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DELTA-PLURISUBHARMONIC FUNCTIONS

URBAN CEGRELL*

1. Introduction.

Let K be a convex cone in a linear space F. We denote by K the set of
elements ¢ in F which have a representation ¢ = ¢, — @, where ¢,, ¢, € K. Itis
sometimes possible to give countably many seminorms on 4K, turning it into a
Fréchet space.

In Schaefer [7, p. 221] it is proved that if F is a Fréchet space and if K is a
closed convex cone in F, then 6K is a Fréchet space with topology defined by
the seminorms

lol; = inf(l‘ﬂllj+|(p2|j) P 0=0,—05 0,0,€K), jeN

where |-|; are a generating family of seminorms on F.

In this paper we will consider 6K and its dual where K is the convex cone of
plurisubharmonic functions. Function spaces of this type have been studied by
Arsove [1], Kiselman [6] and Cegrell [4], [5]. The main result of this paper is
to be folind in section 5. We prove that, on pseudoconvex sets, every
continuous functional on 6PSH which is carried by a compact pluripolar set
can be written as a difference of two positive functionals.

I wish to thank Christer Kiselman for many valuable discussions on the
subject treated in this paper.

The following notation will be used. Let U be an open subset of C". C?(U)
are the p times continuously differentiable functions, C4(U) those with compact
support in U. SH(U) and PSH (U) denote the subharmonic and the
plurisubharmonic functions respectively. Ha (U) stands for the harmonic and
Ph (U) for the plurisubharmonic functions. By B(U) we mean the positive
Borelmeasures on U. B(U) is a closed convex cone in dB(U) where 6B(U)
carries the topology of total variation on compact subsets of U.

2. Positive linear operators.,

Our general reference for this section is Schaefer [7]. Let F be a locally
convex topological vector space over R and let K be a convex cone contained
in F. Put
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K ={peF ; ux)20 ¥xeK}.

THEOREM 2.1. Assume that there is a generating family of seminorms (P,);; on
F such that

Pi(x+y) = Pi(x)+P,{y) Vx,yeK,iel
Then F'=(K’)

Proor. Indeed, if £ € F’ we can write ¢ =n+1&— (n—1¢) where y € F’ is an
extension to all of F of CPk for a suitable choice of i e I and C € R*.

Consider now dK where K is a convex cone in a linear space F. Assume that
we have a family (P,);.y of seminorms on 3K. Put

lol; = inf (Pi(@)+Pi@;) : ¢=0, -0, 1.0, € K), ¢edK, ieN.

Then (|| - ||;){=, is a family of seminorms turning K into a metrizable locally
convex topological vector space. Furthermore, if K is Hausdorff for (P)2,
then dK is Hausdorff for (][ [|,)7<,. We call this topology a d-topology defined
by the seminorms (P))-,. Observe that P,(p)= | ¢]|; for all ¢ in K.

The following Theorem has the same proof as Lemma 2, p.-221 in Schaefer

7.

THEOREM 2.2. Assume that we are given a family (P){<, of seminorms on 6K
turning it into a Hausdorff space. If every Cauchy sequence of the special form s,
=310, @, € K is convergent with limit in K (when 6K is provided with the
(P)i=, topology), then the é-topology turns 0K into a Fréchet space.

THEOREM 2.3. Assume that 6K and SL have been equipped with d-topologies
which turn K into a Fréchet space and 3L into a Hausdorff space such that (3LY
=0(L"). Let u: K — OL be a linear map such that u(K)< L. Consider

0K -“» du(K) < SL
® i
0K /Keru
where @ is the canonical map and i the map which makes the diagram
commutative.
Then:
1. u is continuous.

2. i~ is continuous if and only if Su(K) is a Fréchet space for the topology
induced by OL.
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3. If u~' is continuous then every element in (3K) which vanishes on Ker u is
in §(K').

CoroLLARY 2.4. If (6u(K)) =0(u(K)) when 6u(K) carries the -topology de-
fined by the seminorms on 3L then

u: 6K — du(K)

is continuous when ou(K) carries the d-topology defined by the seminorms on SL.

Proor oF THE THEOREM. 1. follows from Chapter V, Theorem 5.5 and
Theorem 5.6 in Schaefer [7].

2. Keru is a closed subspace of 6K since u is continuous. Thus 6K/Keru is a
Fréchet space. Furthermore, # is continuous so if du(K) is a Fréchet space it
follows from the closed graph theorem that #i~! is continuous.

On the other hand, if i~ ! is continuous, it is clear that u(K) must be a
Fréchet space.

3. Given u € (6K) vanishing on Keru. Put

(@) = u(@ 1(@); ¢ e K/Keru.
It is clear that i is well-defined and continuous. Since ii~! is continuous fioii~
is contintious so by the Hahn-Banach theorem there is a v € (0L) extending
fed~'. By assumption v=v, —v, where v,, v, € L. Since u is continuous and
since u(K)< L we have v,ou, v,ou € K’ and

1

VioU—Vyou = Viollo@® —v,olicP
= (vl-—vz)oao¢ = ﬁoa’10a0¢ = ﬁ0¢ = u

and the proof is complete.

PROOF OF THE COROLLARY. Take L=u(K) in 1.

3. Delta-plurisubharmonic functions and currents.

Let U be an open subset of C*. Then PSH (U) is a closed convex cone of
L;,.(U) and we can form the space dPSH (U) which is a Fréchet space with the
d-topology defined by the seminorms on L{, (U). We put

lolly = inf(f @1l +1@2 5 @=01—@2,0,,¢, € PSH (U)), ¢ € SPSH (V)
A

for AccU.
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DEermiTiON. A compact subset K of U is said to be a carrier for
u € (6PSH (U)) if to any open subset O containing K there is a constant ¢ so
that

lulo)l = cllolo. Ve edPSH(U).

DerinITION. A subset K of U is said to be a support for u € (6PSH (U)) if, for
any open O with K< <0, u(¢)=0 for every ¢ € §PSH (U) which vanishes on
0.

The following lemma will be used later on. The proof is similar to that of
Lemma 3.4 in Kiselman [6] and Lemma 1.6 in Cegrell [4].

LEmMa 3.5. Let U be pseudoconvex. Assume that @,y € PSH (U) are
continuous and equal in a neighborhood of a compact holomorphically convex set

K. Then o —y|x=0.

DerFiniTioN. Denote by S(U) the convex cone of closed and positive (1, 1)-
currents,

t = izt'jdzl A dfj
ij
and by 6S(U) differences of such elements. The coefficients t;; are measures on

U and by use of Theorem 2.2 it is easily seen that 4S(U) is a Fréchet space with
topology defined by the seminorms

it = inff Y th+th, KecU
K i=1

where the inf is taken over

t' =iy thdz; A dZ; e S(U)
i
2 =i 13dz; A dz;e S(U)
i
with t=t!—r2

Remark. It follows from Theorem 2.1 that (6S(U)) =46(S(U)). .

4. Operators vanishing on Ph.
Denote by j the map

]

j = i6d: 8PSH (U)/Ph (U) — éS(U)
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LeMMA 4.6. The map j is continuous. Furthermore, if U is pseudoconvex with
H?*(U,C)=0, then j~' is continuous.
(H*(U, C) denotes the second cohomology group with complex coefficients.)

Proor. By Theorem 2.3.1 j is continuous. Now, if U is pseudoconvex with
H?(U,C)=0 then j is a bijection so by Theorem 2.3.2 j~! is continuous.

THeoREM 4.7. Assume that p € (6PSH (U)) where U is pseudoconvex with
H*(U,C)=0. Then the following conditions are equivalent.

1) w=p,—p, where p,, u, € (PSH' (U)),

2) there is a compact set K in U and a constant ¢ so that

lulo)l = ("[ 4¢, Yo ePSH(U),
K

(4 is the Laplace operator)
3) u vanishes on the pluriharmonic functions.

Proor. It is clear that 2) = 1) = 3). That 3) = 2) follows from Lemma 4.6.
(It follows directly from Lemma 4.6 and Theorem 2.3,3 that 1) < 3))

DeFiniwoN. Let M(U) denote the positive measures y on U which can be
written u=A4¢ for a ¢ € PSH (U). dM(U) is the set of differences of such
elements.

DeriniTioN. Denote by m(U) the positive measures on U which are in M(U?)
for every pseudoconvex U'c cU with H*(U!,C)=0. ém(U) is the set of
differences of such measures.

THeoOREM 4.8. dm(U) is a Fréchet space with topology defined by the
seminorms

lelllx = inf(f At 5 t=ti—ty t, 1 € m(U)>; KecU.
K
Furthermore, if U is pseudoconvex then dm(U)=0M (U), Ker 4 =Ha (U) and the
operators in the following diagram are continuous.

SPSH (U) 45 ém(U)
¢ ar//a

6PSH (U)/Ker 4

Proor. By Theorem 2.2 it is enough to prove that every Cauchy sequence
(sp)7% of the form
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n
S = 3 t, t,em(U)

is convergent with limit in m(U). It is clear that 373, ¢, is a positive measure on
U and we claim that Y} t, € m(U).

Given a psedoconvex set Ulc cU with H?(U,C)=0, we can find
@, € PSH (U') with

4@, =5, = Y t,.
v=1

This means that lim,_, . id0¢, exists as a positive, closed (1,1)-current on U™
So there is a ¢ € PSH (U!) with

i00p = lim id0g, .
In particular 4p=32.,t, hence lim,_ , . 5,=2.2%, t, € m(U).

Assume now that U is pseudoconvex. It is clear that dM(U)com(U) and
Theorem 5.3 in Kiselman [6] proves that m(U)cdoM(U), hence dm(U)
=0M(U).

Furthermore, Ha (U) is a linear subspace of 6PSH (U) by Kiselman [6,
Proposition 5.1] and it is closed since the topology on dPSH (U) is stronger
than that induced by Lj,.(U). Thus 0PSH (U)/Ha (U) is a Freéchet space. The
continuity of 4 and 4! follows now from Theorem 2.3, 1-2. .

THEOREM 4.9. Let U be pseudoconvex. Assume that u € (6PSH (U)) and that
vanishes on Ha (U). Then p=u, —u, where u, u, € PSH' (U).

Proor. Theorem 4.8 and Theorem 2.3,3.

S. Delta-plurisubharmonic functionals with a small carrier.

THEOREM 5.10. Let U be pseudoconvex and assume that u € (6PSH(U)). If pis
carried by a compact pluripolar set then u(p)=0 for every continuous
plurisubharmonic function ¢@.

Proor. Let P be a compact pluripolar set which carries p. There is a
¥ € PSH (U), ¥ = — oo such that
Pci{zeU; y(z) = —oo} = P,.

Choose K,, ne N, a fundamental sequence of compact in U. Given ¢,
continuous and plurisubharmonic on U. .
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Put 0, = sup (p—sup @, y/n?) .
K,
Then 6,=¢—supg ¢ near P; so u(f,)=p(p—supg @) by Lemma 3.5.

Furthermore, (3°)-, 0,)%, is a Cauchy sequence in 6PSH (U). Indeed, given K
< cU we choose n, so that K< K, . If s>t>n, then
v=t+1

s t S u
cgof, 550 - L o<l 5
v=1 v=1 K K,, K.,

W |

v=t+1 K, v=t+1
= X pL Wl—0, t— +00.
o

v=t+1

s

2 0

IA

Thus (u(3%-,6,)%, is a bounded set. Now, u vanishes on constants since

N
Nu(-1) = u(z sup(—t,va))

v=1

and since

(i sup(—l,wvﬁ)w

=1 n=1

is a Cauchy sequence in dPSH (U). Hence
N 0
(u(Z HV» = (Nu(@)¥ -4
v=1 N=1
is a bounded sequence and it follows that pu(p)=0.

THEOREM 5.11. Let U be pseudoconvex and assume that p € (60PSH (U)). If pis
carried by a compact pluripolar set then

K = py—p, where p,,p, € PSH' (U).

Proor. Since any he Ha(U) can be written as a difference of two
continuous plurisubharmonic functions it follows from Theorem 5.10 that
vanishes on Ha (U). The Theorem follows now from Theorem 4.9.

Let v(z, ¢) denote the Lelong number at z.

LemMa 5.12. Let ¢ be a pbsitive measure with compact support in U. Then

OPSH(U)2 ¢ — j.v(z,(p)da(z) eR
defines an element in PSH’ (U).



350 URBAN CEGRELL

Proor. Theorem 2.3,1.

It has been proved by Kiselman [6, Theorem 6.2] that if u € (6PSH (C") is
carried by zero and if u(pea)=u(¢p) for all ¢ € SPSH (C") and all unitary
transformations a then u is a constant times the Lelong number at zero. The
following example shows that, in contradistinction to the convex and
subharmonic cases, there are functionals in PSH’ (U) with disjoint carriers and
supports.

ExaMpLE. (C?) Let D denote the set {(z,,z,) € C?; |z,] <1, |z,) <1} and put

Alg) = J‘ .V((O,Zz),‘l’)dm
lz2l <1/2

where m is the Lebesgue measure in C! and ¢ € 6PSH (D). By Lemma 5.12
A € PSH' (D) and since A (log|z,])>0, 4 is not identically zero. By Siu [8, p.
897 v((0, z,), @) is constant a.e. on |z,| < 1 s0 4 is carried and supported by every
point in {z; =0, |z,|<1}.

6. An application.
On C? we write d=0+0, d°=0—0 so that dd‘p =2idd¢. The operator

(dd@)? = dd°¢ A dd¢p ,

¢ plurisubharmonic and continuous, has been studied by Bedford and Taylor
in [2] and [3]. (In particular, see Section 5 in [3].)
Consider the bilinear map

C3(U)yx C*(U) ¥ 6B(U)
defined by

o, ¥)(o) = J‘Pdd’rp A ddy, PeCy).

TueoreM 6.13. Consider PSH (U)N C(U) as a closed convex cone in C(U) and
Jorm & — (PSH (U)NC(V)). The map ty has an extension Ty

[6— (PSH (U) N C(U))] x 6PSH (U) -1 8B(U) .

Ty is continuous and T(@,¥) is a positive measure for ¢ € PSH (U)NC(U),
¥ € PSH (V).
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Proor. Define
Tu(o.)(®) = J(pddcd) A ddy

for ped— (PSH (U)NC(U)), y € 6PSH (U), @€ CT (U). Ty is then well-defined
since @dd‘® has continuous coefficients with compact support and since the
coefficients of dd‘y are Borel measures.

If ¢,y € C*(U) then by Proposition 2.1 in Bedford and Taylor [2] we have

Ty(@,¥)(®) = ty(e,¥)(P)

which proves that Ty extends t.

Furthermore, by means of a regularisation of ¢ and ¥ it is easy to see that
Ty (@, ¥) is a positive measure for ¢ € PSH (U)N C(U), y € PSH (V). It follows
now from Theorem 2.3,1 that T, is separately continuous and therefore
continuous since both § — (PSH (U) N C(U)) and 8PSH (U) are Fréchet spaces.

ReMARk. There is no continuous bilinear form on §PSH (U) x 6PSH (U)
which extends t.

This follows from an example of Shiffman and Taylor which can be found in
Siu [9].

THEOREM 6.14. If ¢ € PSH(U)NC(U) then Ty(p,9) has no mass
concentrated on a pluripolar set.

Proor. Given ¢ € PSH (U)N C(U) and P, a compact pluripolar subset of U.
We have to prove that .

J dTU((Pv‘p) =0.
P

Consider the linear form

OPSH(U) 3 y — L dTy(e,¥) .

This form is carried by P so, by Theorem 5.10 it vanishes on the continuous
plurisubharmonic functions. In particular,

L dTy(p,9) = 0
and the proof is complete.

ReMArk. For n=2, Theorem 6.14 is a sharper version of Corollary 2.5 in
Bedford and Taylor [2].
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