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FLAT AND PROJECTIVE MODULES

S. JONDRUP

In this paper we study rings in which finitely generated flat modules are
projective.

First we show that if the associated Lie ring of the ring R, is nilpotent, then
cyclic flat left modules are projective if and only if cyclic flat right modules are
projective. Next we give an example of a ring R with solvable Lie ring and a
non projective cyclic flat left module, but having all cyclic flat right modules
projective.

In the second part of the paper we study the trace ideal of the finitely
generated flat module and we prove that for any ideal I of a commutative ring
R, there exist a commutative ring S and a cyclic flat S-module, M, such that R
is a subring of S and the trace ideal of M is IS.

In the last part of the paper we study, when projectivity for finitely generated
flat modules can be lifted modulo the Jacobson radical.

1.

In [2] it is shown that if M =R/I is a cyclic flat left R-module, then there
exists a family of elements q; € I (i € N) satisfying a;a;, , =a; for all i such that
M is R-projective if and only if there exists an i € N such that

Ra; =Ra;,, = ... = Raj,, = ... .

Furthermore it follows from Ra;=Ra;,,, that a;,, is idempotent and hence

i 28i41 =812
Let us also recall that every cyclic flat left R-module is projectove if and only
if each ascending chain of principal left ideals

Ra, g ... € Ra, & ..., where a,=aa,,,,

terminates.

2.

If R is a ring, the associated Lie ring is denoted G(R) and the product in
G(R) is [x,y]=xy—yx.
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C, is defined by induction as follows, C,=G(R) and
Cn+1 = {[an’] I X € G(R) and ye€ Cn} .
D, is also defined by induction. Dy=G(R) and

Dn+l = {[x’y:l I xay € Dn} .

Recall that G(R) is said to be nilpotent if C,=0 for some n and solvable if D,
=0 for some n.

ProrosiTION 1. Let R be a ring and suppose G(R) is nilpotent. Every cyclic flat
right R-module is projective if and only if every cyclic flat left R-module is
projective.

Proor. Suppose that every cyclic flat right R-module is projective. To show
that every cyclic flat left R-module is projective it suffices to prove that each
ascending chain

* Ra, ¢ < Ra

= v = n

c ..., a, = a,a,+1 »

terminates.

By our assumption there exists an n such that C,=0. Note that [a;,a;.,]
=a;,,a;,—a; and [a;, a;—a;, a;] =a;, a? —a?. Now it is easily seen that for all
n

n n
ai+1a,’ —a‘ € C" .

Thus g, af =af for all i,

Let I denote the right ideal generated by af, i € N.

R/I is a flat right R-module, since a7, al=al, and consequently R/I is
projective. From the remarks in section 1 it follows that there exists an m, such
that af, is idempotent for m=m, and moreover af,x,,=a%, , , for a suitable x,,. If
we multiply this last equation by 4, on the left, we get aj,.,,=aj. Since
Qs 10042 =0p 41, We get the following

Ra,., € Ra,,, = Ra,, ., = Ra, < Ra,

and the proof of proposition 1 is completed.
We finish this section by an example.

ExampLE 1. The ring R defined below has the following properties:

(i) Cyclic flat right modules are projective.
(ii) G(R) is solvable.

* Math. Scand. 43 — 22



338 S. JONDRUP

(iij) There exists a non-projective cyclic flat left R-module.
(iv) R/rad (R) is commutative and there exists a cyclic flat, non-projective
R/rad (R)-module. (Here rad (R) denotes the prime-radical of R).

Construction of the ring R. Let R be the Z,-algebra on the generators x;,
i € N, and defining relations

1) XX;q =% forallieN.
2 X jXienX; = X;45%;  foralli,jand ke N.

We have a homomorphism from R to the commutative ring S=2Z,[t,};cn,
where t;t;.,=t,; for all i € N, sending x; to t,, thus x;=+0.

Let I denote the keft ideal in R generated by the x;’s. R/I is a cyclic flat left
R-module and non-projective, since I is not generated by a single one of the
X;’s.

We prove that G(R) is solvable by proving that D,=0. It is obvious that it
suffices to prove that [[y;,y,],[¥3,5,1]1=0, when y; is a monomial in the x;s.
From (1) and (2) it follows that any monomial in the x;’s either is of the form
X;+4xx! or of the form xJ. It follows now that D, is generated by elements
(1+x)xp, j>i, and (x;44+x;4)xf. It is now straightforward to check that
D,=0.

By considering the two cases i2j and i <j one can easily prove the following
two equations

(xi+1xi“xi)xﬁkxf(xiuxi—xi) =0
(x4 12— X)X (X4 1% —x) = 0.

Consequently (x;,,;x;—x)R(x;4,%;—x)=0, s0 x;,,x;—X; belongs to rad (R).
Hence R/rad (R) is a commutative ring and since S has no nilpotent elements it
is easily seen that R/rad (R) is isomorphic to S. The module S/} ; St; is a cychc
flat non-projective S-module, thus (iv) follows.

The argument that shows that (i) holds is similar to that in [2, p. 209], but
slightly more complicated. We have to prove that any ascending chain of
principal right ideals of the form

@) ... @)s ..., where a,,,a, = a,,

terminates. As noted, any q; is a sum of monomial of one of the two forms
kaxf, x pqE€ NU{O}

Let us ﬁrst assume that infinitely many of the a;s have a non-zero constant
term, i.e. constant term 1. Then we can suppose that we have an ascending
chain of principal right ideals of the form

**) (+b) g ... € (1+b) &
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where (1+b,,,)(1+b,)=(1+b,) for all n and all b,’s have zero constant term.
We get that b, b,=b, ., for all n. In b, , we pick a monomial x,,xf such that
k is chosen maximal and among the monomials of the form x,x{ we pickone
with ¢ minimal, then it follows that b, must be a sum of monomials, where
at least one of these is of the form x,x{,,, now it is easily seen that (**) must
terminate.

We can now assume without loss of generality that all a,’s have zero
constant term. Among all monomials appearing in the a;’s pick ala?, t <m and
r=0 or 1, such that m is minimal and among all these monomials pick one
where ¢ is maximal and next pick one with g minimal. Suppose this monomial
appears in the representation of g, as a sum of monomials. It is now
straightforward to check that the relation a,,,a,=a, can not hold.

One might recall that for a commutative ring cyclic flat modules are
projective if and only if cyclic flat modules over the ring moculo the prime-
radical are projective.

3.

It is well-known and quite easy to prove that the trace ideal of a projective
module is an idempotent ideal. If moreover the ring is commutative the trace
ideals of the projective modules are precisely the pure ideals of the ring, [3].
Here we prove the following result:

PropPoSITION 2. Let R be a commutative ring and a any ideal in R. Then there
exists a commutative ring S, containing R as a subring, and a cyclic flat S-module
M such that the trace ideal of M equals aS.

Proor. Let S, be the polynomial ring in countable many indeterminates X,
i e N, and let I be the ideal generated by

X, Xps1—X,(neN) and aX,(aea, neN).

Let S be the factor ring S,/I, and M the factor module S/¥;Sx; where x;
denotes the image of X, under the canonical homomorphism S, — §,/I.

M is a flat S-module by the results in section 1.

We have a R-homomorphism from S, to R given by X; — 0. Each element
in I is mapped to 0, so it follows that R is a subring of §.

It remains to show that the trace ideal of M is aS. Let us first note that if S/b is
a cyclic module, the trace ideal must be contained in (., S(1—b). If M, is a
cyclic flat module and r € N, S(1 — b), then r must belong to the trace ideal of
M. To prove the last claim we just have to prove that rb=0 for all b € b. Let
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b e b, and choose b, € b, such that bb, =b (this is possible since M is flat). We
can write r=t(1 — b,) for a suitable t € R, and if we multiply this equation by b,
we get rb=0.

Now let us return to the proof of proposition 2. We have to show that

N S(1-x) = aS .
ieN

If a € a, then a=ax; for all i, consequently aS is contained in M,y S(1 —x,).
So assume on the contrary that b e [, S(1—x;). We must have bx;=0,

since b belongs to the trace ideal of M. Let us write b=by+ b, with b, € R and

b, € ¥;Sx;. We can choose an element x; such that b, x;=b,, thus we have

blx,, = bl kg] .
Now we get the following equation
ka = boxk+bl=0;

consequently b, = —byx,, and hence b=b,(1—x)=by(1—x;,,) and by(x;
=x;4+1)=0.
In the ring S; we must have by(x;—x;,,) € I. Therefore

bo(xj—xj+1) = afl(xh‘ . '9xm)+z gn(xlﬂ' . ~sx1;,)(xnxn+l —xn) .

If we reduce the coefficients in each polynomial modulo a, we get

bO(xj-xj+l) = Z gn(xl" . "xp,,)(xnxn+l—xn) .

From this last equation it follows that b,=0, ie. b, € a, hence b=by(1
"‘Xj) € GS.

Remark. If in proposition 2 a is a nilpotent ideal, then the trace ideal of the
flat module M is nilpotent. Thus one can not conclude that the trace ideal of a
finitely generated flat module is idempotent.

4.
In this last section we study the following open problem:

Is it true for all rings R and all finitely generated flat left R-modules M with
M/JM R/J-projective, that M is R-projective? (J denotes the Jacabson radical
of R). :

The problem is known to have a positive solution in each of the following
cases
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(a) R is commutative [5].
(b) Each prime factor ring of R is a Goldie ring [4].
(c) J is equal to the prime-radical of R [4].

By Morita technique it suffices to solve the problem in case M is a cyclic
module. Moreover it follows from the results in [4] that one might assume
without loss of generality that the cyclic module M =R/I hashdg M £1,i.e.1is
projective. In case idempotents can be lifted modulo J we might also note that
the problem has a positive solution, because in this case

I = Re®(INR(1-¢),

where e is an idempotent in [ such that e+J generates I+J. Since I is
projective, I N R(1 —¢) is also projective, but this module is equal to J(I N R(1
—e)), thus zero. So [ is finitely generated, and consequently M is projective.

We are going to prove that to solve the problem one may assume R/J
isomorphic to K@K, where K either is a finite field or the ring of integers.

Suppose that there exists a ring R having a cyclic flat non-projective module
M, such that M/JM is R/J-projective. By the results in [4] it follows that we
might assume that the ring is a prime ring. From the remarks in the
introduction of this paper we get that there exists a family of element (a;);.n,
such that a,a;,, =q; and a,,=a,,a, modulo J for m2 n,. If we leave out a finite
number of the a’s we get elements g, i € N, such that a;,=a,4;,, and a,,
—aua, € J for all m.

Let the prime ring of R be denoted by K; K is either a finite field or the ring
of integers.

We let C, denote the least subring of R containing K and the a;’s. C, denotes
the least subring of R containing C, and the inverses of the elements

u,, = l—ci(a—aa) (c;eCyte N) .
C, is defined by induction: C, ,, is the least subring of R containing C, and the
inverses of the elements

u,, = l—cya,~aa) (c,€CpnteN).

For all n, we have C,£C,,,; S denotes the union of all the C,’s.

The module S/3;Sa; is a cyclic flat S-module, since a;=a;a;,;. It is not
projective, because S is a subring of R ([1, Theorem 3.1]), and by the
construction of the ring S we have a,—a,a, € J(S); hence the module S/¥; Sq;
is projective modulo J(S).
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If we can prove that S/J(S) is isomorphic to K@K, then we have reduced the
general problem to the case where R/J is isomorphic to two copies of a finite
field or to two copies of the ring of integers.

Let us first note that

u W(l-u, ) =1-u_teJ(S) forallnandr.

Thus any elements’in S is congruent to an element in C, modulo J(S). Having
this in mind it is readily checked that a,S(1—a,) € J(S) for all n € N.

Let us assume that K is a finite field. In case K is the ring of integers a similar
argument works.

For any primitive ideal P in S, we must have q,€ Por (1—a) € P.If g, € P
for some i, then a, =a,a, € P. Now, for any m € N, we get the following

a,€S8a;,+J(S) € Sa;, +P g P.

S modulo the twosided ideal generated by the a;’s is clearly isomorphic to K, so
P must equal that ideal.
On the other hand, if (1 —a;) € P for all i, then

U e = 1 —c,,a‘(l “al)

is congruent to 1 modulo P. Thus we get that S/P is isomorphic te K.

We have now proved that S has two primitive ideals P, and P,; both ideals
are maximal left and right ideals. Hence S/J(S) is isomorphic to S/P,®S/P,,
which is isomorphic to KOK.
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