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ON PROPER BOUNDARY POINTS
OF THE SPECTRUM
AND COMPLEMENTED EIGENSPACES

KIRSTI MATTILA

1. Introduction.

Let X be a Banach space and B(X) the Banach algebra of all bounded linear
operators on X. The following definition was given by Schechter in [10] for
operators on a Hilbert space. We assume that Te B(X). The spectrum,
resolvent set and kernel of T are denoted by Sp (T), Res (T) and N(T).

DEerFINITION 1. A point 4 € dSp (T) is a proper boundary point of Sp (T) if
there exists a bounded sequence {1,} =Res (T) such that

(A=A, =T)" ) = 1.
We denote by Pr (T) the set of all proper boundary points of Sp (T).

Let 0ePr(T). If X is reflexive, N(T) is complemented. In fact X
=N(T)®(TX)~ (Lemma 2 and [7 Corollary VIL.7.5]). We will show that
N(T*) is always complemented in X* We also extend this result to a
countable commuting family of operators and give an application to normal
operators on a Hilbert space.

In a non-reflexive space (TX)™ is not in general a complement of N(T)
(when a complement exists). An example of this is given by the derivation of a
hermitian operator with infinite spectrum on a Hilbert space H (see [1]). Itis a
hermitian operator on B(H) with complemented kernel (Lemma 3 and
Theorem 3).

We recall that an element q of a unital Banach algebra A is called hermitian if
its numerical range

V(4,0) = {f(a) : fe A* and |f|=f(1)=1} = R

or, equivalently, ||e*|| =1 for all real ¢ ([3, p. 46]). If a=h + ik where h and k are
commuting hermitian elements, a is normal (see [5] and [3]).
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If T is a hermitian operator, Sp (T)=Pr (T) by the following lemma. The
proof is essentially the same as in [10, p. 43].

LemMma 1. 0V(B(X), T)NSp (T)=Pr (T).

Proor. Let 4 be in the boundary of the numerical range V=V (B(X), T) and
in Sp (T). Since V is convex, there is an element a ¢ V such that ja — A|=d(a, V).
Note that « € Res (T) since Sp(T)< V ([5, p. 53]). By [11, p. 418]

l@=T)"" £ d@V)™'.

Hence ||(@—A)(@—T)"!||£1. On the other hand A € Sp (T) implies by the
Spectral mapping theorem that 1 € Sp ((a—4)(x—T)""). It follows that |(«
—i)(e—T) =1 and so 4 € Pr(T).

LemMA 2. The sequence {4,} in Definition 1 can be chosen so that i, — i.

Proor. Let {4,} be a bounded sequence=Res (T) such that || (4,—4)(4,
—T)™!|| — 1. There exists a convergent subsequence {4,}. Let a=lim 4,,.

If « € Sp(T), a=4, since the sequence {(4, —4)(%, —T)~'} is bounded in
B(X) (see [7, Corollary VI1.3.3]). Hence 4, — 4.

Suppose « € Res (T). Then
1) la—A@-T)""| =1.

Let f=4i+t(a—4), t € (0,1]. By (1) B € Res(T). Since (1) implies | (a— T)x]||
2la—4llx] (x € X), we have

IB-Tx|| = Ila—=T+A-(A—-a)x]| 2 || (¢—T)x|| - (1 —0)li—al |x]|

2 tli—of x| = [ (B—A)x]

for x € X. Therefore ||(8—A)(B—T)'|| < 1. Since 4 € Sp (T) this norm =1. To
complete the proof we choose a sequence of elements B converging to /.

2. The main theorems. -

We shall make use of a Banach (generalised) limit on the space I* of all
bounded complex sequences (see [2] for example).

Notations. If Fe B(X), [F]*={S*:Se F} and
comF = {Ve B(X): VS=SV forall SeF},

the commutant of F.
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THEOREM 1. If A € Pr (T), there is a projection P onto N(T*— 1) such that
IPII<1 and P e com[com {T}]*.

ProoF. We may assume that 2 =0 since the general case is then obtained by
considering T— 4 instead of T. By Lemma 2 there exists a sequence {4,} such
that 7, — 0 and |W,|| — 1 where W,=4;(4,—T)" L

Let Lim be a Banach limit on /*. Since for fixed elements x € X, f € X* the
sequence {(W}*f)(x)} is bounded, we can define an operator P on X* by

) (Pf)(x) = Lim (WXf)(x) (xeX, feX¥)

and then |P| 1.
Since TW,=W,T=1+,(W,—1) — 0, we have

(T*Pf)(x) = (Pf)(Tx) = Lim f(W,Tx) = 0
and so
3) T*P =0.
It follows that
P=(I-WHP+W*P = /' WT*P+W*P = WXP

which By (2) gives P2=P. That PX* = N(T*) follows easily from (2) and (3).
Consequently P is a projection onto N(T*).
Let Ve com {T}. Then

(PV*f)(x) = Lim (W}V*f)(x)  (by (2))

= Lim (V*Wrf)(x) = Lim (W2 f)(Vx)
(PN)(Vx) = (V*Pf)(x)  (by (2)
for x € X and fe X* Hence PV*=V*P.

i

ReMARK. In the case of Theorem 1, X*=N(T*—-/)@Y where Y is a closed
subspace of X* and ((T*—2)X*) V.

We need the following properties of a normal operator ([6, Lemma 3]). Let
T be normal with T=H+iK where H and K are commuting hermitian
operators. Then '

(N1) N(T) = N(H) N N(K)

(N2) com{T} = com {H] N com (K] .

THEOREM 2. Let F={T,; : i € N} be a family of pairwise commuting operators
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on X such that for each i 4; € Sp (T;) and either A, € Pr (T)) or T, is normal. Then
there exists a projection P onto the space

M= () N(T#=1)
i=1
such that |P||£1 and P € com[com F]*.

Proor. a) We prove first the theorem in the case when 0 € Pr (T)) for each
i € N. By Theorem 1 there exist projections P; onto N(T¥) with the properties:
IPi<1 and
“) P;ecom[com{T;}]* (ieN).
Let Lim be a fixed Banach limit on I®. Since the sequence
{(P,P,_; ... P, f)(x)} is bounded we can define an operator Q on X* by
@Nx) = Lim(P,P,_,...Pif)(x) (xeX, fe X*)*

and then Q is bounded with |Q[ =1.
We will show that Q is a projection onto M. For i=1,2,...
(TFQN(x) = (N(Tx) = Lim (T#P,P,_, ... P f)(x) = 0
since T¥P,=P, T* (k € N) and T*P;=0. Hence
) T¥Q =0 (ieN).

This implies QX* < N(T}*)=P,X* and so Q=P,Q (i € N). It follows from the
definition of Q that Q*=Q. We clearly have QX*c M. If on the other hand
fe M=NN(T}), f=P,ffor each i € N and we obtain f=Qf. Hence QX*=M.
The property @ € com [com F]* follows easily from (4).
b) The general case. We may assume that 4;=0 (i € N). By (N1) and (N2)
the space M can be expressed in the form N2, N(S¥) where 0 € Pr (S)) for all i
and

com{S;: ieN} =com{T;: ieN}.
The result follows when a) is applied to the family {S,:ie N}.

Obviously ||P|| =1 except for the case when M ={0} and P=0.

3. An application.
If a and o’ are elements of a unital Banach algebra A, we denote the operator
x > ax—>a’ on A by 8 or d(a,a). ‘
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LemMA 3. If a and a' are hermitian (normal) elements of A, d(a,d) is a
hermitian (normal) operator on A.

The proof is straight forward. Note that if a=h+ik and a’' =k +ik’, then
d(a,a’) = 6(h,W)+id(k, k') .
Let H be a Hilbert space and let
F, ={N;: ieN} and F, ={N;: ieN}

be two families of normal operators on H such that in each family the elements
commute pairwise. Then the operators 6(N, N}, i=1,2,..., also commute.
The space B(H) can be isometrically identified with the dual space of the
trace class 7(H) equipped with the trace norm [9, p. 47]. Then an operator
Te B(H) is identified with the linear form t + trace (¢tT) (¢t € t(H)). For
T, T' € B(H) the restriction 6(T', T)|t(H) is a bounded operator on t(H) and

(T, T) = (=4(T", T)|t(H)* .

We omit the proofs. It follows from [4, p. 2] that a restriction of a hermitian
operator is hermitian. Hence if T and T’ are hermitian we deduce from Lemma
3 that 6(T", T)|t(H) is hermitian on z(H).

We conclude that 8,= (N, N,)| t(H) is normal and its adjoint is — (N, N),
i=1,2,.... Applying Theorem 2 to the family F={5; : i € N} we obtain

THEOREM 3. There exists a projection p onto the space
{SeB(H): NS = SNj, ieN}
such that |pl| £1 and p € com [com F]*.

We refer to [13] for another construction of a projection onto the
commutant of a normal operator. There always exist projections of norm one
onto von Neumann algebras (see [8]). These projections have a property
similar to that of p in the following corollary [12].

COROLLARY. p has the property: Given U e comF, Ve comF,

p(USV) = Up(S)V (S e B(H)).
ProoF. Let u=u(U,V) be the operator S+ USV (S € B(H)). It can be

shown that y is the adjoint of the operator u(V,U)|t(H) and u(V,U)|t(H)
commutes with F. Since p € com [com F]* we conclude that pu=pup.

I wish to thank Dr. T. A. Gillespie for his help in this problem.
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