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EXPLICIT EVALUATION
OF CERTAIN EXPONENTIAL SUMS

L. CARLITZ

1. Introduction.
Let F = GF (q) denote the finite field of order g=p", p prime,n=1. Fora € F
put

n—1

t(a) = a+af+...+a°

and

e(a) = e2mt@ir
Define the exponential sums
(1.1) S(a,b) = ZF e(ax® + bx)
and
1.2 T(a,b) = Y e(ax®+bx?).

xeF
In an earlier paper [1] the writer proved that, for p>3, a=+0,
(1.3) Y(3a)T(a,b)G = S*(4a,b)+y(3a)S(a,b)G—q ,

where ¥ (a)= + 1, — 1,0 according as a is a nonzero square, a non-square or the
zero element of F, and G is the Gauss sum defined by

(1.4) G=7Y Vel .

xeF

Since |G| =q?, it follows from (1.3) that the two estimates
S(a,b) = 0(¢g*), T(a,b) = O(¢g})

are equivalent.
The case p=3 is of little interest. We have

3y _ )4 (a+b=0)
S(“’b)"{o (@+b+0),
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q (a+b=0)
T(a*b) =
(a.0) {z//(a+b)G (@+b+0)
The case p=2 is more interesting. Since e(a)=e(a?) it follows that
T(a? b?) = S(a,b) .

Also it is clear from the definition of e(a) that S(a, b) is now a rational integer.
It is proved in [1] that, for g=2"

1.5) S*(a,b) = (1—e(bug))g (n odd),

where u, is the unique solution of au®=1. For n even we have

2 _ q (au® =1 not solvable)
(1.6) S*(a,b) = {(1+e(bu0)+e(bu1)+e(bu2))q ,

where uo, u;, u, are the three solutions of au® = 1. It is assumed throughout that
a=*0. The coefficient of g in the second half of (1.6) is equal to 0 or 4. Thus
S(a, b) is evaluated except for sign.

The object of the present note is to determine the sign of S(a, b). The cases n
even and n odd require separate treatment. We show in particular that, for
n=2m, ae F, a+0,

(_1)m+12m+1

S(a,0) = {(_1)'"2'"

according as a is or is not a cube in F. For the general case, if a=c3, ¢ € F, then

(_ 1)m+12m+1e(u(3))

S(c3,b) = { 0 )

according as
m-—1 2
Y (b =0
ji=0

is or is not satisfied; u, denote any solution of the equation u*+u=>b%c"21If a
%c3 c e F, then

S(a,b) = (—1)"2"e(ax3) ,

where x, is the unique solution of a*x*+ ax =b>.
For n=2m+1 it suffices to take b=1. We show that

S(,1) = (ﬁ)znﬁl ,
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where (2/2m+1) is the Jacobi symbol (quadratic character). If e(b)= —1, we
may put b=c*+c+1; then

S(L,b) = e(c3+c)<2m2+ 1)2’”“ .

Finally
S(1,b) = 0 (e(b)=+1).

For a fuller statement of the results see Theorems 1 and 2 below.

2.

We consider first the case n even. Then 3|g— 1. Let x denote a non-principal
cubic character of the multiplicative group of the nonzero elements of F. Define

(2.1) R(y) = ZF x(a)e(a) .
We have

IRG)I?

Il

R(NR(x) = Zb x(@x(b)e(a+Db)

Y x(ab¥e(a+b) = Y, x(a)e(ab+b)
a,b

a,b*0

Z x(a) Z ((a+1)b),

so that

(2.2) IR =

Similarly

R*(x) = Y x(ab)e(a+b) = Z x(a)e(ab* +b)
a,b

bx0
= Z x(@) ; e((a+1)b?)
and therefore
(23) R*(p) =gq.
Comparison of (2.2) and (2.3) gives
(24 R() = R(®),

so that R(y) is a rational integer.
We now define the sums
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So =% Z 3(03)

ax0

2.5) S; =% Zo e(ba®)  (x(b)=w)
a¥
S; =% ) elca® (x()=w?,

ax0

where w= (1+4]/ —3)/2. It is evident that S,,S,,S, are rational integers.
It follows from (2.1) and (2.5) that

-1 =S8,+8,+8,
(2.6) R(y) = So+ @S, +wS,; + @S,
R(x?) = So+w?S, +wS,
and
38, = —1+2R(y)
2.7 38, = —1—=R(y
3§, = —1—=R(y).
It is clear, by (2.3), that
(2.8) R() = £2™ (n=2m).
By (2.7) we have
(2.9 R(x) = —1 (mod3),
so that (2.8) becomes
(2.10) R(x) = (—1)m~12m .

It then follows from (2.7) that

3§ = — 14+ (—=1mt2m*!
(2.11) moym
3§, = 35, = —1+(=1)m™.

The sum

(2.12) S(a) = S(a,0) = Y e(ax’) (a%0)

X

can now be evaluated. Clearly

_ 1438, (x@=1)
S“’"{Hss, (@) +1)

Hence we have
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(=pm~12m*t (x(@)=1)
2.13 S(a) =
@13 @ {(— ym2m (1@ =+1).
3.
The product
(3.1 S(a)S(a,b) = Y e(ax®+ay®+by)
= Y e(a(x+y)*+ay*+by)

=Y e(ax’) Y e(ax®y+axy*+by) .
x y

The inner sum is equal to

Y e((a*x*+ax+b2y) .

This sum vanishes unless
(3.2 a’x*+ax = b*.

There are two cases to consider according as a=c?, ¢ € GF (g), or a%¢?). In
the first case, (3.2) becomes

(3.3) ut+u = b%c"?  (u=cx).

This equation is solvable in GF (q) if and only if [2, p. 29]
m-1 X

(3.4) Y (e =0  (n=2m).
j=0

When (3.4) is satisfied, the four solutions of (3.3) are given by
(3.9) Ug, Uy = g+ 1, ug+0, ug+6%,

where u, is any solution of (3.3) and 0 € GF (4), 6> =0+1.
Thus (3.1) becomes

(3.6) S()S(cb) = q ) e),

u;

where the summation is over the four values (3.5). Now
t((uo+1))) = t(ud)+t(ug+uo)+1(1) = t(up)
t((uo+0)%) = t(ud)+t(ud0+uy6?)+t(l) = t(u3),

so that (3.6) reduces to
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3.7 S(c*)S(c3,b) = 4qe(ud) = 2™ 2e(uj) .
Therefore, by the first of (2.13), we get
(3.8) S(,b) = (=) 12" e(u))

provided (3.4) is satisfied. If (3.4) is not satisfied, S (c3,b)=0.
Returning to (3.2), assume now that a=c? c¢ € GF (g). Then, by (3.2),

a4 x? = @) (j=0,1,...,m—1).

Multiply both sides by

gt .. +287 a2V -3

and add the resulting equations:

m-—1
(3.9 @4 x = ¥ (@ 1hAFa?" B

j=0
Since a+c3, the coefficient of x does not vanish; moreover it is easily verified
that the value of x given by (3.9) satisfies (3.2). Let x, denote this value. Then
(3.1) gives

(3.10) S(a)S(a,b) = ge(ax3) = 2*™e(ax3) .
Hence by the second of (2.13), (3.10) reduces to
(3.11) S(ab) = (—)m2me(axd)  (x(@)#1).

Summing up the results of section 2, 3, we state the following

THEOREM 1. Let ¢=2", a,b € GF (gq), a%0, b+0,

S(a,b) = GZF( ) e(ax®*+bx), S = S(a,0).

Then

B (_1)m+12m+1
= {(—1)"'2'",

according as a is or is not a cube in GF(q).
If a=c3, ¢ € GF (g), then

s = [T,

according as

m—1
Y (b =0
j=0
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is or is not satisfied; u, denotes any solution of u*+u=>b*c"2.
If a%c?, c € GF (g), then
S(a,b) = (—1)"2"e(ax3) ,

where x, is the unique solution of a*x*+ax=">b* given by (3.9). |

4.
Let g==2", n=2m+1. In this case the sum

Y e(ax®) =Y elax) =0 (a%0).

xeGF (q) x

Also, if a0, then a=c>, ¢ € GF (g), so that
Y e(ax®+bx) = Y e(®x*+bx) = Y e(x*+bc7'x).

x X X

Hence there is no loss in restricting the discussion to

@.1) S(L,b) = ¥ e(x*+bx) .

X

In particular put

4.2) S=S11)=Yex+x).
Then
4.3) 52 =Y e(x*+y*+x+y)
= Y e((x+yP+y*+(x+y)+))

=Y e(x*+x) ), e(x’y+xy?) .

x

The inner sum is equal to

Y e((x*+x)?) =0

y

unless
4.9) x*+x=0.

The four solutions of (4.4) constitute the GF (22). Since g=2?"*", the only
solutions of (4.4) that lie in GF (q) are x=0 and x=1. Hence (4.3) gives

4.5) 52 = 2q = 222
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so that S+0.
In (4.2) replace x by x+c2. We get

S =Y e((x+c?)+x+c?)
x ~
= e(c®+c) Y e(x*+c2x?+c*x+x)
=e(+0) Y e(x*+ (c*+c+1)x) .
Thus
(4.6) S(,c*+c+1) = e(c*+¢)S .

Let b denote any number of GF (g) such that e(b)= — 1, that is, any number
that satisfies

4.7 b+b2+b¥+ .. . +b*" = 1.

Exactly half the numbers of GF (g) satisfy (4.7). Then b=a+ 1, where e(a)=
+1, so that a=c?+c,, ¢, € GF (g). Since either ¢, or ¢, +1 is equal to c? +c,
we get a=c*+c, c € GF (q). Hence b=c*+c+1, that is, every solution of (4.7)
is of this form and the corresponding sum S(1, b) satisfies (4.6).

Next let e(b)= +1. Then

S2(1,b) = Y e(x®+y*+bx+by)

X,y

= Y e(x*+x%y+xy*+bx)
X,y

= Y e(x*+bx) Y e(x?y+xy?)

y

Y e(x*+bx) Y e((x*+x)y?)

g(l+e(b+1) = 0.

Thus
4.8) S(Lb) =0 (e(b)y=+1).
Hence, in view of (4.6), it will suffice to evaluate S. Indeed, by (4.5),
4.9) S=¢e2"1 (e=+1).
To determine ¢ let N = N(g) denote the number of solutions x,y € GF (q) of
(4.10) xX+x =y’ +y;
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also let N'=N'(g) denote the number of solutions x,y € GF (g) of (4.10) such
that x is not in any proper subfield of GF (g). If (x,y) is such a solution then

*¥y?)  (=0,1,...,2m)
are also such solutions and are all distinct. Hence we have
4.11) N'(Q2*) = 0 (mod2m+1).

Also clearly N'(2)=4.
As for N(q), we have

qaN(q)

Y ¥ e(a(x®*+x+y*+y)

a x,y

7+ Y Ye(a(x*+x) Y e(a(*+y) .

a*0 x

The sum on the extreme right is equal to

Y e((a+a®y?) =0 (a+a*=+0).

y

Hence
4.12) N(q) = q+S.
It is clear from the definition of N(gq) and N’(g) that
N(22m+1) = Z N'(zd) X

d|2m+1

Hence, by the Mobius inversion formula,

4.13) NE™HYy = T ;1(2'";1)1\/(2")

d|2m+1

By (4.9) and (4.12) we have
4.14) NQ@2" = 2"4¢, 202 (g, =+1);

the fuller notation &, is needed for what follows.
To begin with we take 2m+1=p, where p is prime. Then (4.13) becomes

N'(2°) = N(2)—N(2)
= 2P+¢, 20024
Thus, by (4.11),
€272 =1 (modp),

so that ¢,= (2/p), the Legendre symbol.
Next let 2m+1=p". Then
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N'(27) = 2"’+sp,-2""“’/2—2""1—sp,-l-z("'_'“’/z ,
so that, by (4.11),
gy 2PV = g 2T D2 (mod p) .

It follows that

(4.15) £y = (3) = (-2~>
/) \p

We shall show that generally

2
(4.16) Eom+1 = <2m+1) s

the Jacobi symbol. The following lemma will be used.

LeEMMA. We have

rs=2m+1

2
4.17) Y u(r)<;>2“‘“/2 =0 (mod M),
where M denotes the product of the distinct prime divisors of 2m+1.

Proor. Let f(2m+ 1) denote the left member of (4.17). It is easily seen that
f(2m+1) is a factorable function of 2m+ 1. For 2m + 1 equal to a prime power

p" we have
fp) = <£>2<p’—1)/2_( 2_1>2(p"'-1)/2
r r

- QE-GHET =omer

This completes the proof of the lemma.

We shall now prove (4.16). By (4.13) and (4.14),
(4.18) N@™Y = Y un2+ Y p(r)e-2er02

rs=2m+1 rs=2m+1
It is well known that
Y w2 =0 (mod2m+1).

rs=2m+1
Hence (4.18) implies
4.19) Y u(r)e, 26t V2 = 0 (mod M) .

rs=2m+1
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Assume that

2
(4.20) g = (g)

for all proper divisors of 2m+1. Then (4.19) becomes

> u(r)<§)2‘””/2+52m+1'2"‘“ = 0 (mod M) .

rs=2m+1
s<2m+1

By (4.17),
2 2
Z u(r)<_>2(s+1)/2+(___>2”'+1 = 0 (mod M)

rs=2m+1 N 2m+1
s<2Zm+1

and therefore

_ 2
Samt1 = 2m+1/°
Thus (4.9) becomes
2
4. 1 — 2m+1 =22m+1
@21) s (——2m +1> (@=22"*")
and (by 4.6),
2
4 — 3 m+1

(4.22) S(1,c*+c+1) = elc +c)<—~—-—2m+1>2 .

We may now state
THEOREM 2. Let g=2*"*!, b+0,

S, = Y e(x*+bx).
xeGF(q)

Then

2
1.1) = 2m+l
S{.1) (2m+1) ’
where (2/2m+1) is the Jacobi symbol. If e(b)= —1, put b=c*+c+1; then

S(1,b) = e(c3+c)(2mz_{_1>2"'+l .

Finally
S(1,b) =0 (e(d) = +1).

15



16 L. CARLITZ

REFERENCES

1. L. Carlitz, 4 note on exponential sums, Math. Scand. 42 (1978), 39-48.

2. L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Dover, New York,
1958.

DUKE UNIVERSITY
DURHAM, N.C. 27706
USA.



