EXPLICIT EVALUATION
OF CERTAIN EXPONENTIAL SUMS

L. CARLITZ

1. Introduction.
Let \(F = \text{GF} (q) \) denote the finite field of order \(q = p^n, \) \(p \) prime, \(n \geq 1. \) For \(a \in F \) put
\[
t(a) = a + a^p + \ldots + a^{p^{n-1}}
\]
and
\[
e(a) = e^{2\pi i t(a)/p}.
\]
Define the exponential sums
\[
S(a, b) = \sum_{x \in F} e(ax^3 + bx)
\]
and
\[
T(a, b) = \sum_{x \in F} e(ax^6 + bx^2).
\]

In an earlier paper [1] the writer proved that, for \(p > 3, \) \(a \neq 0, \)
\[
\psi(3a)T(a, b)G = S^2(4a, b) + \psi(3a)S(a, b)G - q,
\]
where \(\psi(a) = +1, -1, 0 \) according as \(a \) is a nonzero square, a non-square or the zero element of \(F, \) and \(G \) is the Gauss sum defined by
\[
G = \sum_{x \in F} \psi(x)e(x).
\]
Since \(|G| = q^{1/4}, \) it follows from (1.3) that the two estimates
\[
S(a, b) = O(q^{1/4}), \quad T(a, b) = O(q^{1/4})
\]
are equivalent.

The case \(p = 3 \) is of little interest. We have
\[
S(a^3, b) = \begin{cases} q & (a + b = 0) \\ 0 & (a + b \neq 0) \end{cases},
\]

Received May 29, 1978.
\[T(a^3, b) = \begin{cases}
q & (a + b = 0) \\
\psi(a + b)G & (a + b \neq 0)
\end{cases} \]

The case \(p = 2 \) is more interesting. Since \(e(a) = e(a^2) \) it follows that
\[T(a^2, b^2) = S(a, b). \]

Also it is clear from the definition of \(e(a) \) that \(S(a, b) \) is now a rational integer. It is proved in [1] that, for \(q = 2^n \),
\[S^2(a, b) = (1 - e(bu_0))q \quad (n \text{ odd}), \]
where \(u_0 \) is the unique solution of \(au^3 = 1 \). For \(n \) even we have
\[S^2(a, b) = \begin{cases}
q & (au^3 = 1 \text{ not solvable}) \\
(1 + e(bu_0) + e(bu_1) + e(bu_2))q &
\end{cases} \]
where \(u_0, u_1, u_2 \) are the three solutions of \(au^3 = 1 \). It is assumed throughout that \(a \neq 0 \). The coefficient of \(q \) in the second half of (1.6) is equal to 0 or 4. Thus \(S(a, b) \) is evaluated except for sign.

The object of the present note is to determine the sign of \(S(a, b) \). The cases \(n \) even and \(n \) odd require separate treatment. We show in particular that, for \(n = 2m, a \in F, a \neq 0, \)
\[S(a, 0) = \begin{cases}
(-1)^m + 12^{m+1} & \\
(-1)^m 2^m &
\end{cases} \]
according as \(a \) is or is not a cube in \(F \). For the general case, if \(a = c^3, c \in F, \) then
\[S(c^3, b) = \begin{cases}
(-1)^m + 12^{m+1}e(u_0^3) & \\
0 &
\end{cases} \]
according as
\[\sum_{j=0}^{m-1} (bc^{-1})^{2j} = 0 \]
is or is not satisfied; \(u_0 \) denote any solution of the equation \(u^4 + u = b^2c^{-2} \). If \(a \neq c^3, c \in F, \) then
\[S(a, b) = (-1)^m 2^m e(ax_0^3), \]
where \(x_0 \) is the unique solution of \(a^2x^4 + ax = b^2 \).

For \(n = 2m + 1 \) it suffices to take \(b = 1 \). We show that
\[S(1, 1) = \left(\frac{2}{2m+1} \right)^{2m+1}, \]
where \((2/2m+1)\) is the Jacobi symbol (quadratic character). If \(e(b) = -1\), we may put \(b = c^4 + c + 1\); then

\[
S(1, b) = e(c^3 + c) \left(\frac{2}{2m+1} \right)^{2^{m+1}}.
\]

Finally

\[
S(1, b) = 0 \quad (e(b) = +1).
\]

For a fuller statement of the results see Theorems 1 and 2 below.

2.

We consider first the case \(n\) even. Then \(3 \mid q - 1\). Let \(\chi\) denote a non-principal cubic character of the multiplicative group of the nonzero elements of \(F\). Define

\[
(2.1) \quad R(\chi) = \sum_{a \in F} \chi(a)e(a).
\]

We have

\[
|R(\chi)|^2 = R(\chi)R(\bar{\chi}) = \sum_{a, b} \chi(a)\bar{\chi}(b)e(a+b)
\]

\[
= \sum_{a, b} \chi(ab^2)e(a+b) = \sum_{a, b \neq 0} \chi(a)e(ab + b)
\]

\[
= \sum_a \chi(a) \sum_b e((a+1)b),
\]

so that

\[
(2.2) \quad |R(\chi)|^2 = q.
\]

Similarly

\[
R^2(\chi) = \sum_{a, b} \chi(ab)e(a+b) = \sum_{a, b \neq 0} \chi(a)e(ab^2 + b)
\]

\[
= \sum_a \chi(a) \sum_b e((a+1)b^2)
\]

and therefore

\[
(2.3) \quad R^2(\chi) = q.
\]

Comparison of (2.2) and (2.3) gives

\[
(2.4) \quad R(\chi) = R(\bar{\chi}),
\]

so that \(R(\chi)\) is a rational integer.

We now define the sums
\begin{equation}
S_0 = \frac{1}{3} \sum_{a \neq 0} e(a^3) \\
S_1 = \frac{1}{3} \sum_{a \neq 0} e(ba^3) \quad (\chi(b) = \omega) \\
S_2 = \frac{1}{3} \sum_{a \neq 0} e(ca^3) \quad (\chi(c) = \omega^2),
\end{equation}

where \(\omega = (1 + \sqrt{-3})/2 \). It is evident that \(S_0, S_1, S_2 \) are rational integers.

It follows from (2.1) and (2.5) that

\begin{equation}
-1 = S_0 + S_1 + S_2 \\
R(\chi) = S_0 + \omega S_1 + \omega S_1 + \omega^2 S_2 \\
R(\chi^2) = S_0 + \omega^2 S_1 + \omega S_2
\end{equation}

and

\begin{equation}
3S_0 = -1 + 2R(\chi) \\
3S_1 = -1 - R(\chi) \\
3S_2 = -1 - R(\chi).
\end{equation}

It is clear, by (2.3), that

\begin{equation}
R(\chi) = \pm 2^n \quad (n = 2m).
\end{equation}

By (2.7) we have

\begin{equation}
R(\chi) \equiv -1 \pmod{3},
\end{equation}

so that (2.8) becomes

\begin{equation}
R(\chi) = (-1)^{m-1}2^m.
\end{equation}

It then follows from (2.7) that

\begin{equation}
\begin{cases}
3S_0 = -1 + (-1)^{m-1}2^{m+1} \\
3S_1 = 3S_2 = -1 + (-1)^m 2^m.
\end{cases}
\end{equation}

The sum

\begin{equation}
S(a) = S(a, 0) = \sum_x e(ax^3) \quad (a \neq 0)
\end{equation}

can now be evaluated. Clearly

\begin{equation}
S(a) = \begin{cases}
1 + 3S_0 & (\chi(a) = 1) \\
1 + 3S_1 & (\chi(a) \neq 1).
\end{cases}
\end{equation}

Hence we have
\[S(a) = \begin{cases} (-1)^{m-1}2^{m+1} & (\chi(a) = 1) \\ (-1)^m2^m & (\chi(a) \neq 1). \end{cases} \]

3.

The product
\[S(a)S(a, b) = \sum_{x, y} e(ax^3 + a^2x^2y + by) \]
\[= \sum_{x, y} e(a(x+y)^3 + ay^3 + by) \]
\[= \sum_x e(ax^3) \sum_y e(ax^2y + axy^2 + by). \]

The inner sum is equal to
\[\sum_y e((a^2x^4 + ax + b^2)y). \]

This sum vanishes unless
\[a^2x^4 + ax = b^2. \]

There are two cases to consider according as \(a = c^3, c \in \text{GF}(q), \) or \(a \neq c^3). \) In the first case, (3.2) becomes
\[u^4 + u = b^2c^{-2} \quad (u = cx). \]

This equation is solvable in \(\text{GF}(q) \) if and only if [2, p. 29]
\[\sum_{j=0}^{m-1} (bc^{-1})^{2^{2j}} = 0 \quad (n=2m). \]

When (3.4) is satisfied, the four solutions of (3.3) are given by
\[u_0, u_1 = u_0 + 1, u_0 + \theta, u_0 + \theta^2, \]
where \(u_0 \) is any solution of (3.3) and \(\theta \in \text{GF}(4), \theta^2 = \theta + 1. \)

Thus (3.1) becomes
\[S(c^3)S(c^3, b) = q \sum_{u_i} e(u_i^3), \]
where the summation is over the four values (3.5). Now
\[t((u_0 + 1)^3) = t(u_0^3) + t(u_0^2 + u_0) + t(1) = t(u_0^3) \]
\[t((u_0 + \theta)^3) = t(u_0^3) + t(u_0^3 \theta + u_0 \theta^2) + t(1) = t(u_0^3), \]
so that (3.6) reduces to
\begin{equation}
S(c^3)S(c^3, b) = 4qe(u_0^3) = 2^{2m+2}e(u_0^3).
\end{equation}

Therefore, by the first of (2.13), we get
\begin{equation}
S(c^3, b) = (-1)^m12^{m+1}e(u_0^3)
\end{equation}

provided (3.4) is satisfied. If (3.4) is not satisfied, \(S(c^3, b) = 0\).

Returning to (3.2), assume now that \(a \neq c^3\), \(c \in \mathbb{GF}(q)\). Then, by (3.2),
\[
a^{2j}x^{2j+2} + x^{2j} = (a^{-1}b^2)^{2j} \quad (j = 0, 1, \ldots, m-1).
\]

Multiply both sides by
\[
a^1 + a^2 + \ldots + a^{2^j-2} = a^{(2^j-1)/3}
\]

and add the resulting equations:
\begin{equation}
(a^{(2^{2m}-1)/3} + 1)x = \sum_{j=0}^{m-1} (a^{-1}b^2)^{2j}a^{(2^j-1)/3}.
\end{equation}

Since \(a \neq c^3\), the coefficient of \(x\) does not vanish; moreover it is easily verified that the value of \(x\) given by (3.9) satisfies (3.2). Let \(x_0\) denote this value. Then (3.1) gives
\begin{equation}
S(a)S(a, b) = qe(ax_0^3) = 2^{2m}e(ax_0^3).
\end{equation}

Hence by the second of (2.13), (3.10) reduces to
\begin{equation}
S(a, b) = (-1)^m2^{m}e(ax_0^3) \quad (\chi(a) = 1).
\end{equation}

Summing up the results of section 2, 3, we state the following

Theorem 1. Let \(q = 2^m\), \(a, b \in \mathbb{GF}(q)\), \(a \neq 0\), \(b \neq 0\),
\[
S(a, b) = \sum_{x \in \mathbb{GF}(q)} e(ax^2 + bx), \quad S(a) = S(a, 0).
\]

Then
\[
S(a) = \begin{cases}
\begin{aligned}
(-1)^m12^{m+1} & \\
(-1)^m2^{m} & \end{aligned}
\end{cases},
\]

according as \(a\) is or is not a cube in \(\mathbb{GF}(q)\).

If \(a = c^3\), \(c \in \mathbb{GF}(q)\), then
\[
S(c^3, b) = \begin{cases}
\begin{aligned}
(-1)^m12^{m+1}e(u_0^3) & \\
0 & \end{aligned}
\end{cases},
\]

according as
\[
\sum_{j=0}^{m-1} (bc^{-1})^{2j} = 0
\]
is or is not satisfied; \(u_0 \) denotes any solution of \(u^4 + u = b^2 c^{-2} \).

If \(a \neq c^3 \), \(c \in \text{GF} (q) \), then

\[
S(a, b) = (-1)^m 2^m e(ax_0^3),
\]

where \(x_0 \) is the unique solution of \(a^2 x^4 + ax = b^2 \) given by (3.9).

4.

Let \(q = 2^n, n = 2m + 1 \). In this case the sum

\[
\sum_{x \in \text{GF}(q)} e(ax^3) = \sum_x e(ax) = 0 \quad (a \neq 0).
\]

Also, if \(a \neq 0 \), then \(a = c^3, c \in \text{GF}(q) \), so that

\[
\sum_x e(ax^3 + bx) = \sum_x e(c^3 x^3 + bx) = \sum_x e(c^3 + bc^{-1}x).
\]

Hence there is no loss in restricting the discussion to

(4.1) \[S(1, b) = \sum_x e(x^3 + bx). \]

In particular put

(4.2) \[S = S(1, 1) = \sum_x e(x^3 + x). \]

Then

(4.3) \[S^2 = \sum_{x, y} e(x^3 + y^3 + x + y) \]

\[= \sum_{x, y} e((x+y)^3 + y^3 + (x+y) + y) \]

\[= \sum_x e(x^3 + x) \sum_y e(x^2 y + xy^2). \]

The inner sum is equal to

\[\sum_y e((x^4 + x)y^2) = 0 \]

unless

(4.4) \[x^4 + x = 0. \]

The four solutions of (4.4) constitute the GF (2^2). Since \(q = 2^{2m+1} \), the only solutions of (4.4) that lie in GF (q) are \(x = 0 \) and \(x = 1 \). Hence (4.3) gives

(4.5) \[S^2 = 2q = 2^{2m+2}, \]
so that $S \neq 0$.

In (4.2) replace x by $x + c^2$. We get

\[
S = \sum_x e((x + c^2)^3 + x + c^2)
\]

\[
= e(c^6 + c^2) \sum_x e(x^3 + c^2x^2 + c^4x + x)
\]

\[
= e(c^3 + c) \sum_x e(x^3 + (c^4 + c + 1)x)
\]

Thus

\[S(1, c^4 + c + 1) = e(c^3 + c)S. \]

Let b denote any number of GF (q) such that $e(b) = -1$, that is, any number that satisfies

\[b + b^2 + b^{22} + \ldots + b^{2^m} = 1. \]

Exactly half the numbers of GF (q) satisfy (4.7). Then $b = a + 1$, where $e(a) = +1$, so that $a = c_1^2 + c_1$, $c_1 \in$ GF (q). Since either c_1 or $c_1 + 1$ is equal to $c^2 + c$, we get $a = c^4 + c$, $c \in$ GF (q). Hence $b = c^4 + c + 1$, that is, every solution of (4.7) is of this form and the corresponding sum $S(1, b)$ satisfies (4.6).

Next let $e(b) = +1$. Then

\[
S^2(1, b) = \sum_{x, y} e(x^3 + y^3 + bx + by)
\]

\[
= \sum_{x, y} e(x^3 + x^2y + xy^2 + bx)
\]

\[
= \sum_x e(x^3 + bx) \sum_y e(x^2y + xy^2)
\]

\[
= \sum_x e(x^3 + bx) \sum_y e((x^4 + x)y^2)
\]

\[
= q(1 + e(b + 1)) = 0.
\]

Thus

\[S(1, b) = 0 \quad (e(b) = +1). \]

Hence, in view of (4.6), it will suffice to evaluate S. Indeed, by (4.5),

\[S = \varepsilon \cdot 2^{m+1} \quad (\varepsilon = \pm 1). \]

To determine ε let $N = N(q)$ denote the number of solutions $x, y \in$ GF (q) of

\[x^3 + x = y^2 + y; \]
also let \(N' = N'(q) \) denote the number of solutions \(x, y \in GF(q) \) of (4.10) such that \(x \) is not in any proper subfield of \(GF(q) \). If \((x, y) \) is such a solution then

\[
(x^{2^j}, y^{2^j}) \quad (j = 0, 1, \ldots, 2m)
\]

are also such solutions and are all distinct. Hence we have

\[
(4.11) \quad N'(2^{2m+1}) \equiv 0 \pmod{2m+1}.
\]

Also clearly \(N'(2) = 4 \).

As for \(N(q) \), we have

\[
qN(q) = \sum_a \sum_{x, y} e(a(x^3 + x + y^2 + y))
\]

\[
= q^2 + \sum_{a \neq 0} \sum_x e(a(x^3 + x)) \sum_y e(a(y^2 + y)).
\]

The sum on the extreme right is equal to

\[
\sum_y e((a + a^2)y^2) = 0 \quad (a + a^2 \neq 0).
\]

Hence

\[
(4.12) \quad N(q) = q + S.
\]

It is clear from the definition of \(N(q) \) and \(N'(q) \) that

\[
N(2^{2m+1}) = \sum_{d \mid 2m+1} N'(2^d).
\]

Hence, by the Möbius inversion formula,

\[
(4.13) \quad N'(2^{2m+1}) = \sum_{d \mid 2m+1} \mu\left(\frac{2m+1}{d}\right)N(2^d).
\]

By (4.9) and (4.12) we have

\[
(4.14) \quad N(2^n) = 2^n + \varepsilon_n \cdot 2^{(n+1)/2} \quad (\varepsilon_n = \pm 1);
\]

the fuller notation \(\varepsilon_n \) is needed for what follows.

To begin with we take \(2m+1 = p \), where \(p \) is prime. Then (4.13) becomes

\[
N'(2^p) = N(2^p) - N(2)
\]

\[
= 2^p + \varepsilon_p \cdot 2^{(p+1)/2} - 4.
\]

Thus, by (4.11),

\[
\varepsilon_p \cdot 2^{(p-1)/2} \equiv 1 \pmod{p},
\]

so that \(\varepsilon_p = (2/p) \), the Legendre symbol.

Next let \(2m+1 = p' \). Then
\[N'(2^{p^r}) = 2^{p^r} + e_{p^r} \cdot 2^{(p^r + 1)/2} - 2^{p^r - 1} - e_{p^r - 1} \cdot 2^{(p^r - 1 + 1)/2}, \]

so that, by (4.11),
\[e_{p^r} \cdot 2^{(p^r - 1)/2} \equiv e_{p^r - 1} \cdot 2^{(p^r - 1 - 1)/2} \pmod{p}. \]

It follows that
\[(4.15) \quad e_{p^r} = \left(\frac{2}{p^r} \right) = \left(\frac{2}{p} \right)^r. \]

We shall show that generally
\[(4.16) \quad e_{2m + 1} = \left(\frac{2}{2m + 1} \right), \]
the Jacobi symbol. The following lemma will be used.

Lemma. We have
\[(4.17) \quad \sum_{rs = 2m + 1} \mu(r) \left(\frac{2}{s} \right) 2^{(s-1)/2} \equiv 0 \pmod{M}, \]
where \(M \) denotes the product of the distinct prime divisors of \(2m + 1 \).

Proof. Let \(f(2m + 1) \) denote the left member of (4.17). It is easily seen that \(f(2m + 1) \) is a factorable function of \(2m + 1 \). For \(2m + 1 \) equal to a prime power \(p^r \) we have
\[f(p^r) = \left(\frac{2}{p^r} \right) 2^{(p^r - 1)/2} - \left(\frac{2}{p^{r-1}} \right) 2^{(p^r - 1 - 1)/2} \]
\[= \left(\frac{2}{p^r} \right) \left(\frac{2}{p} \right)^r - \left(\frac{2}{p^{r-1}} \right) \left(\frac{2}{p} \right)^{r-1} \equiv 0 \pmod{p}. \]

This completes the proof of the lemma.

We shall now prove (4.16). By (4.13) and (4.14),
\[(4.18) \quad N'(2^{2m+1}) = \sum_{rs = 2m + 1} \mu(r) 2^s + \sum_{rs = 2m + 1} \mu(r) e_s \cdot 2^{(s+1)/2}. \]

It is well known that
\[\sum_{rs = 2m + 1} \mu(r) 2^s \equiv 0 \pmod{2m + 1}. \]

Hence (4.18) implies
\[(4.19) \quad \sum_{rs = 2m + 1} \mu(r) e_s \cdot 2^{(s+1)/2} \equiv 0 \pmod{M}. \]
Assume that

\[(4.20) \quad \varepsilon_s = \left(\frac{2}{s}\right) \]

for all proper divisors of \(2m+1\). Then (4.19) becomes

\[
\sum_{\substack{rs = 2m+1 \\ s < 2m+1}} \mu(r) \left(\frac{2}{s}\right) 2^{(s+1)/2} + \varepsilon_{2m+1} \cdot 2^{m+1} \equiv 0 \pmod{M}.
\]

By (4.17),

\[
\sum_{\substack{rs = 2m+1 \\ s < 2m+1}} \mu(r) \left(\frac{2}{s}\right) 2^{(s+1)/2} + \left(\frac{2}{2m+1}\right) 2^{m+1} \equiv 0 \pmod{M}
\]

and therefore

\[
\varepsilon_{2m+1} = \left(\frac{2}{2m+1}\right).
\]

Thus (4.9) becomes

\[(4.21) \quad S = \left(\frac{2}{2m+1}\right) 2^{m+1} \quad (q = 2^{2m+1}) \]

and (by 4.6),

\[(4.22) \quad S(1, c^4 + c + 1) = e(c^3 + c) \left(\frac{2}{2m+1}\right) 2^{m+1} . \]

We may now state

Theorem 2. Let \(q = 2^{2m+1} \), \(b \neq 0 \),

\[
S(1, b) = \sum_{x \in \mathbb{F}_q} e(x^3 + bx).
\]

Then

\[
S(1, 1) = \left(\frac{2}{2m+1}\right) 2^{m+1},
\]

where \((2/2m+1) \) is the Jacobi symbol. If \(e(b) = -1 \), put \(b = c^4 + c + 1 \); then

\[
S(1, b) = e(c^3 + c) \left(\frac{2}{2m+1}\right) 2^{m+1}.
\]

Finally

\[
S(1, b) = 0 \quad (e(b) = +1) .
\]
REFERENCES

DUKE UNIVERSITY
DURHAM, N.C. 27706
U.S.A.