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AN INEQUALITY FOR MEASURES
ON A HALF-SPACE

S. R. BARKER

Abstract.

We give a new and simple way of estimating a maximal function T, in
harmonic analysis which was studied recently by B. Muckenhoupt and R.
Wheeden. This is achieved by generalising an inequality of L. Carleson for
measures on a half-space. We apply this method also to the theory of an
operator g¥ of Littlewood—Paley-Zygmund. The paper ends with a note on
restriction theorems for Bessel potentials.

Notation.

Q always denotes a cube in R" with sides parallel to the axes, KQ denotes the
cube with the same centre as Q but with sides K times as long, and side Q
denotes the side length of Q.

A= B menas C, <A/B<C, for some positive constants C,,C,.

|E| denotes the Lebesgue measure of the set E.

It is to be understood that constants e.g. A, C, K, etc. may change from
line to line.

X* or CX denotes the complement of the set X.

For fe LL.(R", define (Mf)(x) by

. 1
(Mf)(x) = .S\-I:Qp 0l L I

The author would like to thank his adviser, Dr. D. A. Edwards, for
encouragement, Mrs. V. Shires for carrying out the typing, and the Science
Research Council for financial support.

Our first lemma is a generalisation of an inequality of Carleson [2] and
Hormander [8]. See also [6].

LEMMA 1. Let 621, and let u be a positive measure on the upper half-space
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R"*1=R"x [0, 00) which has the property that if Q is a cube in R", and o*
denotes the cube Q x [0, side Q] in R, then p(Q*)< C|Q|° for some constant C
independent of Q. Let ¥ be any continuous function in R**1 and let ¥*(x)
=sup |¥(y,t)| the supremum being taken over the cone {(y,t) : |x—y| <t}. Then
() p{|P|>a}<C{P*>a}® for each a>0.
(i) [frers P17 du= C(fre P
(i) For each cube Q in R",

[l oraws o)

PrOOF. If we apply Whitney’s lemma ([12, p. 167]) to the open set {¥*>a},
we obtain a pairwise disjoint family of cubes {Q;} with ¥ |Q;|={¥*>a}.
Moreover, these cubes have the property that for an appropriate choice of the
absolute constant k, each cube kQ; intersects the set {P*<al.

We now assert that for an appropriate constant D, we have:

(%>} € U (@;x[0, D side Q,])

To see this, note that if (y,t) € R%*! is such that y ¢ UQ ; then
[P, = P*0) < «.

On the other hand if y € Q;, there exists x ¢ U Q; with |y —x| < D side Q; (since
kQ; intersects o j)c). It then follows that |¥ (y, t)| £ ¥ *(x) < a, provided that ¢
2D side Q;. So

u{I¥1>a) < Y u(@, [0, D side Q;)

IIA

CY o)l
Cx 19,
Cl{¥*>a}l’

IIA

which proves (i).
To obtain (i), multiply each side of (i) by a’~

1 . 00
g jjk |Pdy = J‘ o® 1 u{|¥|> o} do
nrt 0

C j a® P * > o da
0

! and integrate:

IIA



94 S. R. BARKER

IIA

oo}
Csup (o] P*>af)? 1 f |P* > a| da
a>0 0

RORIRS
. .. C<j " q’*)o

To obtain (iii), select a function b on R%*! such that b is continuous, 0<b
<1, b=1o0n Q* and b=0 on ((}4Q)* . Then

H 1PP°dp < H b¥I°du < C(f (b‘l’)*>6
Qt Rl++l R"

However, it is easy to see that (b¥)* vanishes on (KQ)' for suitable choice of
the absolute constant K, and also that (b¥)* < ¥* everywhere. This gives:

j b¥)* < f ve.
R" KQ

Insertion of this in the above proves (iii).

IIA

REMARKS. (a) We could have used e.g. the cones {|x—y| <4t} rather than
those of the form {|x—y|<t}.
(b) Note that by applying (ii) to ¥ =|®|?, we have

1Pl = ClIE*],

In fact, by using Lorentz spaces (see [13]) one may obtain a stronger
conclusion:
fp>1, |Plruny=ClIP*| L, poy

Now let us consider the maximal operator studied by Muckenhoupt and

Wheeden.
When u is harmonic on R%*!, define T,,(u) as follows: For 1>0, r>0, and

x € R”,
T, W)(x) = SUp (IQI‘“ ﬂ - 1|u|'dydt>

PROPOSITION 2. T,,(u) < C,,(M (u*)?)"/P> where py=r/(1+A).

r

Proor. The measure du=t*"""* dy dt satisfies the hypotheses of lemma 1 with
0=1+4. We now apply lemma 1 part (iii) with ¥ =|u[? to obtain
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c (1 J‘ 1/po
sup |— |u|"°)
0:xe0 \IQl J ko

C(M (u *)po)llpo

Ty (u)(x)

A

IIA

as required.

Let us now specialise to the case where u is the Poisson integral of some
boundary function f.

ProvosiTION 3. For appropriate f on R", let u(x,t)=(P,* f) where P, is the
Poisson kernel:

et
P(x) = (X[ + 202
Then

T, () < C(M(Mf)®)!/P  where po=r/(L+4).

Proor. It is well known that u* < C(Mf) (e.g. [12, p. 197]). Proposition 2
now gives the result.

The next lemma enables us to simplify proposition 3:

LEmMMA 4. Let 1<p=<g<o00, and fe LI(R").
Then M(Mf)f <C,M(|f|P) pointwise.

Proor. Let x € Q= R". Write

f=fi+f, where f = szQ, fo = fX(2Q)C
Then

J IMfIP = =% J IMfyIP+|Mf,|?

]

j IMfilP = J IMfiIP = C,J AP = C,f Lf1P
0 R" R" 20

by the maximal theorem.
Also (Mf,)(y)~ (Mf,)(x) for y e Q since f, is supported outside 2Q.
This means that

101
But



96 S. R. BARKER

f IMf,l?
Q

IIA

C,lOlIMf, (x)P

IIA

C,lQlIMf (x)IP

IIA

CIOIM( f1P)(x)
by Holder’s inequality. So

1
0l L IMfIP = C,M(lfP)(x)

Taking the sup over all Q with x € Q gives the result.

COROLLARY 5. Let u be the Poisson integral of f. Let po>1, A>0, p=p,,
r=po(1+4). Then for p=p,, the map

f= T,w

is of weak-type (p,p).
When p> p,, it is of strong-type (p,p).

Proor. By proposition 3 and lemma 4, we have T,,(u) < CM (| f|?. The result
now follows from the maximal theorem.

The reader should note that weighted inequalities for T,, may also be
deduced from proposition 2 simply by applying the weighted maximal theorem
(31, (9D

Let us now turn to Littlewood-Paley theory.

When u is harmonic on R%*!, we define the following:
u*(x) = sup |lu(,t) (xeR?

|x=yl<t

S@)(x) = ( ﬂ.. £ "Vu(y, r)|2dydr>*

. —n t An ) 3+
gr(x) = (J‘J\R';” t! <|x——);|_—i:—t> |Vu(y, )| dydt)

Muckenhoupt and Wheeden [10] used the function T,, to study g¥. We shall
see how our generalisation of Carleson’s inequality may be used instead. We
shall in fact show how to adapt the method for the S-function in [5] to apply
to g¥. See also [1] and [7] for the theory of the S-function.

PrCPOSITION 6. Let A> 1, p=2/4, and u be the Poisson integral of f € L*(R").
Then



AN INEQUALITY FOR MEASURES ON A HALF-SPACE 97

g W>a}l < Cpa? j Blu*> Bl df+C,a~? f " gt > Bldp

Proor. Let a>0. By Whitney’s lemma ([12, p. 167]), there is a family of
cubes {Q;} so that
(@) UQ;={M((u*)?)>ar}
(i) 1/1Q fo, (W*)P~ar

(i) 219 = Co™Plu*|?
(iv) When K>1 is a fixed constant,

— (u*yP < Ca?
19,1 Jko,

(v) Each 4Q); intersects {M ((u*)?)<a?}.
Now for x € R”, let T, (x)={(y,?): |x—y|<it}. Write

(gXw)* = ”;ﬂm = hi+h,

where B=U,,yq T (x). It is h, that is the interesting term for us.

Jous™
(Uoy

as in [5, pp. 162-163]. Now decompose h,=3; h} being the contribution from
{(y’ t): Y€ Q]}

Geometrical considerations and (v) show that

/ t An
W, (X) =< J‘J‘ tl‘n(______) Ivu ot 24vdt
i Q,;%[0,K side Q] [x—yl+t 0, 01" dy

Suppose now x e (2Qj)c, and )’ is the centre of Q; and (tVu)f denotes
SUP|x— <4 [tVul. Then

lIA

Cﬂ t\Vu(y, )2 dy dt
B

a
Co?|u* > q +J tu* > t|dt
0

lIA

. C
h(x) < ———"H "L y(y, 02 dy dt
2 Ix—y1*" JJ g,x[0.k side 0 4 Y
Apply lemma 1 part (i) with ¥ =|tVu|** and du=t*"1""dydt, and 0= A.

; C A
05 [, 07407

However (tVu)} < Cu* ([12, p. 207]). Inserting this in the above, and using (iv)
gives

Math. Scand. 44 — 7
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: C
h(x) £ —5 10 .

|x —y/|*"
So

j h(x) £ CIQ'HQ,i*? = Ca?Q)]
(20
Summation over j yields
J h, £ Ca? Y |Q)| = Ca?|Mu*)?>o?|
(U29)x

All in all,

j (gfw) = C[azlu*>al+r Blu* > Bl dﬁ]
U20 0

Note
u*>a} < (M@*P>or} and |U2g) S CY1Q|

However

IMP>a| < Ca"j |P|
|®] > 4a

by standard estimates for the maximal function. So

lu*lP = Ca_"j pr~"|u* > pldp

IMu*P>af| < Ca'pj
4a

|u'1">%a"

This, Chebyshev’s inequality, and (iii) gives

gt >al < c[«rz J " Bur>pldp+a? K ﬁ"“lu*>BIdﬂ]

0

as required.

Simple integration shows that proposition 6 includes all the standard results
for g*,e.g. ue H? (O<p<2)and A=2/p implies g¥(u) is of weak-type L”. It can
also be used to prove some new results, e.g. let A=2/p, 1< p <2, and suppose
fe L?log* L. Then g} (u) is locally L. Note the air on the g-function of [4]
demonstrates that g*(u) could not be globally L”.

The final part of this paper consists of a brief note on “restriction”

phenomena.
It is well known that many of the results of classical harmonic analysis carry
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over to appropriate weighted function spaces. We indicate a weighted version
of one of the results in [11].

Recall that w>0 is in 4, if Mw=<Cw.
w>0isin 4, (1<p<oo) if

(L f w)<i f w—q/»)”’"<c for all cube
1 Jo il |, =< or all cubes Q ,

where g=p/(p—1). See [3] or [9] for information.
Notice that a function w(x) on R is in A, if and only if w(x,y) =w(x) is in A,
on R2,
PRrROPOSITION 7. Let
R* = {(x,»): x,yeR}, R!={(x,0): xe R} < R2.

Let 1 <p<oo. Suppose w(x,y)>0 is a weight independent of y and w belongs to
A, Let fe L*(R*,w) and g=G, f where G, is the Bessel potential of order a,
(see [12, p. 132]). Suppose a>1/p. Let

B(x,h) = {Ze R* : |x—Z|<h}
Then
(Mg)(x) = sup ——— lgl
: o<het IBOGAN J pen
is finite almost everywhere in R! and

IMsgllr®wy < ClISf LRz, w)
DEFINITION. A function g is strictly defined at Z e R? if

lim ——— g
£—+0 IB(Z’ 8)' B(Z,¢)
exists.

ProposITION 8. Under the hypotheses of proposition 7, g is strictly defined
almost everywhere in R', and the “restriction” R(g) satisfies

IR@Iewwy) = ClS lere,w)

PROOF OF 7. Assume a<1. The inequalites for G, in [12, p. 132] show
M,G = O(e~“) as |x| —» oo

1
= 0(@-_—‘) as le -0
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Let (x,0) € R!. We have

(Mg)(x) = ((M,G,)*|f|(x,0)
But

((M,G) *f)(x,0) = J(J (MG, (x—x!, —y)f (x',y)dx')dy

Let M denote the maximal operator acting in the x variable, and let f, denote
the map x — f(x,y). Then the above estimates for M, G, as [x| — 0 or oo give

Myg)(x) = C JM () (x)h(y) dy
where h=0 satisfies
h(y) = 0(e™P)  as |y - oo
h() = O(yI*™") as |yl — 0
Minkowski’s integral inequality yields
”Mlg”L"(R,w) =C J‘"M(fy)”L"(R,w)h(y)dy
Set g=p/(p—1) and apply Holder’s inequality:

IMiglr@rw = Clhllwy (J(fley(X)I”wdx>dy>

However |h| gy <00 if a>1/p. Also, by Muckenhoupt’s weighted maximal
theorem ([3], [9]), we have

JIMfyl"wdx =C ~[Ifyl"wdx.

All in all,

IA

IMgllrrw = C(H L, (x)IPw(x) dx dy

Clf lrre,w)

All that remains to be done is to remove the restriction a < 1. To perform this
in general, suppose a>1. Then choose a' so that ' <1 and «'>1/p. Now

Ga = Ga’ *Ga—a’

by the semi-group property of the Bessel potentials. Further
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(Go—oxf) = C(f™)
where f* is the usual maximal function in two variables. Remember o« < 1. So
1Ga*f lr@,w) £ ClGa—o*flrre,w)
S Clf *llerwe,w
Cll f e (r2,w)

IIA

by the weighted maximal theorem.

Proor oF 8. This is now straightforward. Let ¢ >0, and write f=f, + f, where
/1 is smooth and of compact support, and | f, || LPR?, W) <&
G,*fis clearly smooth and so strictly defined everywhere. So
1 1
g— g
IB(x, 3)| B(x,6) [B(x,0")| B(x,5")

= 2M, (G, +fy)

A(x) = limsup |—

8,6'—0

which has L?(R!,w) norm less than Ce by proposition 7. Therefore
my{A(x)>a} < Cea™ (a>0)

¢>0 being arbitrary we have m,{A(x)>a}=0, which means A=0 almost
everywhere in R!.
Now clearly |Rg|<M,g where R is the restriction. So

“Rg“LP(R w) = C||f“u'(r(2 w)
by proposition 7.

Of course analogous results may be formulated for restriction to R™ of
functions on R", where the weight depends only on x,,...,x,. The critical
relation then is a> (n—m)/p.

REFERENCES

1. D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral,
Studia Math. 44 (1972), 527-544.

2. L. Carleson, Interpolation of bounded analytic functions and the corona problem, Ann. of Math.
76 (1962), 547-559.

3. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular
integrals, Studia Math. 51 (1974), 241-250.

4. C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970),
9-36.

5. C. Fefferman and E. M. Stein, H” spaces of several variables, Acta Math. 129 ( 1972), 137-193.



102 S. R. BARKER

6. T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc.
London Math. Soc. 20 (1970), 749-768.

7. R.F. Gundy and R. Wheeden, Weighted integral inequalities for the non-tangential max-
function, Studia Math. 49 (1973), 101-118.

8. L. Hormander, Lp estimates for (pluri) sub harmonic functions, Math. Scand. 20 (1967), 65-78.

9. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer.
Math. Soc. 165 (1972), 207-226.

10. B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the Littlewood—Paley
function g¥, Trans. Amer. Math. Soc. 191 (1974), 95-111.

11. E. M. Stein, The characterisation of functions arising as potentials II, Bull. Amer. Math. Soc. 68
(1962), 577-582.

12. E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton
Mathematical Series 30), Princeton University Press, Princeton, 1970.

13. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton
Mathematical Series 32), Princeton University Press, Princeton, 1971.

WOLFSON COLLEGE,
OXFORD, UK.



