €, xI', 0(y)=1 when y € Q, x I for
some neighborhood Q, of the origin in R, and |g|| <1+1/(@|ul). This can
always be done (see e.g. Rudin [10, p. 53, Theorem 2.6.8]). Next we prove that

limy,(o*u) = g*v w*.

Since j,u4 — o w* and consequently g * (y,1) — ¢*0 w*, and since g*c =0 *V
(look at the FSTs), we must show that

Falo*w)—0*(Fult) = (Fu0—0)* (Futt) = 0 w*.

But, since ¢ € M(R") (c M (R" x G)) and since lim, ¥, =0 in the topology of R”
and consequently lim, ||7,0 — ¢l =0, this is obviously true. We have proved that
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7.(0*p) — g*v w*. Now Theorem 1.1.4 shows that there is a o-compact
subgroup F of R"x G such that
o lim ||7,(e*wlp—e*vll = 0.

Set A= (o *u)|r. Choose 8,>0 so that ¢(y)=1 for all y € 2, x T Then choose
an o such that

[A=7s@*V) <§ and  6(y—7,) =1

for all y € Q, x I'. Since lim, |2 —y,(e*v)| =0, since lim, 7, =0 in the topology
of R", and since g € M(R") (=M (R" x G)), this is always possible.
Now observe that

@ (o *u—yao(g*v))A is integer-valued on Q; x I,
@) L+l > llo*ul =141+ le*u—A1> 75 (@* ) =&+ le*p—ra,(@*V) —%
=llg*vll+lle*u—"7s(@*V) —2
> 10009 (0)] + llo * u— 7, (@* V)| =%
2 lo*p—7a(@* V) +3
e, floxu="r5@*VI<lul -2
(3) A=05Y) +(@*u—7s(@*V)  on QyxT,
(4) (7,v) Iis integer-valued.

Thus, if the theorem is true for all measures in M (ﬁ" x G) with norm less than
|l -3, it is also true for u. But the theorem is obviously true for all measures
in M (ﬁ" x G) with norm less than one (the FST of a measure with norm less
than one must be zero whenever it is integer-valued). Hence Theorem C follows
by induction in Case ii. '

2. Theorem A.
2.1. A local equality theorem (Theorem 2.1.5).

Theorem 2.1.5 essentially says that if we restrict ourself to narrow vertical
strips in R"x I', then B(R}x I') is the same as B(T;x I).
The proof of the following lemma is straightforward and is omitted.

LEMMA 2.1.1. Let O be a non-empty open subset of a compact abelian group H.
Then there exists a finite disjoint subdivision of H into Borel sets, each having a
non-empty interior, and each being included in some translate of O.

LemMA 2.1.2. Let ¢ € B(I',). Then there exists a net {@,} in B(I') such that

1° lim, @,(y)=@(y) for each fixed y € I',
2° ol =llell for all a.
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PRroOF. Let {0,},. 4 be a neighborhood base at the origin in G. For each o we
apply Lemma 2.1.1 with 0=0, and H=G. For each o this gives finitely many
subsets of G, say T, y,...,T, n, having the properties of Lemma 2.1.1. For
each T, ; choose an x, ; € T, ;N G. (Recall that G is dense in G.) Suppose ¢ =i,
where u € M(G). For each « set

N,
l‘la = Z “(Ta,i)ax,‘i ’
i=1

where §,_, denotes the Dirac measure at the point x, ;. Then each u, € M(G*
(= M(G)). Direct the index set A by saying that for «/,a” € A, o’ 2" if 0, = O,...

It is easy to verify that the net {¢,=[, « € A} satisfies the requirements of

the lemma.

DwriniTioN 2.1.3. For 6>0 let &, ; be the following subset of R”,

é’)n,é = {(’))1" . "yn) e R"

l))l|§5> l':l, . .,n} .

The next lemma is a slight generalization of the non-trivial part of Theorem
2.1.6 in Rudin [10, p. 56].

LEMMA 2.1.4. Let ¢ € B(R x I') be carried by &, ,,, X I'. Define the function y
on RxTI by

vy = Y e +ky), (0,y) e RxT .

k= —o00

Then y € B(T x I'), and there is an absolute constant C such that Y| =C|e].

ProoF. Choose a compactly supported g € C*(R) which is one on &, ,,.
Then g, the Fourier transform of g, satisfies

A
1 g < — R,
(1) F40%] e yE
for some constant 4>0. For y” € I' define a,(y") by
1/2 . '
a(y’) = J o,y )e 2™ dy’
-1/2

Suppose ¢@=/, where pe M(RxG). Since o(y,y)=0(,y)g(), it is
straightforward to verify, using Fubini’s theorem, that

) a(y’) = J " gk +x)(—=x",y")du(x',x") .
x"'eG
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Because of (1), there is a constant C >0 such that 332 _ |§(k +x')| < C for all
x' € R. Combining this with (2) we see that Y3 _ . la,(y")<Cllpll for all
y" € I'. It follows that

v,y = Y ayMe?™  forall (y,y")eRxI.
k=—00
For each k € Z set du, (x',x")=g(k+x)du(x’,x"). Since each |gll,, <oo, each
U, € M(R x G). For each k define the set function v, on the Borel subsets of G
by setting vk(E) (R x E) if E is a Borel subset of G. Since R is a o-compact
subgroup of R x G, Lemma 1.1.2 shows that each v, € M(G). For each k let
o, € M(Z) (cM(R)) be the Dirac measure at the point —k e Z (=R). Set @
=3 _8,®v,. Then 0 € M(Z xG) (cM(R x G)) and

6,y = ¥ eP™a ) =y,

k= —0o0
Hence Y € B(TxTI') (= B(RxT)). We also have,

00 o

Il =1loll £ Y 6@l = ¥ Iul

k= —0o0 k=—00

sup ) |EX'+Klull < Clul = Clel -

x'eR k= —-00

lIA

REMARK. By a partition of unity argument Lemma 2.1.4 can be extended to
functions ¢ € B(R x I') having supports on an arbitrary &, ;X I'. The constant
C then depends on 0.

We can now prove

THEOREM 2.1.5. Let ¢ € B(R? x I') be carried by &, 1,4 x I'. Define the function
Y on R"x I by

(AR D W T (Ve RN AR SV

(i, Li)eZ"
(e 7 Y") €R™XT .

Then y € B(T%x I'), and there is a constant C, only depending on n such that |||
<GC,leoll

ProoF. Choose @' € C*(R") so that o' =1o0n &, ,,, and o =0 outside &, ;5.
Then o' € B(R"). Define w on R"xI' by w(y,y")=w'(y). Then w € B(R"xT)
(see e.g. Rudin [10, p. 79, Lemma 4.2.1]). Since B(Rg x I’ )= B(R} x I'y), Lemma



122 ERIK SVENSSON

2.1.2 shows that there is a net {¢,} in B(R" x I') such that lim, ¢,(y)=¢(y) for
each fixed y € R"x I', and each | ¢,| < ||¢||. For each a set ¢, = we,. Then each
@, € B(R"xI), lim, ¢,(y)=¢(y) for each fixed y € R"x I, each [l¢,[ < |l | o],
and each ¢, is carried by &, ,,, xTI'. For each « set

lpa((y,lv . -,V:-),V”) = Z (pa((yll +i15' . -"Y:.'f'in),)’") s
(iyy. . i)€Z

(e ¥y ) R T .

Then lim, y,(y) =y (y) for each fixed y € R"xTI', and n applications of Lemma
2.1.4 show that each y, € B(T"xI') and each |y,| <C"||¢|. It follows that
Y € B(ThxI'y) and |[y|| <C"||¢| (1) (see e.g. Rudin [10, p. 34, Theorem 1.9.2]).
But y(y,y") is continuous on I for each fixed y’ (2). Combining (1) and (2) we
get Y € B(TyxT) and ||y <C"|lo].

REMARK. By a partition of unity argument Theorem 2.1.5 can be extended to
functions ¢ € B(R} x I') having supports on an arbitrary &, ; x I'. The constant
C, then depends also on 9.

2.2. Proor oF THEOREM A. We begin by proving the following theorem.

THEOREM 2.2.1. Let Q be a neighborhood of the origin in R™ x T". Let ¢ be a
function defined on Q x I'. Then the following two conditions are equivalent.

1° There exists a neighborhood Q. of the origin in R™ xT" such that ¢ on
Q, x I is integer-valued and coincides with a function in B(R} x Ty x TI').

2° There exists a neighborhood Q, of the origin in R™ xT" such that ¢ on
Q, x I' coincides with a finite sum of functions, each being canonical on Q, x I'.

Proor. Suppose 1° is true. Then Theorem C combined with Cohen’s
theorem shows that there exist a neighborhood Q) of the origin in R™ x R" and
finitely many functions y,. . ., ¥y each being canonical on R™ x R" x I so that
o=V, +...+yYyon Q) xI.Foreach ke {l,...,N},let Y, on R"x R"xT be
equal to ¥, on R" x &, ,,4 x I and zero elsewhere, and define ¢, on R™ x R" x I
by

oy, Ol Y ) =Y , A O 7 o R VA A v T
(e i€Z"

(&, 0 YY) € R xR % .

Then, using the trivial fact that if a function is canonical on a set E it is also
canonical on every subset of E, it is easy to see that there is a neighborhood Q,
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of the origin in R™ x T" such that ¢ =@, + ... +¢, on Q, xI" and each ¢, is
canonical on Q, x I'. Thus 1° = 2°.

We now prove that 2° = 1°. Suppose ¢ is canonical on Q, x I' where Q, is a
neighborhood of the origin in R™xT" By Theorem 12.3 there exist a
neighborhood €, of the origin in R™ x R" and a /i € B(R} x Ry x I',) such that
@=/ji on Q,. Choose w € B(RT xR} x I'y) so that w=1 on R"x &, ;s xI" and
=0 outside R"x &, ;,,x I'. Set /' =fiw and define Y on R"x R"xI" by

YO, G YY) =Y Z\I/(v’,(vl’+i1,-~-,v;’+i,.),v”’),
(iyy- - s i) €Z"

s 0. . ),y € R"X R T .

Then ¢ € BR?xTix ;) by Theorem 2.1.5, and there clearly exists a
neighborhood Qj of the origin in R™x T" such that ¢ =y on Qj xTI. This
shows that 2° = 1°.

We are now ready to prove Theorem A.

THEOREM A. Let ¢ be a function defined on a neighborhood of a point y, in I'.
Then the following conditions are equivalent.

1° There exists a neighborhood Q, of y, such that ¢ on Q, is integer-valued
and coincides with a function in B(I';).

2° There exists a neighborhood Q, of y, such that @ on Q, coincides with a
finite sum of functions, each being canonical on Q,.

ProoOF. Since

(1) The formulation on Theorem A is translation invariant.

(2) Every LCAG has an opzn subgroup of type R™ x H, where H is a compact
abelian group (see e.g. Rudin [10, p. 40, Theorem 2.4.1]).

(3) If I' is a subgroup of I'”, then B(I'y)=B(I'y)|; (see e.g. Rudin, [10, p. 53,
Theorem 2.7.2]).

there is no restriction to suppose y,=0 and I'=R™ x H where H is a compact
abelian group. From now on we do that.

Using the well-known fact that every compact abelian group is a closed
subgroup of some complete direct sum of circle groups (this follows e.g. from
the proof of Theorem 2.5.1 in Rudin [10, p. 44], it is easy to see that we have

(4) Let Q be an arbitrary neighborhood of the origin in R™ x H. Then there
exist a group R™xT"x K where K is a compact abelian group and a
neighborhood €' of the origin in R™xT" such that R"x H is a closed
subgroup of R"x T"x K and Q> (€ x K)N (R™ x H).
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It is also easy to see that we have

(5) Let I'" be a subgroup of I'".
(a) If ¢" is canonical on E” in I'”, then ¢"| is canonical on E"NI" in I".

(b) If E” is a subset of I'", if ¢ is canonical on E"NT" in I", and if ¢” is
defined on E"—E"+E" in I'" by ¢"=¢" on (E"—E"+E")NT" and ¢”
=0 elsewhere, then ¢" is canonical on E" in I'".

(4), (3), 1° = 2°in Theorem 2.2.1, and (5a (in that order) show that 1° = 2° in
Theorem A. (4), (5b), 2° = 1° in Theorem 2.2.1, and (3) (in that order) show
that 2° = 1° in Theorem A.

3. Theorem B.

3.1. A continuation theorem (Theorem 3.1.4).

In this section we shall define the dense part (Definition 3.1.3) of a measure
in M (ﬁ" x G) of type TN, P;my and give a continuation result (Theorem 3.1.4)
for the dense part. We begin with a lemma which is the key to the result of this
section.

Lemma 3.1.1. Let ay,...,ay € C. Let 4,,...,4y be cosets of subgroups of
R"x I'. Let Q be a non-empty open subset of R". Suppose

1° CLP (4)=R" i=1,...,N,
2° 3N axy,(y)=0 for all y € @ x T (34, denotes the characteristic function of
4).

Then 3N, ay (y)=0 for all y € R"xT.

Proor. Let A,,...,4py (M ZN) be the different groups appearing in the
cosets A,,...,4y. Set A=NM A, We get two cases.

Case i. CLP (A)=R". Choose an arbitrary y,=(yo,70) € R"xI. Since
CLP (A)=R", there is a y, =(y},7}) € 4 such that y,—7y; € Q. We get

N N
Z a;x4,(vo) = Z ayxa,(vo—71) = 0.

i=1 i=1

Hence, since y, € R" x I" was arbitrary, 3N | a;xs (y)=0 for all y e R"x I'. The
lemma is proved in Case i.

_Cask ii. CLP (A) is a proper subgroup of R". In this case there is an integer
M’ 1£M’'£M—1, with the following two properties:
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(@ If k>M' and if i,...,i, are different integers € {1,...,M}, then
CLP (N%_, A4;) is a proper subgroup of R,

(b) There exist M’ different integers, say I,,...,Iy € {1,...,M}, such that
CLP (MY, 4,)=R".

Set A'= ﬂ?ﬁl A, Write R"xI" as a union of disjoint cosets of A, R"xT
=U, (y,+4') (each y, € R"x I'). For each a set 4,=7y,+ A". Note that for each «

(1) TN aps()=0 forall ye QxI' =
Q@ ZXiaisns, () forall yeQxI.

Each 4,0 4, is either the empty set or a coset of a subgroup of R" x I'. Let I be
the set of all integers i € {1,..., N} such that 4, is a coset of one of A, ,. . ., 4,,,.
It is easy to see that for each i e {1,...,N}\I and each « there is a (not
unique) set E;,, consisting of denumerably many parallel equidistant
hyperplanes in R", and covering CIP (4,1 4,). For each o set

Q, = Q\( U Em>.
1SisN
il
Then each , is a non-empty open subset of R" and it follows from (2) that for
each a

3) Y axana,(y) =0 forall yeQ,xI.

iel
If i € I, then either 4,N4,= & or CLP (4;N 4,)=R". We also have 1 <card |
<N —1. Now suppose (*) the lemma has been proved for all positive integers
less than N and all non-empty open subsets Q of R". Then it follows from (3)
that for each «
4) Y aiganas(y) =0 forall yeR"xI.

iel
(For some o we might have 4,0 4,+ J for all i € I.) But since U, 4,=R"x I,
having (4) for each « is equivalent with

) Y axs(y) =0 forall yeR"xI.

iel
From (1) and (5) it follows that

Y agxs() =0 foral yeQxr.

1SiSN
¢l
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Under the assumption (*) this implies

(6) Y axa(y) =0 forall yeR"xTI .
1SisN
i¢l
Cobining (5) and (6) we get
N
W Y aiga(y) =0 forall yeR*xI.

i=1
(7) is proved under the assumption (*). But the lemma is obviously true for N

=1 and arbitrary non-empty open subsets Q of R". Hence the lemma follows
by induction in Case ii.

We can now prove the following result.

THEOREM 3.1.2. Let Q be a non-empty open subset of R". Let each P; be a
trigonometric polynomial on R"x G, let each H ; be a compact subgroup of R"x G,
and let each my_ be the Haar measure of H; (i=1,...,N). Set

I=1{ie{l,...,N}| CLP(H})=R"}

(H} denotes the annihilator of H; in R%x I'). Suppose (XN, PimH.,)A(y)=0 for
all y e QxT. Then 3., Pimy =0.

Proor. For i€ {l,...,N} we can write P;(x)=3%M,a;(x, —y;), Where
g, - -, ay, € C and 9y, .., 7y, € R"XT. We have

N N, N ~
8)) Z Z a.‘jX(yi,,+H,+)(Y) = <Z PimH‘) (y) =0 forall yeQxI.
i=1

i=1 j=1

For each i e {1,...,N}\I and each j € {1,...,N,} there is a (not unique) set
E;;, consisting of denumerably many parallel equidistant hyperplanes in R",

and covering CLP (y;;+ H{). Set

Q, =Q\< U ILVJ'E,.J).

1SigN j=1
i¢1
Then €, is a non-empty open subset of R" and it follows from (1) that

N
Y ¥ @y, +unH(7) =0 forall ye @ xTI.

iel j=1
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Using Lemma 3.1.1 we conclude that

Y, Z @ik, +ny() = 0 for all y e R"xTI .

iel j=1

Thus ¥, ; Pmy =0.

Theorem 3.1.2 with 2 =R"shows thatif y ¢ M (ﬁ” x G) can be represented as
asum pu=YN, P;my where P, H; and my, are as in Theorem 3.1.2, then
Yier Pimy, where

= {ie{l,...,N} | CLP(H})=R"},
is independent of the particular representation and only depends on u. Hence
the following definition is not ambiguous.

DerINITION 3.1.3. Let pe M (R"x G) be a measure of type u=3N~, Pmy
where P, H; and my are as in Theorem 3.1.2. Set I={1,...,N} | CLP (H})
=R"}. Then Y ;. ,PmH is called the dense part of pu.

The following theorem is now an immediate consequence of Theorem 3.1.2
and this definition.

THEOREM 3.1.4. Let Q be a non-empty open subset of R". Let uy € M (ﬁ" x G) be
a measure of type p=3YN_, P,my where P, H; and my_are as in Theorem 3.1.2.
Suppose ji(y)=0 for all y € @ x I'. Then the dense part of u is identically zero.

3.2. A consequence (Theorem 3.2.3) of a result of Davenport.
It is easy to see that the following result follows directly from Davenport [3].
LemMA 3.2.1. Let u € M(G). Let r be a positive integer. Let

Yo V115 - V1 Y2150 s V2 - Vs s Ve € r.

Define the sets A, inductively by Aq={y,} and

Ay = A, U <Ak—1+ U {)’ki‘)’kj}) U {ykl"-'aykr}5 1<ksri-1.

1si<j<r

Suppose

1° @21 and 1Ayl 21 (1Sisr? 150,
2° for each k € {1,...,r*} we have [i(y+ 74—y =0 whenever y € A,_, and
1<i<j<sr.
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Then |l >hs)/r.

Before we can prove the main result of this section we need another lemma.

LeEMMA 3.2.2. Let Q be a non-empty bounded open subset of R". Let EcQxT
be such that

1° for each y’ € Q there exist a neighborhood Q' of v' in R" and finitely many
hyperplanes H,,...,Hy in R" such that EN(Q xIN<UN | H,xT,

2° there do not exist finitely many hyperplanes H,,...,Hy in R" such that
EcUN H;xT.

Let AcQxT be a finite set. Let r be a positive integer. Then there exist
Y15 - > ¥y € E such that y+7y,—y; € (2 x ')\ E whenever y € A and 1<i<j<r.

ProoF. Since E satisfies 1° and 2° a compactness argument shows that there
is a yo, € 0Q with the property: for each neighborhood ' of 7y, in R" it is
impossible to find finitely many hyperplanes H,,...,H,; in R" such that
EN(Q xIN<cUM H,xTI.Write A={a,,...,ay}. For each «; (o; = (o}, ")) take
a neighborhood Q;=Q of «; in R" and finitely many hyperplanes H,,,..., H iN,
in R" such that «; € H;; (1<j<N,;) and EN(2;xN<UY, H,; xI. This is
possible because of 1°. For each i € {1,...,N} and each j € {1,...,N;} let H,
be the unique hyperplane in R” which passes through y, and is parallel with
H;; Set

N N,

E® = E\(U U H?jxr>.

i=1 j=1
Because of our choice of y;, we have E° N (2 x I') + & for each neighborhood
 of y, in R™ Choose a neighborhood 4, of 7, in R" such that for each
ie{l,...,N} we have 4, — 4, +a;<Q, Then choose y, € (¥},7}) € E;N (4,
xI'). Observe that the definition of E° implies that y, ¢ H) (1<i<N, 1<)
= N)). Next choose a neighborhood 4, =4, of y; in R" such that y; —y' is not
parallel with any HY, (1Si<N, 1<j<N,) for any y €4, Such a
neighborhood 4, can always be found. Every sufficiently small neighborhood
of yp is an acceptable choice for 4,, because y; ¢ H?j (I£i=N,1<j<N,). Then
choose y,=(y,73) € E°N (4, xT). As above y, ¢ H (1Si<N, 1<j<N).
Next choose a neighborhood 4; = 4, of y; in R" such that y, —y' is not parallel
with any H?j (1=igN,1<j<N)for any y' € 4,. Continue this construction of
4;:s and y;:s r times. Since E° N (2 x I') + ¥ for each neighborhood €’ of y, in
R this is always possible. Note that the construction is done in such a way
that

A+y,—4;, xT'c(@xDN\NE (i=1,...,r=1)



ON FOURIER-STIELTJES TRANSFORMS, INTEGER-VALUED ON A GIVEN SUBSET 129

(just look at the R"-components). Also note that y; € 4,,, xI" if j>i. Thus
A+y;—y; < @xDNNE if 1Zi<j<r.

This proves the lemma.
The main result of this section is

THEOREM 3.2.3. Let Q be a bounded open subset of R". Let i € B(R}x I') be
integer-valued on QxTI'. Set E={y e QxTI I [i(y)*0}. Suppose E satisfies

(*) for each y' € Q there exist a neighborhood @ of y' in R* and finitely many
hyperplanes H,. .., Hjs in R" such that EN(Q xNcUM H/xT.

Then there exist finitely many hyperplanes H,,...,Hy in R" such that
EcUN . H;xT.

Proor. Suppose there do not exist finitely many hyperplanes H,,...,Hy in
R" such that EcUN., H; x I'. Since (*)is the same as 1° in Lemma 3.2.2, then E
satisfies both 1° and 2° of Lemma 3.2.2. Let r be a positive integer such that
155}/ 7 > |lpll- Choose y, € E. Set Ag={y,}. Then choose 7,;,. ..,7;, € E such
that Ay+7,;—7;;<(@xI)\E if 1<i<j<r. This is possible according to
Lemma 3.2.2. Set

A1=A0U<A0+ U {Vli"‘)’lj})u {Yu,---,)’n}-
1Si<jsr

Note that 4, =QxI'. Then choose y,;,. . .,7,, € E such that 4, +y,,—7,,<
@xINN\E if 15i<j<r. Since A, cQxTI and A, is finite, this is possible
according to Lemma 3.2.2. Set

A4, = A4, U <A1+ U {Vﬁ‘hj}) U {y215- - -,Vzr} .

1gi<jsr
Note that 4,cQ x I'. Then choose y;,,...,73, € E such that
Ay +7y3i—73; € @xDNN\NE if 1Si<jsr.

Continue this construction r? times. Note that the construction is carried out
so that

1° Ji(yo) 21 and |a(y )21 (1Sisr? 1)),
2° for each k € {1,...,r*} we have fi(y +7y;;—7:;) =0 whenever y € 4,_, and
1<i<jsr.

Also note that the sets A,,...,A4,2_, are constructed from the characters

Math. Scand. 44 — 9
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YosYits- « csVirmPatse o «sV2r- - osVs21s- - -» V2 1IN @ similar  way as the
corresponding sets in Lemma 3.2.1 from the corresponding characters there.

Hence it follows from Lemma 3.2.1 that [|;4||>-1—(‘,o—]/;. But r is chosen so
that 1%W[/;>||u||. We have reached a contraction. It follows that our
assumption in the beginning of the proof was false, and thus there exist finitely
many hyperplanes H,,...,Hy in R" such that EcUN., H,x I

3.3. Proor oF THEOREM B. We first prove

THEOREM 3.3.1. Let Q be a bounded open convex subset of R" Suppose
f € B(RyxT) is integer-valued on QxI'. Then there exists an integer-valued
v € B(Ryx T') such that fi=% on QxT.

Proor. Using Theorem C combined with Cohen’s theorem it is easy to see
that there exist denumerably many open subsets Q,, Q,,. . . of R" and denumer-
ably many measures @,,0,,... each of which is a finite sum of canonical
measures in M (ﬁ x G) so that

4y U:'x-)-—x Q;=Q,
(2) each compact subset of Q only intersects finitely many of the Q;:s
(3) fi=0; on Q;xT.

If Q,NQ;+ & then it follows from Theorem 3.1.4 that g, and g; have the same
dense part. Since 2 convex set is connected we conclude that all g; have the
same dense part. Call this common dense part ¢. Set 0 =u—¢. Q and o satisfy
the hypotheses of Theorem 3.2.3. Hence there exist finitely many hyperplanes
H,,...,Hy in R" intersecting Q2 and satisfying

N
{(re@xrI'| 6()+0} =« U H;xI'..
i=1
We now make two observations.

(i) Suppose n=1. A hyperplane in R is a point. Hence in this case there are
finitely many distinct points y},. ..,y € 2 such that

N
{re@xr| 6()+0} < U bigxr.

For each i € {1,...,N} let ¢, be the function on R x I' which is equal to  on
{y)} xI' and zero elsewhere. Then each ¢, € B(R;xT). Set =9+~ , ¢,
Then ¢ is integer-valued, ¢ € B(R;xTI'), and ji=¢ on QxT.

(ii) Suppose the theorem has been proved for the dimension n—1 (n>2). Let
Q,=0QNH; (1<i<N). Then €; is a bounded convex relatively open subset of
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H; (1<i<N). (Bach H, is endowed with the relative topology from R") Since
the theorem is supposed true for the dimension n—1 it is easy to see that there
are N inter-valued functions ¢,,...,¢@y € B(RjxTI) such that ¢,=d on
H,xT'and ¢,=00ff H; xI',¢,=6—¢@,on HyxI"and ¢, =00ff H, x T, p3=
6—@,—@, on HyxI and ¢3=0 off HyxT,..., and py=6-3N7"'¢; on
HyxT and @y=0 off Hy xT'. Set 0=0+YN, 0. Then ¢ is integer-valued,
¢ € B(R:x I'), and fi=¢ on Q x I'. Hence the theorem is true for dimension n if
it is true for dimension n—1 (n=2).
Combining (i) and (ii) the theorem follows by induction.

Theorem B is now obtained as an easy corollary of Theorem 3.3.1.

THEOREM B. Let Q be an open convex slice of R" Suppose fi € B(R)) is
integer-valued on Q. Then there exists an integer-valued ¥ € B(RY) such that
fi=" on Q.

Proor. Combine Theorem 3.3.1 with Lemma 4.2.1 in Rudin [10, p. 79].
4. Some examples and remarks.

4.1. A counterexample for T (Example 4.1.2).

In this section we give Example 4.1.2 referred to in the introduction. But first
a lemma.

LeEmMMA 4.1.1. Let ay,. . .,ay € C. Let 4,...,4y be cosets of subgroups of R.
Let

I ={ie{l,.. ,N}| closure of 4;=R}.

Suppose YN, aixa(v) is 1-periodic. Then 3 ;c1a;x4,(Y) is 1-periodic.

= R\ ((1%%N> U (1%%N (A,-—l))).

Note that Q is a non-empty open subset of R. Also note that

PRrOOF. Set

N N
2 axa® = Y axs(y+1) forall yeR
i=1 i=1
N N

= 2 aixs,(v) = Z aiX(Al._l)()’) for all yeR
i=1

i=1

iel iel

v

= Y axs( = Y ax,-ny) forall yeQ.
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Using Lemma 3.1.1 it follows that 3, ; aixs,(y) = Xic @ix(4,-1)() for all y € R,
which means

Y axs () = Y axs(y+1) forall yeR.

iel iel
ExampLE 4.1.2. There exists a g € B(T,) such that

1° ji is canonical on a neighborhood of the origin in T,
2° it is impossible to find a neighborhood Q of the origin in T and an
integer-valued v € B(T,) such that =17 on Q.

ProoF. Let ¢ be a 1-periodic function on R which is equal to x5 (Q is the

rationals and Xy/2q is the characteristic function of WQ) on a neighborhood of
the origin in R. It is then obvious that ¢ considered as a function on T is
canonical on some neighborhood of the origin in T. By Theorem A there exist
a neighborhood Q of the origin in T and a 4 € B(T,) such that o=/ on Q.
Suppose there exist a neighborhood ' of the origin in T and an integer-valued
# € B(T,) such that ji=7 on €. Now consider v as a measure in M (R) (M(Z)
cM (R)) and let ¢ be the dense part of v (v is of type 3 P;my by Cohen’s
theorem). Since ¥= ji=y)/3q near the origin in R, it follows using Lemma 3.1.1
that 9 =y)/2q. But Lemma 4.1.1 shows that since 7 is 1-periodic, ¢ must be 1-
periodic. Since y)/3q is not 1-periodic we have reached a contradiction, and
therefore there does not exist an integer-valued v € B(T,) such that fi=7 near
the origin in T.

Example 4.1.2 when combined with Cohen’s theorem shows that “each being
canonical on 2,” in 2° of Theorem A cannot, in general, be replaced by “each
being canonical on I'”. Since a function canonical on the whole of I is integer-
valued on I' and belongs to B(I";), Example 4.1.2 also shows that a function
which is canonical only on a neighborhood of a point in I' is not, in general, a
restriction of a function canonical on the whole of I'.

4.2. The case R"
In the section we shall further illustrate what can and what cannot be

expected of functions in B(R}) which are integer-valued on a given open subset
of R".

ExaMPLE 4.2.1. Let Q be a non-empty bounded open subset of R* whose
closure  in R" is non-convex. Then there exists a i € B(R?%), integer-valued on
Q and such that fi|p+7¥|g for all integer-valued ¥ € B(R]).
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PRrOOF. A simple argument shows that there are three line-segments of the
same line L such that the two outer ones, I, and I, say, lie in ©, and the middle
one, I say, lies in the complement of Q. Give the line L a real line order > so
that y € I, and y” € I, = y'>7" and choose y,,7, € I3 with y,;<7,. Then
choose y; € L so that ye L and y>7y; =y ¢ Q. Let  be a compactly
supported C* function on L which is 1 if y € L and y, <y<y; and which is 0 if
y € L and y<7y,. Define ¢ on R" by setting ¢ =1y on L and ¢ =0 elsewhere.
Then ¢ € B(R%) and ¢ is integer-valued on Q. Now suppose there exists an
integer-valued ¥ € B(R?) such that ¢ =7 on Q. Let 7 be the restriction of ¥ to L
Since n(y)=y(y) for all y € Q we have

(1) n(y)=1on I,
() n(»=0on I,.

n is a sum of type 3™, a;x 4, Where each a; € Z and each 4; is a coset included
in L. Let

={ie{l,...,N} I closure of 4,=L} .

Combining (1) with Lemma 3.1.1 we get 3. a;x4,= 1. But combining (2) with
Lemma 3.1.1 we get ¥';; a;x4,=0. This contradiction shows that there does not
exist an integer-valued v € B(R}) such that ¢ =7V on Q.

ReEMARK 4.2.2. If n=2 and if Q is a non-empty bounded non-convex open
subset of R” such that Q is convex, then a result corresponding to Theorem B
may or may not be true.

If Q is an open ball minus its centre, then such a result is true.

If Q is an open ball minus a closed line-segment contained in the ball, then
such a result is not true. A counterexample may be constructed as in Example
42.1.

REMARK 4.2.3. If Q is a non-empty bounded non-convex open subset of R
such that Q is convex, then a result corresponding to Theorem B is always true.
This is an easy consequence of Theorems B, 3.1.4 and 3.2.3.

Example 4.2.1 shows that if Q is a bounded open subset of R” and if a result
corresponding to Theorem B should be true, then Q must be convex. However,
for unbounded open subsets of R” this is not the case, as the following remark
shows.

REMARK 4.2.4. Let
= {1+ - »7w) € R™| Ips|>1}.
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Then a result corresponding to Theorem B is true. This may be seen by using

(1) the theorem for open half-spaces given in the introduction,

(2) the well-known fact that if I' is a totally ordered discrete abelian group and
¢ € B(I), then lim,_, , 4(y)=0 < lim,, _ ¢(y)=0,

(3) Theorem 3.1.4.

In fact, suppose ji € B(R)) is integer-valued on Q. Using (1) we get an integer-
valued ¢ € B(R}) such that ji(y)=a6(y) if y;>1 (y=(y,,...,7,) € R"). Since i—é
is integer-valued on Q we also have [i(y)=d(y) if y, <, for some a, < — 1. This
follows from (2) if we give R" the dictionary order. Using (1) once more we get
an integer-valued 7 € B(R}) such that ji(y)—d(y)=7(y) if y, < —1, and since
f(y)—a(y)=0if y, <ay it is not hard to see because of (3) that this 7 can be
chosen so that ©(y)=0 if y,=—1. If we do that and set ¢=6+1, then
¢ € B(R}), ¢ is integer-velued, and ji=¢ on Q.
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