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ON THE BURNSIDE RING AND
STABLE COHOMOTOPY OF A FINITE GROUP

ERKKI LAITINEN*

0. Introduction.

In this paper we study the connection between permutation representations
of finite groups G and stable cohomotopy of the classifying space BG,
analogous to the connection between the character ring of G and the K-theory
of BG.

Suppose S is a finite G-set. Each ordering of S gives a homomorphism g:
G — X5, where X, denotes the permutation group in n letters and |S]| is the
cardinality of S. Different orderings give conjugate maps, as do isomorphic G-
sets. Hence the homotopy class of Bg: BG — BX|5 only depends on the
isomorphism class of S.

The disjoint union [1,5,BZ, is a monoid and its group completion 2B
(L,»0BZ,) is homotopy equivalent (as an H-space) to the space QS°
=lim,_, Q"S" of stable self maps of spheres. Let i:]1,>,BZ, — 0S° be the
resulting H-map and form the composition

aG(S): BG - BZig— || B2, - Qs°.
n=9%

Disjoint union and Cartesian product turn the equivalence classes of G-sets into
a semiring, whose associated ring is the Burnside ring A(G) ([17], [7]), and the
correspondence S — og(S) defines an additive map

ag: A(G) — [BG,QS°] .

[BG,QS°] is by definition the stable cohomotopy n§(BG).
The space QS° admits besides the loop addition the smash product,
" homotopic to the product given by composition of maps. If 11,5, BZ, is
equipped with the monoid structure induced from the homomorphisms 2,
x X, — Z,m then i respects both structures and o is a ring homomorphism.
The space QS° splits into a disjoint union of homotopy equivalent spaces
0,8°, n € Z, where Q,S° denotes the subspace of degree n maps. Thus we have

* Partially supported by “Nordisk Universitetsstipendium” at Aarhus University.
Received March 3, 1978.



38 ERKKI LAITINEN

an augmentation [BG,QS°] — Z. Taking cardinality of G-sets defines an
augmentation of A(G), and oy is clearly augmentation preserving. The (n+1)-
fold products become trivial on the n-skeleton B,G, so ag factors as

ag: A(G)/I"*(G) — [B,G,QS8°] .
Passing to the limit we get a map from the I(G)-adic completion

dg: A(G) - lim[B,G,QS°] = [BG,Q5°]

(the last isomorphism follows from the finiteness of [B,G, 0,S°]).
The map d; is analogous to the isomorphism from the completed
representation ring R(G) to K(BG) [1], and some time ago G. Segal made the

CONJECTURE. &g: A(G) — [BG,QS°] is an isomorphism.

The full conjecture seems very hard and is probably out of reach at the
moment. In this paper we study the injectivity of dg.
First we reduce the problem to p-groups by showing

THEOREM A. If dg, is injective for the Sylow subgroups Gp of G, then dg is
injective.

This is proved by showing that A(G) embeds into @,4(G,) via the
restriction maps, and compatibly with BG, — BG.

For cyclic groups the natural map A(G) — R(G) is injective, and using
Atiyah’s result, R(G)= K*(BG), we deduce

THEOREM B. 4 is injective for cyclic groups G.

One cannot hope to detect the maps ag(x): BG — Q,S° for x € Ker (4(G)
— R(G)) by K-theory, since the space Q,S° splits as J x cok J with cok J a K-
theory point, and at least for groups G of odd order [BG,J] embeds into
[BG, BU x Z] = R(G). By studying induced maps in homology we prove

THEOREM C. 4 is injective for elementary abelian groups G = (Z/p)".

For Theorem C we need an induction machine, which tells that if ay is
injective for all genuine subgroups H of a p-group G and furthermore ag is
injective on a specific summand Zx < A(G), then dg is injective. It is the maps
og(nx) that induce nontrivial maps in Z/p-homology. We show even more: one
gets a host of homologically distinct elements B((Z/p)") — cok J, for n=2.

»e
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TueoreM D. If G=(Z/py', and Ay(G)=Ker (A(G) — R(G)), then 4 maps
A,(G) (24,(G) if p=2) injectively into [BG,cok J ].

We note that Theorems A and B combine to show that dg is injective for the
groups with cyclic Sylow subgroups. They are all metacyclic. Theorem C
enlarges the class of groups for which dg is injective to include e.g. A, the
alternating group on 5 letters.

The smallest groups we cannot settle with our method are Z/4 xZ/2, the
dihedral D8 and the quaternionic Q8 of order 8. For these groups the maps
ag(nx) induce zero both in homology and K-theory. One wonders if connective
K-theory or unitary bordism theory could settle these cases.

The representation ring R(G) and K-theory K(X) admit the structure of a -
ring. Atiyah, Tall and Segal [3], [4] have explored the algebralc nature of such
rings showing that one gets exponentlal isomorphisms g,: 1(G) =- 1+1(G)
for any p-group G, and KSO (X ) —=- (1+KSO (X)) for any finite complex
X, where ~ denotes the p-adic completion.

Now A(G) has also Z-operations, yielding A-operations on stable
cohomotopy n(X)=[X,0S°], see [19]. Unfortunately the J-ring A(G) is not
“special”, and this breaks down the algebraic program above. However, it is
interesting to identify the maps g,: 005°— SG,. We give a character argument
to show

THEOREM E. g,: QoS° — SG, is the composition QoS° > J, -2 SG,.

The paper is divided into 4 sections. The first contains generalities on the
Burnside ring: its characters, functorial properties and topology. The main
theorem is 1.15 which shows that A(G) is detected by p-groups.

In section 2 we study the A-ring structure of 4(G) and note that the natural
map A(G) — R(G) is a A-homomorphism. We describe the characters of the
associated operations A", " and g,, we show they induce operations in the
(zero degree) stable cohomotopy n$ (2.12) and prove Theorem E (2.20). The
characters of A" and y" were obtained independently by C. Siebeneicher [20].

The third section is devoted to the study of d; and contains the proofs of
theorems A and B (3.2 and 3.3). We set up the induction machinery needed to
prove theorems C and D in section 4 (4.15, 422 and 4.23).

The author wishes to express his gratitude to Ib Madsen, who introduced
him to the subject, and helped in all possible ways. He also benefited from
discussions with Jergen Tornehave.

1. The Burnside ring.
Let G be a finite group. A G-action on a finite set S is a homomorphism from
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G to Zg, the permutation group of S. A G-set is a finite set with a G-action. Two
G-sets S and T are isomorphic if there exists a G-equivariant bijection f:
S — T, or in other words if the diagram

commutes. The equivalence classes of G-sets form a commutative semiring
A* (G) under disjoint union and cartesian product. The associated ring A(G) is
called the Burnside ring of G.

The additive structure of A(G) is easily described. Breaking G-sets into G-
orbits one sees that A(G) is a free abelian group with basis consisting of cosets
G/H, one for each conjugacy class of subgroups H of G. We fix a set C(G) of
representatives.

For the multiplicative structure we introduce characters, following
W. Burnside (who called them marks [5 p. 236]). Let H be a subgroup of G
and S be a G-set. Then we set

(1.1) u(S) = IS7],

the number of elements in S fixed by H. The character yy extends to give a ring
homomorphism

xu: AG) - Z.
On the additive generators of 4(G) we have
11, (G/H,) = |{gH, | H\gH,=gH,}| = |{gH, | g~ 'H,gcH,}|
or
(1.2) 1u,(G/Hy) = {gH, | HicH,}|.

This shows that yy depends only on the conjugacy class of H.
The homomorphisms yy define together a homomorphism

 AG Z.
X ()ﬁc%

The first statement of the following theorem is due to W. Burnside [5] and
the second one to A. Dress (unpublished, cf. [7]).

THEOREM 1.3. The homomorphism x: A(G) — @c()Z is an embedding with
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finite cokernel. Its image consists of families (dg)gecc) Satisfying the
congruences

dg = — Y o(K/H)dgx (mod|Ng(H)H|)
H<K=G
K/H cyclic#1

where we set dy=dg for K~K’' € C(G) and ¢ is the Euler function.

Proor. To prove the injectivity, it is enough to show that non-isomorphic
G-sets S and T cannot have the same characters. Write S=3) myG/H,
T=Y nyG/H with H running over C(G) and let H, € C(G) be maximal with
respect to my_+ny . Note from (1.2) that yy (G/H3) is non-zero if and only if
H, is conjugate to a subgroup of H,, denoted by H, SH,. Then

1u,(S) = my xu, (G/Ho)+ Y myxy,(G/H)
HoSH,H4+H,

and

xu,(T) = nyxu,(G/Ho)+ > nyxu,(G/H)
Ho<H,HAH,

are different as the sum terms coincide but my +ny .

Let S be a G-set. We want to show that the numbers yy(S) satisfy the
congruences for each subgroup H. If H <K then the K-fixed points of § are
contained in the Ng(H)/H-set S¥ so that we are reduced to the case H=e..By a
theorem of W. Burnside [5 p. 191] |G|™' X, |S?l is an integer, namely the
number of G-orbits in S. This implies the congruence

ISl=28) = =Y xp® =~ ¥  o(K)k(S) (mod|G))

g¥1 KZG cyclic#1

where ¢(|K]|) is the number of generators in K.

Conversely, we construct x € A(G) with given characters (dy) by adding
increasing orbits. Start with dg points with trivial G-action. Choose a total
order on C(G) extending <. Assume we have y € A(G) such that yy(y)=dy for
H greater than H,,. Since the characters of y and the numbers (dy) both fulfil
the congruences, we have

X1, ) = dy, (mod [Ng(Ho)/Hl) ,

say dy = xn,(y)+nlNg(Ho)/Hol. We add n copies of G/H,, to y. This does not
change the earlier adjusted characters, but

xu,0+nG/Ho) = xy, () +nNg(Ho)/Hol = dy,
by (1.2). This completes the induction.
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Finally y has finite cokernel since @ |G|Z<Imy by the congruences. The
theorem is proved.

Remark. In [17] G. Segal defined a ring w@ in terms of equivariant stable
homotopy. It coincides with A(G) as both are characterized by theorem 1.3.
For a proof and generalization to compact Lie groups, see [16, Theorem 3].

If f: H — G is a homomorphism of finite groups, then the pull-back f*S of a
G-set S has the same underlying set with H-action

H-L G- Zg.

The induced maps f *: A(G) — A(H) make A into a contravariant functor. The
characters of f *x are

(1.4) w(f*x) = r;wx), U=H, xe A(G).

In the special case of a subgroup i: H — G we call i* the restriction
homomorphism, and denote it by Res§.

There is also a covariant induction homomorphism Ind§; or f, for inclusions
of subgroups f: H — G. On the coset basis it is given by

Ind§ (H/H,) = G/H,, H,SHZG
It is easily checked from (1.2) that the characters of f,y are

(1.5) wfi) = Y xw), UZG, ye A(H)
Ut<H

where g runs through representatives of G/H.

The homomorphisms Res and Ind are related in the same fashion as the
restriction and induction maps in representation theory or cohomology of
finite groups. If H is a subgroup of G, then the Frobenius reciprocity

(1.6) Ind§ (y-Res§ (x)) = Ind§(y)'x, ye A(H), x € A(G)

holds. Further, if K is another subgroup of G, let Kg,H,...,Kg,H<G be the
double cosets of Gmod (K, H). Then we have

(1.7) ResfIndf(x) = ¥ Indfngug(cgResfliggnu(x),  x € A(H)

i=1

where c,, is conjugation by g;. The proofs of (1.6) and (1.7) are analogous to the
corresponding formulas of representation theory.

Each G-set S can be considered as a linear representation of G over a field k
by extending the G-action on the canonical basis of k® by linearity. As the trace
of a permutation matrix is equal to the number of 1’s along the diagonal, the
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linear character of k° can be read off from the characters yy of (1.1) for H
cyclic:
xis(8) = x> (S) -

If k has characteristic 0, then the elements in R,(G) are detected by their linear
characters. We conclude from theorem 1.3

LemMaA 1.8. Let k be a field of characteristic 0. Then the kernel of the natural
map A(G) — R,(G) coincides with the kernel of the restriction map
Res: A(G) > @ A(C)
CZ6
to the cyclic subgroups of G.

In Segal’s conjecture the Burnside ring A(G) is compared with the stable
cohomotopy ring nd(BG). As the latter is complete (see section 3), we study
here the algebraic process of completing A(G).

The character y, just counts the number of points in a G-set and defines an
augmentation ¢: A(G) — Z. This is a split surjection so A(G)=Z®I(G) where
I(G) is the augmentation ideal ¢~ *(0).

We give the ring 4 (G) the usual I(G)-adic topology, letting the powers I(G)"
be a neighbourhood basis of 0. The completion of 4(G) is defined as the inverse
limit

A(G) = lim A(G)/I(G)" .

We shall study the kernel of 4(G) — A(G). First we recall a result from
commutative algebra (see e.g. [22 p. 262, Corollary to Theorem 8]). Let 4 be a
Noetherian ring with no nilpotents and m < A4 a prime ideal. Then the kernel of
the natural map from A to the m-adic completion 4=lim A/m" is

Am = p;
n=0 pj+m+A4
where p; runs over such minimal prime ideals of A that p;+m=+ A.
The ring A(G) is Noetherian as a finitely generated abelian group. A. Dress
determined in [7] the prime ideal structure of A(G). There are two types of
prime ideals in 4(G): the minimal ones

Pu.o = {x € A(G)| xy(x)=0}
for UG, and the maximal ones
Pu., = {x € AG)| xy(x)=0 (mod p)}

for USG and p a prime. Furthermore,
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Pu,o = Pyo ifandonlyif U~V,

19
4 Pu,p = Pr,g if and only if p=q and U~ V?

where U? is the smallest normal subgroup of U with U/U? a p-group, and py
cpy, , together with (1.9) accounts for all inclusions between prime ideals in
A(G).

PROPOSITION 1.10. The kernel of A(G) — A(G) coincides with the kernel of the
restriction map

Res: A(G) — G(—{;—)G A(G,)

to the Sylow subgroups G, of G.

Proor. It follows from the above that the kernel is

00
N 16y =
n=0 Pu.0+1(G)+A(G)

Now I(G)=p,,, and if the ideal py o+ P, o is proper then it is contained in a
maximal ideal py, ,. By (1.9) this implies that py ,=p, ,=py,, hence UP=e
=V?and U is a p-group. Conversely, if U is a p-group then py o+, 0<Py,
Thus

Ker (A(G) —» A(G)) = N Kerxy ,
U £G p-group

and the claim follows from theorem 1.3.
COROLLARY 1.11. If G is a p-group then A(G) — A(G) is a monomorphism.

In the case of a p-group G the I(G)-adic completion is the familiar p-adic
one:

AG) = Z8®(2,8;1(G)

where 2p=lim Z/p" denotes the p-adic integers:

n

ProposiTION 1.12. If G is a p-group then the 1(G)-adic topology of A(G) is the
same as its p-adic topology.

Proor. We have to prove that for each m there are integers n,,n, such that
(1) p"1(G) = I(G)"
) 1(G) < p"I(G) .
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The first relation follows from Atiyah’s
LemMa 1.13. For any group G, |GII(G)"<I(G)"*.

(This is a consequence of the reciprocity formula 1.6, see [1p. 269,
Proposition 6.13]).

To get the inclusion (2), we note that for any H<G and ULG
xv(G/H—|G/H|) = 0 (mod p)

since the complement of (G/H)U consists of non-trivial U-orbits, hence
xuv(I(G))=pZ. As x=@®y<c v is a ring homomorphism we have x(I(G)")<
@.+v<cP"Z and it is enough to prove

e*@agc IGIZ = 2(1(G)) .

This follows immediately from the congruences 1.3. The proof of 1.12 is
complete.

The completion A (G,) is now described for p-groups G,. Next we shall show
that if G is an arbitrary finite group, then 4(G) embeds into the sum @ 4 (G,
taken over the Sylow subgroups G, of G. This is done by completing the map
of proposition 1.10.

Let A be a Noetherian ring and mc A an ideal. The m-adic completion of a
finitely generated A-module M is defined to be M =lim, M/m"M. It is a basic
fact that Noetherian completion is an exact functor'_[l p. 258, Proposition
3.16].

If H <G, then A(H) is an A(G)-module via the restriction homomorphism g
=Res§: A(G) —» A(H). In the following proof we distinguish the prime ideals
Pu», of A(H) and A(G) by upper indices, so that pfj ,= A(H) and p§ ,< A(G).

ProrosiTiON 1.14. Let H be a subgroup of G. Then the I1(H)-adic topology of
A(H) i$ the same as its I1(G)-adic topology.

Proor. It is enough to show that the radicals of the ideals ¢(I(G)) and I(H)
coincide [22 p. 256]. This means that each prime ideal p = A(H) either contains
the both ideals or none. Since ¢(I(G))=I(H), one way is trivial. Let p be a
prime ideal of A (H) with ¢(I(G)) = p. We claim that I (H) < p. We know that p is
of the form pf o or pf , with some subgroup U<H and some prime p. If
p= Pg.o’ then

pSo =1(G) < ¢"'(p) = p§.0
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which implies U=e and p=pH =1(H) by (1.9). Similarly, if p=p5,‘,, then

péo = 1(G) = o7 (p) = p§,

and U must be a p-group by (1.9), whence p=p{ p=p£ » In both cases I(H)
cp, are claimed.

TuEOREM 1.15. Let G be a finite group and {G,,} its Sylow subgroups. Then the

completion of the restriction maps Resgp gives an injective homomorphism

0 A(G) > @ 4G, .

Proor. By 1.10 A(G)/NX,I"(G) maps injectively into @ »A(G,). Both
modules have I(G)-adic topology by 1.14. The claim follows since Noetherian
completion is an exact functor.

We close the chapter with some examples. The first two are abelian p-
groups. The last one illustrates the restrictions to Sylow subgroups and
completion.

ExampLE 1.16. The cyclic group Z/p". It has a unique subgroup of order
p" ™ 0=m=n. Let 5, be the quotient (n,=1). We have additively
AZ)p" = ZDZn,®... DLy, .
From the characters

( )_ Pm, lén_m
Xzjp'"m) = 0, i>n—m

one gets the multiplication 7, ‘1,,=p',, for ISm.

ExampLE 1.17. The elementary abelian group (Z/p)". It can be interpreted
geometrically as a vector space over the finite field F, with subgroups
corresponding to linear subspaces. The number of m-dimensional planes is

@"-DE"-p) ... @"—p""")
@"-DE"-p)... E"—p"")

_ @"-HE"'-1)... (""" -1)
@"-nE" ' -1)... (p-1)

(G stands for Grassmann). A((Z/p)") is additively generated by the m-

G(m,n) =
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dimensional quotient planes n\,, 0<m<n, 1 <i< G(n—m,n)=G(m,n), and

Fo/VixFp [V, = |F/Vi+Vo[Fp/Vi NV, .

ExampLE 1.18. The alternating group A,. The diagram of subgroups is

As

/

Z20Z/)2

Z/3~Z/3~Z/3~Z/3

Z2~Z/2~Z)2

\e

and the character table is given in table 1.19 where the small letters 1, a, b, c,
and d denote the cosets A,/H in the given order.

Table 1.19.
XH
A, H A, Z2®Z)2 Z/3 Z)2 e
1 1 1 1 1 1
a 0 3 0 3 3
b 0 0 1 0 4
c 0 0 0 2 6
d 0 0 0 0 12

The Burnside rings of the Sylow subgroups of A, are described in the
preceding examples:

A(Z2@ZNR2) = ZOZni®Zni®Zni®Zy,
AZ]3) = Z@ZE.

The restriction map A(G) — A(G,)®A(G,) is read from the character table
using (1.4) xg(i*x)=xy(x). The result is

1—- (1,1) .

a— 3,9 a; - ©,9)

b - (’,29 1 +€)’ or bl - (ﬂz,O)

¢ — (ni+ni+n3,28) ¢r — (11 +1i+11,0)

d i (3',2: 45) dl - (O, 0)
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in the basis a,=a—3, by=b—a—1, ¢c;=c—2a, dy=d-3b—a+3 for I(A,).
Here x denotes x—e&(x) € I(G,). This shows that the image of A(G) in
A(G,)®A(G,) consists precisely of the stable elements. These are the pairs
(x5, x3) with

(1200 (1) e(xx)=¢(x,)
() xm,(x)=1u,(x,), if H <G, and H,<G, are conjugate in G.

The condition (2) rules out n}, n? and n] since they have different characters on
the three Z/2<Z/2@®Z/2 which are conjugate in A,.

It might be interesting to know whether (1.20) characterizes the image of
A(G) in @, A(G,) in general. If the Segal conjecture A(G)=n2(BG) is true, then
this holds at least on the completion level by general properties of cohomology
theories on BG (see [11, 1.7]).

Finally, the multiplication table for I(A,)

I a, b, ¢ d,
a, |-3a, 4, 0 —3d,
b, _4b, —d, —de, —d,
Cl 6b1—-106‘1 +2d1 0
dl 3d1

shows that A(G)=Z@®Z,a,®2,b,®Z,c, and I(G)*=Zd,.

2. J-Operations on the Burnside ring.

Let G be a finite group. If k is a field and V is a representation of G over k
then the exterior powers A"V are also G-representations. We want to construct
operations in 4(G) which under the natural map 4(G) — R,(G) correspond to
the exterior powers. As it is not clear how to make sense of the relation x A y
=—y A x in a G-set, we consider first the symmetric powers s"V where no
signs are needed.

Let S={s,,...,5,} be a G-set. The vector space s"(k) has a basis consisting
of monomials of degree nin s; € s' (k%), considered as elements of the symmetric
algebra s(k%). We define the nth symmetric power of S as

s"(S) = §%/Z,
with the diagonal G-action. It is clear that

(2.1) s'(S) =S

(2.2) sS"SUT) = i s (S)s"~Y(T) .
i=0
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We assign to S the formal power series

2.3) s(8) = 14+ Y s"(S)" e AG)[[c]] -

nz1
It is invertible as the leading coefficient is 1, and (2.2) shows that s;(SUT)
=5,(8)"s,(T). The homomorphism s, is uniquely extended to A(G) by 5,(8—T)
=5,(8)"5,(T)™"
In the representation ring R, (G) the symmetric powers are connected to the
exterior powers by means of the identity

A(Ms_ (V) = 1.

Thus we are lead to

DEFINITION 2.4. The nth exterior power of x € A(G), denoted by A"(x), is the
coefficient of ¢" in the series 4,(x)=s_,(x)"'.

The formulae (2.1)-(2.3) translate to give
(2.5) (i) 2°kx) =
(i) Al(x) = x

(iii) A"(x+y) = Z A)A"H) .

This is summarised in saying that the operations A", n>1, give A(G) the
structure of a A-ring [4]. By construction they are natural with respect to
induced maps, and 4(G) — R,(G) is a --homomorphism.

We shall calculate the character of A*(x), xy(4"(x)). By (2.5) and naturality it
is enough to consider a single G-orbit x=G/H. A point (s,,. . .,s,) € (G/H)"/Z,
is fixed under G only if it can be split up to G-orbits G/H. This implies that n is
a multiple of |G/H|, and

0, n=%0 (IG/HJ)
1, n=0 (|G/H)).

Thus x6(s,(G/H))= (1—1%Hl)=! For a subgroup U of G we can break up S
into U-orbits US; so

2.7) w@) = JI (1= (=sh.

S;< 8 U-orbits

26) 16(5"(G/H) = {

In particular the degree of yy(4,(8)) is equal to |S|, hence 1*(S)=0 if n>|S].
Also &(4,(5)) = z(4(s)= (1 +1)5. Thus A(G) is a finite-dimensional augmented
A-ring.

Math. Scand. 44 — 4
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We define the Adams operations y": 4(G) —» A(G), n=1, by
A (x)
,  Wwhere = "(x)t" .
e b = T 9
Then (2.5) implies that " is additive, Y"(x+y)=y"(x)+y"(y). As to the
characters, the logarithmic differentiation of (2.7) yields

wWX) = Y SIS —d¥)7

S;= S U-orbits

V_(x) = —t

This proves

PRrOPOSITION 2.8. xy(Y"(S)=Xs, | nlSi, where S =US,; the decomposition
into U-orbits.

COROLLARY 2.9. The Adams operations are periodic of period dividing the
order of G.

(Indeed, the length of each U-orbit U/H is a divisor of |G]).
If G is a p-group and (n, p)=1, then the only orbits occuring in 2.8 are the U
fixed points. This proves

CoROLLARY 2.10. If G is a p-group, then Y"=id for n relatively prime to p.

The operations A" have geometrical significance: they induce natural
transformations of n2, the zeroth stable cohomotopy functor.

First recall the Barratt—Quillen theorem. The group completion map i:
11,>, BZ, — QS° gives a natural transformation of monoid-valued functors

[X, LI BZ,,] — [X,08°].
nz1

Here A(X)=[X, 1,5, BZ,] is the set of isomorphism classes of finite coverings
of X organized to a semiring under disjoint union and fibrewise cartesian
product of the total spaces, and n3(X)=[X,QS°] is the stable cohomotopy of
X (in degree 0), an abelian group with respect to loop sum. The group
completion theorem states [18, Proposition 4.1]

THEOREM 2.11. The transformation A — = is universal among transfor-
mations 0: A — F, where F is a representable abelian-group-valued homotopy
functor on compact spaces, and 0 is a transformation of monoid-valued functors.

We deduce from this the existence of A-operations on =g along the lines of
Segal [19].



ON THE BURNSIDE RING AND STABLE COHOMOTOPY OF A FINITE GROUP 51

THEOREM 2.12. There are natural transformation A*: n§ — ng for n=0, such
that

(i) A°(x)=1
(i) A(x)=x
(i) A"(x+y)=2" o A()A"E(y).

Proor. We define a transformation A": A(X) — n(X). Assume X is
connected. An m-fold covering Y | X can be written as P x y [m] | X, where P
is the principal X ,-bundle associated to Y consisting of mappings of [m]
=(1,2,...,m)onto the fibres of Y, and [m] has the usual X -action. Let 1"*([m])
=§—Te A(Z,). We associate to Y | X the difference

YY) = sz S—Pxx T € nd(X)

where we have used 4 — =g from 2.11.
Let us form the mapping

b= Y 2 AX) - 14Ot = T »3x

n=0 n=1

It is a monoid homomorphism, when we use multiplication of power series on
the right. As 1+#n2(X)[[t]]" is a representable abelian-group-valued functor,
1, extends by theorem 2.11 to a group homomorphism

A m§(X) — 1+mg (O™ -

This completes the proof of theorem 2.12.

In the articles [3] and [4] Atiyah, Tall and Segal showed that special p-adic
A-rings possess certain canonical exponential isomorphisms between the
additive group I(G) and the multiplicative group 1+1(G). Unfortunately the
Burnside ring A(G) is special only if G is cyclic: The Adams operations " are
ring homomorphisms in special A-rings, but Siebeneicher showed that this is
not true in A(G) for any non-cyclic G [20, p. 232]. On the other hand, 4(G)
embeds as a sub-A-ring of R(G) if G is cyclic.

However, it is interesting to study the exponential map g,. We first do the
algebra and then identify the resulting geometric map Q,S® — SG[1/k] with
the composition

0,S° > Im J, % sc[ﬂ .

Philosophically this is a negative result: the A-operations on 4(G) do not give
any information on the fibre of e, the space usually denoted cok J,.
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Let G be a finite group. We shall encounter series of the form 4,(x)=1
+ Y a"A"(x). To show their convergence in 4(G) we introduce a new topology
on A(G). Define the Grothendieck operations by

(2.13) P'(x) = AM(x+n—1).
If y,(x)=1+3%,5, y"(x)t", then
(214) ')),(X) = 'lt/(l—t)(x)s V:(x+)’) = Yt(x)yt(Y) .

The y-operations are convenient on the augmentation ideal I(G) as the
generators G/H —¢(G/H) have finite y-dimension but infinite A-dimension. In
fact, (2.7) and (2.14) imply
wrS—e®) = [ [A=0%—(=1)5]
S;< S U-orbit
for any G-set S.
Define the y-filtration by

(2.15) I, is the group generated additively by y™(x,) ... y™(x,)
with x; € I(G), X n;=2n.

Then I,,-1,<1,,,,, Io=A(G) and I, =I(G). Thus the filtration (1,),>, defines a
topology on A(G), the y-topology.

ProposITION 2.16. If G is a p-group, then the p-adic, I(G)-adic and y-topologies
on A(G) are equivalent.

Proor. We proved in 1.12 that the first two topologies coincide. Atiyah [1,
Corollary 12.3] shows that the y-topology is equivalent to the I(G)-adic if I(G)
has a finite number of generators, each of finite y-dimension.

Let G be a p-group x € I(G) and a € Zp. Then the series 7y,(x)=1+
¥ .21 ™" (x) converges in the y-topology, hence also in A(G). More generally,
if ®€ A where 4 is a finitely generated Z,—algebra, then y,(x) exists in
1+1 (G)®2,A4. We fix a prime k different from p and apply this to A=2p[€],
where £ is a primitive kth root of 1.

DEerFiNiTION 2.17. Q,‘(x)=]'[,,n;ll A_(x), x € I(G).

A priori g, (x) belongs to 1 +1 (G)®2,[§]. But it is invariant under the action
of the Galois group of Q,(¢)/Q,, so actually g,(x) € 1+1(G).
We compute the character of g,(x). A substitution in (2.7) yields
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roleds—e) = TI (n u—u'si'))u—u)—m.
1:“‘:11 S;cS

As the sizes of the U-orbits S; are 1 or multiples of p and (k,p)=1, 1 —uS! runs

through the same values as 1 —u, when S, is fixed. Noting that [~ (1—u)=k
us1

we get

(2.18) xu(ex(S—e(9) = kou®) -

where oy (S) is the number of U-orbits in S.
Next we show that g, can be obtained by a direct operation on G-sets.

PROPOSITION 2.19. For a G-set S let 0,(S) be the underlying set of the vector
space F3 with the linear G-action extending the permutation of the basis. Then 0,
satisfies

@) 0,(S+T) = 0,(5)0,(T)

(ii) €0,(S) = k*®

(1ii) 0, is natural

(iv) 0,(8) = ﬂ1 A-u(S)
ufl

on A*(G).

ProoOF. Properties (i)-(iii) are obvious. To prove (iv) it is enough to check
xu(0.(S)) for U=G by naturality and for a transitive G-set § by (i). A point
3 esa.X, a, € Fy, is fixed under G only if it is of the form a3, g x, thus

26(6:(S) = |Fi = k
but x(IT4-.(S) =k =k.

RemaRrk. There is no problem about the convergence of A_,(S) in (iv), since
4,(S) is a polynomial.

We return now to the stable cohomotopy interpretation. Let p and k be
different primes. The operation 6,: A*(Z,) > A*(Z,) induces a natural
transformation 6,: A — A as in theorem 2.12: if Y | X is an n-fold covering,
write it as Y=P x y [n] with some principal Z,-bundle P and set 6,(Y)=P
x g, 6,[n]. By (2.19) (i) and (ii) the composite

A% 4 ng
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is exponential and maps n-fold coverings of X to the component [X, Q,.S°].

In order to apply theorem 2.11 the elements 6,(Y) € n2(X) have to be
invertible in the composition product, in particular the maps in Q,»S° must
have an inverse of degree k~". This can be accomplished by forming the
localization 1: QS° — QS of the space QS° at p [21, sections 2 and 4]. Denote
the 1-component of QS by SG,. Then the transformation

Q- A(X) - [XsSGp]
which takes an n-fold covering Y | X to
x4, .50 4, QeSS —+" SG

extends to a homomorphism

(*) e m§(X) - [X,SG,]

by theorem 2.11.

The restriction of (*) to &9 corresponds to an H-map g,: Q,S° — SG,,
defined up to homotopy. The space SG, splits as a product J p X cok J, (this
will be discussed in section 4), and we point out here

THEOREM 2.20. The map g,: QoS° — SG, factors Q,S° <> J, =~ SG,.
Proor. Compare proposition 2.19 to [14, p. 236].

The natural homomorphism A(G) — R(G) is a A-ring homomorphism. For
the elementary abelian groups its kernel is large. We evaluate the Adams
operations on A((Z/p)") in the concluding example.

ExaMPLE 2.21. Elementary abelian groups (Z/p)".

Let G=(Z/p)". Each generator G/H of A(G) is the image of the regular
representation under n*: 4(G/H) — A(G). By naturality it is thus enough to
find y*(n"), where we denote n,=G/e (see 1.17). From 2.8 we get

0, k%0 (mod|H|)

(W) = { n

» k=0 (modH)y =@

which depends only on the size of H. This suggests that we begin with the sum
of all cosets of cardinality p™,

M =2 fMm= 2 G/H
i \H|=p"~
which has the characters yy(n'")=0 if |H|>p"™™, xz/p" ™ (n'")=p™, and then
correct xy for smaller H by adding linear combinations of #°%,, k>0. An

inductive calculation shows that the element.
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n—m tot 1
(2.22) ap = 3. (-1)"p""*-”/26(k,m+k)Z:1ﬁeA(G)[;],
k=0

where G(k,m+k) is defined in example 1.17, has characters

(@) = 1, k=n—-m
X@/pfm) = 0, k#*n—-m.

By the first formula we then get

W) = Y pa,=p" Y (—D)OGkn—m+k—1n'%, .,
=n- k=0

if (p,h)=1,0<m<n and
Y n,) = p.

3. The map og.

In this section we study the injectivity of the map &g: A(G) — n3(BG) from
the completion of the Burnside ring of a finite group G to the stable
cohomotopy of its classifying space BG.

Recall the definition of a;. Each G-set S with G-action ¢: G — Zg gives rise
to a map a5(S): BG — QS° by

BG %% By n]élo Bz, - 0S°,
where i is the group completion map. The homotopy class of «;(S) depends

only on the class of S in A(G), and the correspondence S — ag(S) extends to a
ring homomorphism

ag: A(G) — [BG,QS°]

(by definition, n2(BG)=[BG, QS°]).
Alternatively, we can define og(S) as the image of the covering EG X S| BG
in n@(BG) (cf. 2.11). This is quite analogous to the homomorphism

«: R(G) — K*(BG)

studied by Atiyah in [1]:if ¢: G — Gl (n,C) is a complex representation of G,
then a(p) is the class of the vector bundle EG x (C",0) in K°(BG). It is no
surprise that a; and o are connected via the natural map A(G) — R(G):

ProvposITION 3.1. Let G be a finite group. Then the diagram

A(G) % n3(BG)

R(G) %> K*(BG)
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commutes, where e: QS° — BU x Z is induced from a unit of the unitary
spectrum.

PRroOF. Let S be a G-set of cardinality n, and let ¢: G — X, be its G-action. If
P:Z,— U, is the permutation representation, then a(S) and a(C%) are
represented by the upper and lower horizintal arrows in

BG 2, By, =, 0S° ¢ QSO

BG B2, By, — BUx (n) ¢, BUXZ

But the right hand squares commute [12, Corollary 5.31].

REMARk. We shall give in section 4 a closer description of the map e (see
4.18).

In section 1 we considered the I(G)-adic topology on A(G). If X is a CW-
complex with n-skeleton X", we filter n(X) by

(F) F'r§(X) = Ker (n§(X) — #§(X"™") .

Then F"-F"cF"*™ by diagonal approximation. J. W. Milnor’s original
construction of BG gave a CW-complex with finite skeletons B,G. As the stable
homotopy groups #3(S") are finite, so are the groups #3(B,G). Hence n2(BG)
=lim, n§(B,G), and n¢(BG) is complete in the filtration topology.

It follows from the definition that «g(I(G))=[BG, Q,5°]=F'n(BG), and
since o is a ring homomorphism, (I (G)") = F"n3(BG). Thus ag is continuous
and induces a homomorphism

dg: A(G) — n2(BG)

between the completions.

All the maps of 3.1 are continuous homomorphisms, when R(G) is equipped
with augmentation ideal topology and K*(BG) with a filtration topology
similar to (F). Passing to completions we have

A(G) %< nY(BG)
R(G) &> K*(BG)

The main result of Atiyah [1] states that 4 is an isomorphism. Therefore we
can conclude the injectivity of dg if 4(G) embeds into R(G). If G is cyclic then
A(G) — R(G) is injective by Lemma 1.8. If moreover the order of G is a prime
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power p", then the augmentation ideals of both rings have the p-adic topology
by Proposition 1.12 and [4, p. 277]. But then A(G) — R(G) is injective, since
the p-adic completion is an exact functor. We have proved

THEOREM 3.2. Let G be a cyclic group of prime power order. Then dg is
injective.

We can express theorem 3.2 by saying that the maps ag;(x) for cyclic G are
detectcd by K-theory. Indeed, the proof of 3.1 shows that a(x): BG - BUXZ
factors as

BG %%, 0s° ¢, BUXZ.

Since the map induced by a(x) in K-theory is non-trivial, if x +0, so must be
the one induced by ag(x), too.

Next we invoke theorem 1.15 to show that the injectivity of d; can be
deduced from that of &g, for all Sylow subgroups G, of G. Consider the
commutative diagram

A(G) — 3(BG)
Res
@ A(G,) 2% @ n3(BG,)

By Theorem 1.15, Res is injective. If the maps &g, are injective for all G,<G,
then &g must be injective. Hence

THEOREM 3.3. Let G be a finite group and {G,} its Sylow subgroups. If b, is
injective for all G,< G, then dg is injective.

Theorem 3.3 reduces the study of &g to p-groups G. First, we note

LEMMA 34. Let G be a p-group. Then dg is injective if and only if ag is
injective.

(Indeed, as 4(G) embeds into A(G) by Corollary 1.11, one way is trivial and
the converse follows since the p-adic completion is an exact functor and 1(G)
and 7ig(BG) both have p-adic topology, I(G) by Proposition 1.12 and #3(BG)
being profinite with BG p-local [21].)

The smallest non-trivial p-group is the cyclic Z/p, where we can apply
Theorem 3.2. Suppose inductively that ay is injective for all genuine subgroups



58 ERKKI LAITINEN

H of G. By naturality of « an element in A(G) which has a non-zero restriction
to some H <G, cannot lie in the kernel of ag. Applying Theorem 1.3 we get

LemMMA 3.5. Let G be a p-group. Suppose ay is injective for all genuine
subgroups H < G. Then og is injective on Ker yg.

To handle the rest, we have

PrOPOSITION 3.6. Let G be a p-group. There exists an element x € A(G) with
x¢(x)=p and yy(x)=0 for H<G. It is induced from an epimorphism G
- (Z/p)*.

Proor. The existence of x follows from the congruences of 1.3. However, we
prefer to construct it directly.

Let &(G) be the Frattini subgroup of G, that is, the intersection of all
maximal subgroups of G. We recall some elementary facts about ®(G) [8, III

§ 3]

1) (G)=G’[G,G],

2) #(G)<G and G/®(G) is a maximal elementary abelian quotient of G, say
(Z/p)?, and

3) the elements of @(G) are redundant in any set of generators for G.

One can also characterize the quotient G/®(G) as H,(G; Z/p). In A(Z/p)* we
write down the element

Y= p=n =+ (= 1)y,
(See example 2.21, y=pa, in (2.22)). If n: G — G/®(G) denotes the projection,
then n*(y) has the required properties. Clearly yg(n* ()= (xz/p()=p. If H
<G, then n(H)<(Z/p)* and xy(n*(¥)=Ya(»)=0. Indeed, if n(H)=(Z/p)’,
then H®(G)= G, which implies H= G by 3) above. This completes the proof of
proposition 3.6.

LemMA 3.7. Zx=Ny s KerRes§ and it is a i-ideal of A(G).

Proor. The second claim follows from the first, since the maps Res§j are -
homomorphisms. By definition Res(x)=0 for each H<G. For the other
containment suppose Resfj(y)=0 for each H <G; we must show 1) =0
(mod p). Let H <G be a subgroup of index p. As H < N(H), H must be normal
in G. The congruences of 1.3 become

0=x40) = —0@c(») = —(P—1)xs(y) (mod p)
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thus y;(y)=0 (mod p).
We are ready to state the final result.

THeOREM 3.8. Let G be a p-group. Suppose that

1) ay is injective for all H<G
2) ag is injective for the A-ideal Zx described in Proposition 3.6.

Then 4 is injective.

Proor. We first show that ag is injective on Zx@Ker y6. f m e Z, y5(y)=0
and ag(mx+y)=0, then also

0 = ag(mx+yag(y) = ac(?)

since xy =0 (all characters are 0). By Lemma 3.5 y?>=0, so y=0. Thus ag(mx)
=0 and m=0 by assumption 2).

Now any element in A(G) can be written as n+z with 0<n<p and
z € Zx®Ker y; since the latter ideal consists of z such that yg(z)=0 (mod p).
Suppose ag(n+z)=0, then

0 = ag(2ag(n+z) = ag(nz+z?

where nz+2*> € Zx@®XKer y;. From the above nz= —z2, and taking characters
we get
tg(z) = 0 or —n for all HLG.

As x(z) =0 (mod p) we must have y(z) =0. But then yy(z)=0 for all H<G: if
H <G is a maximal subgroup with yy(z)= —n then by 1.3

—n = yu(2) = =) ¢(K/H)xk(2) = 0 (mod |N(H)/H|)

which is impossible, since |[N(H)/H| is a positive power of p. Thus z=0 and
og(n)=0 implies n=degag(n)=0.
This completes the proof of Theorem 3.8.

4. Homological study of «;.

In this section we shall study the maps induced by ag(x): BG — QS° in
homology for elementary abelian groups G. As a corollary we get that .z, is
injective. We obtain also information relative to the splitting Q,S9=~J »
x cok J,. We suppress the index G and write « for ag.

Consider «(S) for a (Z/p)"-set S. The map « is additive, so we can restrict to
transitive sets: S=(Z/p)"/H where H < (Z/p)". Both H and the quotient (Z/p)"
=(Z/p)"/H are elementary abelian, and S is induced from the regular
representation n,,= (Z/p)"/1 of (Z/p)™. Thus a(S) factors
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4.1 B(Z/py' — B(Z/p)" = Q5°

Recall that the composition product in QS° corresponds to the product in
LIBZ, coming from the homomorphisms

'ﬁn,m: Z" X Em - an
defined as
Ynm(g MG J) = (80, h()) .

Here Z,, is regarded as the permutation group of pairs (i, j), 1 <i<n, 1 <j<m.
This requires a linear ordering of the pairs; we use the lexicographic one.
We can express 7,, inductively in terms of y, ,. The first 5, is just the
inclusion Z/pc=X, as cyclic permutations. Then 2=V, o xny), and
generally
Mt (Z/p)" = Z/px (Z/pyr ™t 22ty 5 x5 00 Y2l 5

Hence a(n,) can be written as the composition

(42)  a(n): B(Z/p)" = (BZ/py 2L (B, £ (QS% — 0S°.

We shall need certain facts about the homology of QS° with Z/p-coefficients.
General references for this are [10] and [12] for p=2 and [6] for p>2. Here is
a summary.

The space QS° has two products: the loop sum * and the composition
product -. They induce products on H,(QS°; Z/p), denoted similarly. They
are homomorphisms Q": H,(QS°; Z/p) » H ,(QS°; Z/p) with the following
properties [modifications for the case p=2 are stated inside square brackets]:

(4.3) Degree: Q" raises degree by 2b(p—1) [b]
(4.4) Evaluation: Qx =0 if 2b < degx [b<degx]
0% = x*? if 2b = degx [b=degx]

(4.5 Cartan formula: Q°(xxy) = Y Q'x*Qly.

i+j=b

(4.6) Adem relations: If a> pb then

1)(t—b)—1
pt—a

Qabe - Z (__l)a-H((p— )Qa+b—rQ:x

if p>2, azpb and B denotes the mod p Bockstein, then

(- 1)(t —b)

pt )ﬁQa +b- th

Qaﬁbe = Z ( l)a-H(
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—-1)(t—-b)—-1
+Z (—1)“+t<(p pt)—(ta_; )Qa+b—tﬁQ1x

In all cases the summation is over ¢ such that (p+1)t>a+b.

(4.7) Nishida relations: If P!, is dual to the reduced pth power P’ [the square
Sq"] then

PiQbx = 20 (—1)“*‘<(p_1)(b_“))Qb-a+'P;x

a—pt

if p>2 then

P';Bbe = ;0 (+__1)a+;<(P—1)(b—a)_1

a—pt

)ﬁQb—a+lPr*x

A+t r-1)b-a-1 b—a+tpt
+’§0 (—1) ( a—pt—1 )Q P Bx .

Let [k] € Hy(QS°; Z/p) denote the component of maps of degree k. E. Dyer
and R. Lashof showed that the homology ring H, (QS°; Z/p) was generated by
successive operations of Q% fQ° on [1] as an algebra under *. To make a
precise statement, we introduce the Dyer—Lashof algebra R(p).

Let & be the free graded associative algebra generated by the symbols Qf,
520 and BQ°, s>0 with degrees 2s(p—1) and 2s(p—1)—1 respectively [if p=2,

Z is generated by Q°, s =0, with degree s]. The monomials in & can be written as

ﬁlesl . ﬁs,.st

with ¢;=0 or 1 and s;2¢;. Denote them by Qf, where I=(e,,s,,. . .,&,5). We
say that I is admissible if s, <ps, —¢,,...,8_; <ps,—&, and we define the
length and excess of I by I(I)=k and

k
e(l) = (2s,—¢&)— Y (2s;(p—D—¢) (p>2)

Jj=2
k

e =5-% s, (p=2)

The quotient of & by the ideal generated by the Adem relations and by
monomials with e(I)<0 is the Dyer—Lashof algebra R(p).
The formulas (4.3)-(4.6) tell that R(p) acts on H,(QS°; Z/p). In fact the set

4.8) X = {Q'[1], I admissible, e(I)+¢, >0}

forms a basis for the *-algebra H, (QS°; Z/p) up to component shift. Indeed, let
Z/p[Z] be the group ring of Z=mn,(QS°). Then
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H,(05% Z/2) = PX®Z/2[Z]
H,(0S°% Z/p) = PX*®EX~®Z/p(Z], if p>2,

where P and E denote the polynomial and exterior algebras, respectively, and
X™* (X7) is the even (odd) degree part of X.
The composition product is related to the operations Q° by May’s formula:

0°x)f =Y Q"*'(xP.f) and,if p>2

4.9) 120
BQ*(x)f = ¥ BQ"* (x- Py f)— (—1)%B* 3. Q°*!(x P', Bf)

After these preparations we turn to the evaluation of (4.2) in homology. The

mapi: BX, — QS° is obtained from the Dyer—Lashof map 0, as the composite

i: BZ, = EZ”)i (*P — E):p;p (QS%)P > QS°,

where * goes to the identity map in the 1-component Q,S°. By (4.2), «(,) is of
the form BZ/p -2 BZ, — QS°. This is precisely the map used in the
definition of Q° [6, pp. 7-8]; if e, € H,(BZ/p; Z/p) denotes the standard
generator then

(—=1PQT1] ifm=2s(p—1)

(4.10) a(ny),(en) = Qul1]l = J(=1yBQ°[1], f m=2s(p—1)—1 for p odd,
0 otherwise

= Q"[1] for p=2.

It follows from (4.2) and (4.10) that «(n,), takes the generators ¢; ® . . . ®e; of
H,(B(Z/p)"; Z/p) to products of the form

+p205f17-...-p=Q*[1] .

We would like to express these elements in the *-product basis (4.8). A two-
fold product, for example Q°[1]-Q%[1], becomes

@11 Q11-Q1] = go Q" '(P,Q'1))

-3 (—1)'(("“11"’ “))Q“'Q""m

120

by (4.9) and (4.7). Applying the Adem relations (4.6) it can be written as a
linear combination of admissible terms Q°Q'[1]. If the excess is negative then
Q'[1]=0 by (4.4). Similarly it is shown by induction on the length of the
product that
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LEmmMa 4.12.
prQu[1]- ... p=Q~[1]1 = ¥, 4Q'[1]
where 1 ranges over admissible sequence of length n and excess 20.

The terms Q'[1] with e(I)+&, =0 decompose as *-products of shorter Q/[1Ts
(4.4).

We shall now find the special case of Lemma 4.12 in the lowest degree where
we can get an admissible Q[1] of length n and excess >0 involving no
Bocksteins B. It is clearly Q”Q” ' ... Q'[1] in dimension 2(p"*'—1) with
excess 2 [if p=2 then d=2"*' —1 and e=1]. We give the proofs of the next two

lemmas only for p>2. The (easier) case p=2 follows by trivial modifications.

1

Lemma 4.13. QPT11-07'[1]-...-Q'[1]1=07Q" ... Q'[1].

Proor. To begin with, Q?[1]-Q'[1]=QPQ'[1] by (4.11). Suppose by

induction that the claim holds for n. Since x,,=Q“"Q""'l ... Q1] is primitive,

so is also P',x,. If t>0, then according to (4.7) P',x, is a linear combination of
Q'[17’s of length n and degree <2(p"*!—1), without Bocksteins. By the
minimality of x,, P',x, is *-decomposable. By a general theorem of Hopf
algebras [15, Proposition 4.23] P',x, must then be a * —pth power, especially

deg P\,x, = 2(p"*'~1)=2t(p—1) = —2+2t = 0 (modp)
so that t=1 (mod p). Now we can apply May’s formula (4.9) to get
07" [11-Q7 1]+ Q'[1] = Q" [1] x,
= ¥ 07 (P = @7, = 0FQ7 .. Q1]

t=20

since Q*(x*?)+0 only if s=0 (mod p) in virtue of the Cartan formula (4.5).

Now we can prove that the map a: A((Z/p)") — n3(B(Z/p)") is injective on
Zn, and thereby on the whole of A((Z/p)").

PROPOSITION 4.14. a(mn,) is homologically non-trivial for all non-zero integers
m.

ProoF. Let first m>0. Then using the diagonal formula
Yiew = Y €,®... ey, it ... Fig=i
for BZ/p — (BZ/p)" and Lemmas 4.12 and 4.13 we obtain
21y Campip-1)® - - - Deznip-1) = (Q7QF ... QLID*"+...
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where the other terms are of the form Q:[1]* ... *Q@'=[1] with I(I j)=n and
deg (I))<2(p"** —1) for at least one j. Since Q”'Q”"" ... Q'[1] is a polynomial
generator, they cannot cancel the first term.

If m <O, then apply the loop inverse y,, and note that y, (x)=x*[ —2degx]
on primitive elements x.

THEOREM 4.15. &: A((Z/p)") — n0p(B(Z/p)") is injective for all primes p.

Proor. By Theorems 3.2 and 3.8 we are reduced to showing that o is
injective on Zx, where

x = p—ntt ... +(=1)py,.

The argument of Proposition 4.14 applies also here, since the terms #

contribute in homology only by *-products of Q'[1] with I(I)<n (cf. (4.1)).
This completes the proof of theorem 4.15.

Let Q,S° be the 0-component of QS°. Let X , denote the localization of the
space X at a prime p [21]. D. Sullivan has showed that the space Q,S° splits
locally

4.16) QoS = J,xcokJ, .

The space J, is defined as the fibre of y>—1: BO, — BSpin,. At odd primes J,
is the fibre of y*—1: BU, — BU,, where k is a prime power generating the
group of units in Z/p®. The homotopy groups of J, are essentially the p-
primary part of the image of the J-homomorphism O — G in the stable
homotopy of spheres. To describe the second factor cokJ, we recall the
discrete models for J, due to D. Quillen [14, chapter VIII].

First, let p=2. Let F, denote the finite field with 3 elements. Let N, (F,) be
the group of orthogonal transformations of the quadratic space (F3,x3+ ...
+ x2) for which the determinant and the spinor norm [14, p. 164] agree. We
encounter now a similar situation to the construction of QS° from the
symmetric groups: there are sum and product maps on the disjoint union
4.17) L1 BN, (F3)

n20
coming from direct sum and tensor product of quadratic spaces.

Let F, be an algebraic closure of F, and choose an embedding u: F¥ — C*.
If G is a finite group and ¢: G — Gl,(F,) a representation of G, then the
complex-valued function on G

26 = ¥ )
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where 4,,. .., 4, are the eigenvalues of ¢(g), is the character of a unique element
in the complex representation ring R(G). Moreover, Quillen has proved that if
o takes values in O,(F,), then y is the character of an element in the real
representation ring RO(G).

We lift the standard representations of N,(F,) in F% in the above way to
virtual representations in RO(N,(F5)) and apply a: RO(G) — KO(BG) to get
maps

v,: BN,(F3) > BOx (n).

They are compatible with the sum and product on (4.17), giving rise to an H-
map

v: QB( 11 BN,,(F3)> — BOxZ
n=0

from its group completion. Now the Adams operation ¥ is characterized by
its action on the characters (y>y)(g) =x(g>), so ¥3ov,=v, as the Frobenius map
A — 22 just permutes the eigenvalues of any representation realizable over F,.

Let J} denote the zero component of QB (11,50 BN,(F5)) localized at 2.
Then v: J§ — BO, lifts to an H-map J5 — J,, which can be proved to be a
homotopy equivalence e.g. by cohomological methods. From now on we
identify J and J,.

Let

e: QS° ~ QB< [1 BZ,,) - QB< 11 BN,,(F;,))
n=0 nz0

be induced from the functor which takes a finite set S to the vector space F5.
We restrict e to the zero component and localize to get e: Q,S9 — J,. We shall
also use the analogous map e: 0,83 — BO,, induced from the functor S — RS.
Then the triangle

N

4.18) Q059

clearly commutes. The space cok J, is defined as the fibre in
4.19) cokJ, = QoS% %> J, .
There exists a splitting a,: J, — Q,59, and a, *x[ —1] gives (4.16).

At odd primes p the model for J, is constructed from general linear groups

Math. Scand. 44 — 5
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over the finite field F,: J, is equivalent to the zero component of the group
completion of

@17) L1 BGI,(F,), k a prime power generating (Z/p*)* .
nz0

As before defines e: Q,S) — J, and gets a commutative diagram

(4.18") 0059 \

BU,
and cok J, is defined as the fibre in
4.19) cokJ, — Qosg - J,.

Let now G be a p-group. We shall in the following consider the abelian
groups [BG, X ], where X =Q,8° BU, U for all p and in addition to these,
X =BO and SO for p=2. We claim that in all cases

[BG,X,] = [BG,X].

If X=0,S° this holds because Q,S° has finite homotopy groups, so Q,S°
=I1, 0,59, and BG is p-local (even p-complete) [21, section 3].

For the other spaces we recall the results of Atiyah [1] and Atiyah-Segal
[2]. Consider the representable K-theory and the theory K*(; Z,) defined by
the unitary spectrum and its localization at p. For any finite CW-complex Y we
have

K*(Y; Z,,) = K*(Y)®Z,, .

The formula is valid also for Y= BG since it follows from [1] and [2] that lim'
of the inverse systems K*(B,G) and K*(B,G)®Z, vanishes, so that K *(B_G)
-llm K*(B,G) and K*(BG; Z(p))—hm K*(B, G)®Z(p) For any group G
K°(BG) R(G) and K*(BG)=0 [1, p. 7270] and in the case of p-groups the
completion is the p-adic one: R°(BG)=1(G)®Z, [4 p. 277]. Since these groups
are clearly unaffected by ®Z,,, we get

(4.20) [BG,BU] = [BG,BU,] = I(G)®Z,, [BG,U,] =0

where I1(G) is the augmentation ideal of R(G).
If p=2, then using the Real K-theory KR* instead of K* and [2, p. 17] we
obtain in the same fashion

421) [BG,BO] = [BG,BO,] = 1(G)®Z,,
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[BG,S0,] = vector space over Z/2
for 2-groups G, where I(G) is the augmentation ideal of Ry (G).

Let G be a p-group. After these preliminaries we turn to the question: when
does a map d(x): BG — Q,S8° lift to cok J, in the fibration (4.19), (4.19"). In
order for eca(x): BG — Q,8° — J, to be nulhomotopic, it is necessary in the
light of (4.18) and (4.18) that the image of &(x) under e, : #°(BG) — K°(BG) s
zero. From Proposition 3.1, this is equivalent to

x € 4y(G) = Ker (A(G) - R(G)).

If p is odd, this condition is also sufficient, since in the mapping sequence of the
fibration J, — BU, ¥=15 BU,

[BG,U,] — [BG,J,] — [BG,BU,]

the first group is trivial (4.20), so x € A,(G) maps to zero already in [BG, J,].
In particular, if G is an elementary abelian group (Z/p)* with odd p, we
know that all the maps d&(x): BG — Q,S° x e Ay(G) are homotopically
distinct (Theorem 4.15). Thus & lifts to a monomorphism &
4y(G)
7
7
Ar I /3
a a
7

»
[BG,cok J,] — [BG,Q,5°1 — [BG,J,] .

THEOREM 4.22. Let p be an odd prime and G the elementary abelian group
(Z/p)". Then the ideal

Ay(G) = Ker (A(G) - R(G))

maps monomorphically into [BG,cok J,].

Let then G be a 2-group and x € Ay(G). Then the image of &(x) is O in
[BG, BU,]. To see when eod(x): BG — J, is non-trivial, we consider the maps
J, = BO, > BU,, where c is complexification. The map [BG,BO,]
— [BG,BU,] corresponds to the completion of RR(G)=R(G) by (4.20),
(4.21) and [2, p. 17], which is injective. In the mapping sequence of J, — BO,
-1, BSpin,

[BG, Spin,] — [BG,J,] — [BG, BO,]

the first group is a subgroup of [BG, SO,] as SO, = RP* x Spin,, hence it is a
vector space over Z/2. Thus (at least) 2x maps to zero in [BG,J,]. We have
proved the first half of
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THEOREM 4.23. Let G be the elementary abelian 2-group (Z/2)". Then the ideal
2A4,(G) maps monomorphically into [BG,cok J,]. There are elements in A,(G)
which do not lift to cok J,.

Proor. Consider the critical element x € A,(G) with yg(x)=2 and yy(x)=0
for all genuine subgroups H <G. We claim that 1—x can be written as a
product in terms of the 2"—1 quotients #} =G/(Z/2)" *:

1 .
m—-1.

2
l-x =
i=1

Indeed, check the characters. First yg(ni)=2 or 0 according to whether H
<(Z/2)" ! or H£(Z/2)" !, the hyperplane defining 7. Therefore we get

2"~1
Xc< [T ("il_l)> = (-1t = -1.
i=1

On the other hand each hyperplane containing H corresponds to a line inside
H*. If H<G the number of these, |[H|* —1, is odd, so

i=1

271
x;;( I1 ('1‘1—1)> = 19dd(—1m =1, H<G.
Thus a(l —x) is a composition product of maps of the form

BG B, Bzp2 2, 0,50 +[=11, §G .
But the map i, x[ —1]: BZ/2 — SG is homotopy equivalent to the composite
RP® — SO 1> SG

[6, p. 120] so that a(1 —x) factors through J: SO — SG. Let e,: SG — J® be
the 1-component of the map e defined just before (4.18). We showed in 4.14
that a(—x), hence a(1 —x) induces a non-trivial map in homology. It is well-
known that the composite

H,(SO) = H_(SG) &2~ H (J)

is injective [6, p. 120 and Theorem 12.5 p. 185]. Then e, oa(1 — x), hence eca
(—x) must be homologically non-trivial.
This completes the proof of Theorem 4.23.

REMARK 4.24. Theorems 4.22 and 4.23 enable us to get hold of elements in
H,(cokJ,; Z/p). Let us consider the first case A4y(Z/2@Z/2)=Zx (A,(Z/2)
=0!). It is most convenient to evaluate f=u(1 —x), since from the preceding
proof

1—x = (=13 —-Dm3;-1)
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where n': Z/2@®Z/2 — Z/2 are projections to the first and second factor for i
=1,2, and 7} takes the quotient modulo the diagonal subgroup A4Z/2
cZ2®Z)2.

The maps f,=a(yi —1): RP® x RP® — RP*, i=1,2,3, have the effect

fl*(em®en) = 5"0)(7,", fZ*(em®en) = 5m0xn

and

f3*(em®en) = <m; n)xm+n

on homology (cf. 4.10).Here x,=Q*[1]*[—1] € H,(SG; Z/2), and adding up
we get

m+n—i—j
xi.xj.xm+n—i—j .

@25 fulen®e) = 3 z(

m—i

As a special case of this formula f, (e,,®e,)=p,,+,, Where the polynomial

n

Pan+1 = Xops1+ 3 XiXops1—i
i=1

is the standard primitive element of degree 2n+1 in the subalgebra
E(xy,%,,...)=H (SG).

Let 7 denote a(—x)=f*[ —1]. We know from theorem 4.23 that 2f: (RP®)?
— Q,S8° lifts to cok J,. Therefore the elements

Cinsz = (Zf)*(e4,,®e2) = f*(e2n®e1)*f*(82n®el)
= p2n+l*p2n+1*[_2]

n=1, lie in Kere,. Since they are primitive, the lie in H,(cok J,, Z/2). (The
elements C,i_, have a connection with the Arf invariant conjecture: they are
spherical if and only if there are stable homotopy classes in m3i_,(8° of Arf
invariant one [9].)

REMARK 4.26. We succeeded in proving that &g is injective for elementary
abelian G by evaluating the maps o (nx) in homology. Let us indicate briefly
where this program fails for more complicated groups. The smallest ones we
have not covered are the following three groups of order 8:

Z/4®Z)2 = (x| x*=y =1, xp=px)
D8 = (x,y| x*=y*=1,y xy=x3)
Q8 = (x,y| x*=1,y*=x2, y Ixy=x*)
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(D8 and Q8 are the dihedral and the quaternion groups). In all cases the
Frattini subgroup ®(G)=G? is Z/2 generated by x2. The cohomology of G
(with Z/2 coefficients) can be computed from the spectral sequence of the
central extension

15 &(G) - G > Z2@Z2 > 1.
The E*-term is
H*(Z/2Q)@H*(Z2@Z/2) = P()Q@P(ty,t,) .

We choose ¢, and t, as the generators of the cohomology of (n(x)> and
{(m(y)>. The differentials are determined by the -characteristic class
d,(t) e H*(Z/2®Z/2), which is

it +ut, and  4tt,+13,
respectively.
The critical elements BG — QS° are compositions of
BG 8% B(Z)2®Z/2) = (RP™)?
with the maps a(nx): (RP*)? — QS°. We evaluated f=a(—x) in the preceding
remark. From (4.25) we get
(4.27) file,®e,) = [ (en®e,), [y (e.®e) =0 (n>0).
Consider now e.g. the cohomology of G=D8. In its spectral sequence
dy(1?) = d5(Sq' 1) = Sq'd,yt = Sq' (2 +1,1,) = Bty+t,12 = t,dyt = 0
so that E>=E* and
H*(D8) = P()@P(t;,t,)/(t} +1,1,)

where s € H?(D8) is any element whose image is t> € H*(Z/2), and ¢, and t,
come from H*(Z/2@Z/2). Thus the image of Bn* in H"(D8) is generated by
the elements t{=r]"'t,=...=¢,f;7' and 3. Dually the image of Br, in
H,(Z/2®Z)2) is generated by

e,®e te,_  ®e,+...+e,®e¢,.;, and e;®e,.

From (4.27) f, (Im Brn,) =0. Hence all maps apg(nx)= (—nf)o Br vanish in Z/2-
homology.

A similar computation shows that foBn induces the zero map H,(Q8)
— H,(Q0S°. In fact here Im Bn*=0 from dimension 4 on. Finally for G
=Z/4®Z/2 we get that (foBm), is non-trivial precisely in dimension 3. But
then (2f°Bm), vanishes.

By Proposmon 3.1 these maps induce 0 also in K-theory. We pose the
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QUESTION. Are the maps
fu: BG 8% RP® x RP™ 220, 0§

where G=Z/4®Z;2,D8,Q8 and x=2—nl—n2—ni+n, € Ao(Z/2@Z/2) ho-
motopic to zero?
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