# A PROOF OF THE MACKEY-BLATTNER-NIELSEN THEOREM

# ESBEN T. KEHLET

#### 1. Introduction.

Let G be a locally compact group, H and K closed subgroups, u a (strongly continuous unitary) representation of H on the Hilbert space h(u), and v a representation of K on h(v). Let U denote the left regular and V the right regular representation of G on  $L^2(G)$ . Let ind u denote the representation of G induced by u, as defined e.g. in [13], and  $p_u$  the corresponding representation of  $L^{\infty}(G/H)$  on h(ind u). We prove that the von Neumann algebra

$$[L^{\infty}(G) \otimes 1 \otimes 1]' \cap (V \otimes u \otimes 1)(H)' \cap (U \otimes 1 \otimes v)(K)'$$

on  $L^2(G) \otimes h(u) \otimes h(v)$  is isomorphic to the von Neumann algebra

$$[p_u(L^{\infty}(G/H))\otimes 1]'\cap ((\operatorname{ind} u)\otimes v)(K)'$$

on  $h(\operatorname{ind} u) \otimes h(v)$ .

With an appropriate definition of the representation ind v (say) of G induced "from the right" by v and the corresponding representation  $p'_v$  of  $L(K \setminus G)$  on  $h(\operatorname{ind}' v)$ , we get a symmetric result, and so as a corollary we find, that the von Neumann algebra

$$[p_u(L^{\infty}(G/H))\otimes 1]'\cap ((\operatorname{ind} u)\otimes v)(K)'$$

on  $h(\operatorname{ind} u) \otimes h(v)$  is isomorphic to the von Neumann algebra

$$[1 \otimes p'_v(L^{\infty}(K \setminus G))]' \cap (u \otimes \operatorname{ind}'v)(H)'$$

on  $h(u) \otimes h(\text{ind'} v)$ . Nielsen's theorem [13], cf. [14], is the case  $h(v) = \mathbb{C}$ ,  $v \equiv 1$ , and the Mackey-Blattner theorem [10], [1], is the subcase K = G.

Our proof uses [7] and the Maréchal [11], [12] and Vesterstrøm-Wils [15] theory of disintegration. In [8] we give new proofs of the relevant results of that theory, based on the notion of essential values of a measurable map instead of on the existence of a lifting. So Nielsen's theorem is proved without the use of liftings.

Received December 2, 1977.

We use freely [2], [3], [4], [5] and [6].

We wish to thank G. A. Elliott for suggesting the possibility of this proof of Nielsen's theorem.

## 2. Preliminaries.

Let T be a locally compact space,  $\mu$  a positive Radon measure on T, and S a topological space. We call a map f of T into S Lusin measurable if for any  $\varepsilon > 0$  any compact subset of T is the union of a compact set on which f is continuous and a set with measure less than  $\varepsilon$ , cf. [2]. If h is a Hilbert space and  $S = \mathcal{L}(h)$ , we call f a measurable field, if  $t \mapsto f(t)\xi$  is Lusin measurable for each  $\xi \in h$ . By a disintegration of an operator  $B \in \mathcal{L}(L^2(\mu,h))$  (which we identify with  $\mathcal{L}(L^2(\mu)) \otimes \mathcal{L}(h)$ ) we mean a bounded map  $b \colon T \to \mathcal{L}(h)$ , such that b and  $b^*$  are measurable fields, and such that for each  $f \in \mathcal{L}^2(\mu,h)$ ,  $t \mapsto b(t)(f(t))$  is a function in  $\mathcal{L}^2(\mu,h)$  whose class (with respect to equality l.a.e.) is the image under B of the class of f. In [12] and [15], cf. [8], it is proved that any  $B \in \mathcal{L}(L^2(\mu,h))$  commuting with all multiplication operators by functions in  $\mathcal{L}^\infty(\mu)$  has a disintegration.

Now assume given a locally compact group G with left-Haar measure dg and module  $\Delta_G$ , and a closed subgroup H with left Haar measure  $d\gamma$  and module  $\Delta_H$ . Let  $\pi$  denote the quotient map  $G \to G/H$ . Let  $\lambda$  be a quasiinvariant measure on G/H and  $\kappa$  a corresponding continuous function on  $G \times (G/H)$  with values in  $]0, \infty[$ , such that

$$\int_{G/H} \varphi(g^{-1}x) d\lambda(x) = \int_{G/H} \varphi(x) \varkappa(g,x) d\lambda(x), \quad \varphi \in \mathscr{K}(G/H).$$

Recall that  $\varrho(g) = \varkappa(g, H)$  defines a continuous function on G with

$$\varrho(g\gamma) = \varrho(g)\Delta_H(\gamma)\Delta_G(\gamma)^{-1}, \quad g \in G, \ \gamma \in H,$$

and  $\varrho(e) = 1$ , and  $\lambda^* = \varrho dg$ .

Given a representation u of H on h(u) define the induced representation ind u of G and the representation  $p_u$  of  $L^{\infty}(G/H) = L^{\infty}(\lambda)$  on  $\mathcal{F}(u)$  and h(ind u) as usual, see e.g. [13] or [7].

Let K be a closed subgroup of G with left Haar measure dk, and let  $\lambda_K$  be a quasiinvariant measure on  $K \setminus G$  and  $\kappa_K$  a corresponding continuous function on  $(K \setminus G) \times G$  with values in  $]0, \infty[$ , such that

$$\int_{K \setminus G} \varphi(xg) d\lambda_K(x) = \int_{K \setminus G} \varphi(x) \varkappa_K(x, g^{-1}) d\lambda_K(x).$$

Given a representation v of K define the representation ind' v induced "from the right", cf. [9], on the Hilbert space h(ind' v) of classes corresponding to the space  $\mathscr{F}'(v)$  of Lusin measurable functions f on G with values in h(v) satisfying

$$\forall g \in G \quad \forall k \in K: \quad f(kg) = v(k)(f(g)),$$

and with norms transferable to  $\lambda_K$  square integrable functions on  $K \setminus G$ , by

$$((\operatorname{ind}' v)(g)f)(k) = \varkappa_K(Kk, g)^{\frac{1}{2}}f(kg), \quad k, g \in G, f \in \mathscr{F}'(v)$$

and define

$$(p'_v(\varphi)f)(g) = \varphi(Kg)f(g), \quad g \in G, f \in \mathscr{F}'(v), \varphi \in \mathscr{L}^{\infty}(K \setminus G).$$

Let U denote the left regular representation of G on  $L^2(G)$ , given by

$$(U(g)f)(k) = f(g^{-1}k), \quad g, k \in G, f \in \mathcal{L}^2(G),$$

and let V denote the right regular representation given by

$$\big(V(g)f\big)(k) \,=\, \varDelta_G(g)^{\frac{1}{2}}f(kg), \qquad g,k \in G, \ f \in \mathcal{L}^2(G) \;.$$

Let p denote the representation of  $L^{\infty}(G)$  as multiplication operators on  $L^{2}(G)$ . Let q denote the representation of  $L^{\infty}(G/H)$  on  $L^{2}(G)$  defined by

$$(q(\varphi)f)(g) = \varphi(gH)f(g), \quad g \in G, f \in \mathcal{L}^2(G), \varphi \in \mathcal{L}^\infty(G/H),$$

and let r denote the representation of  $L^{\infty}(G/H)$  on  $L^{2}(G/H)$  defined by

$$(r(\varphi)f)(x) = \varphi(x)f(x), \quad x \in G/H, f \in \mathcal{L}^2(G/H), \varphi \in \mathcal{L}^\infty(G/H).$$

LEMMA 1. The von Neumann algebra  $p(L^{\infty}(G)) \cap V(H)'$  on  $L^{2}(G)$  is equal to  $q(L^{\infty}(G/H))$ .

PROOF. It is obvious that  $q(L^{\infty}(G/H)) \subseteq p(L^{\infty}(G)) \cap V(H)'$ . Let T be an operator in  $p(L^{\infty}(G)) \cap V(H)'$ . Choose  $f \in \mathcal{L}^{\infty}(G)$  such that T = p(f). For any  $\gamma \in H$  and  $\varphi \in \mathcal{K}(G)$ ,  $\varphi \ge 0$ , we have

$$\begin{split} & \Delta_G(\gamma) \int_G \varphi(g) \varrho(g\gamma) f(g\gamma) \, dg \\ & = \int_G \varphi(g\gamma^{-1}) \varrho(g) f(g) \, dg = \int_G f(g) \Delta_H(\gamma) \Delta_G(\gamma)^{-1} \varrho(g\gamma^{-1}) \varphi(g\gamma^{-1}) \, dg \\ & = \Delta_H(\gamma) \big( TV(\gamma^{-1}) \big( (\varrho\varphi)^{\frac{1}{2}} \big) | V(\gamma^{-1}) \big( (\varrho\varphi)^{\frac{1}{2}} \big) \big) \\ & = \Delta_H(\gamma) \big( T((\varrho\varphi)^{\frac{1}{2}}) | (\varrho\varphi)^{\frac{1}{2}} \big) = \Delta_H(\gamma) \int_G \varphi(g) \varrho(g) f(g) \, dg \; . \end{split}$$

Therefore there exists a measure v on G/H with  $v^{\sharp} = \varrho f dg$ , cf. [4 p. 44, Prop. 4b, or p. 56, Lemme 5]. Then v is absolutely continuous with respect to  $\lambda$ , so  $v = F\lambda$  for some locally integrable function F on G/H, and  $f = F \circ \pi$  locally almost everywhere, since  $\varrho f dg = (F\lambda)^{\sharp} = (F \circ \pi) \varrho dg$ .

Lemma 2. Let h be a Hilbert space. Any operator A in the von Neumann algebra  $q(L^{\infty}(G/H)) \otimes \mathcal{L}(h)$  on  $L^{2}(G) \otimes h$  has a disintegration a satisfying

$$\forall g \in G \quad \forall \gamma \in H: \quad a(g\gamma) = a(g).$$

PROOF. Let O denote the C\*-algebra of bounded maps  $a: G/H \to \mathcal{L}(h)$  such that a and a\* are measurable fields. Given  $a \in O$ , let  $a(\lambda)$  denote the operator on  $L^2(G/H,h)$  defined by  $(a(\lambda)f)(x)=a(x)(f(x))$ , and let a(G) denote the operator on  $L^2(G,h)$  defined by (a(G)f)(g)=a(gH)(f(g)). Then  $a\mapsto a(\lambda)$  is a homomorphism of O onto  $r(L^\infty(G/H))\otimes \mathcal{L}(h)$ , with kernel

$$\{a \in O \mid \forall \xi \in h: a(x)\xi = 0 \text{ l.a.e.}\}$$

(see [12], [15], [8]) and  $a \mapsto a(G)$  is a homomorphism of O onto a sub \*algebra of  $q(L^{\infty}(G/H)) \otimes \mathcal{L}(h)$  containing  $q(L^{\infty}(G/H)) \otimes 1$  and  $1 \otimes \mathcal{L}(h)$  and so weakly dense in  $q(L^{\infty}(G/H)) \otimes \mathcal{L}(h)$ , with the same kernel. To show that the injective homomorphism  $a(\lambda) \mapsto a(G)$  is onto  $q(L^{\infty}(G/H)) \otimes \mathcal{L}(h)$ , it is enough to show that it is weak-weak continuous on normbounded sets. It is enough to show that  $a(\lambda) \mapsto (a(G)\varphi \mid \varphi)$  is weakly continuous for a dense set of vectors  $\varphi \in L^2(G,h)$ . So let  $f \in \mathcal{L}^2(G)$  and  $\xi \in h$  be given; then

$$F(gH) = \left( \int_{H} |f(g\gamma)|^{2} \varrho(g\gamma)^{-1} d\gamma \right)^{\frac{1}{2}}$$

defines a function in  $\mathcal{L}^2(G/H)$ , [4 p. 57], and

$$(a(G)f\xi \mid f\xi) = \int_{G} |f(g)|^{2} (a(gH)\xi \mid \xi) dg$$

$$= \int_{G/H} |F(x)|^{2} (a(x)\xi \mid \xi) d\lambda(x) = (a(\lambda)F\xi \mid F\xi).$$

## 3. Nielsen's Theorem.

LEMMA 3. Any operator A in the von Neumann algebra

$$[p(L^{\infty}(G))\otimes 1]'\cap (V\otimes u)(H)'$$

on  $L^2(G) \otimes h(u)$  has a disintegration a satisfying

$$\forall g \in G \quad \forall \gamma \in H: \quad a(g\gamma) = u(\gamma)^{-1}a(g)u(\gamma)$$
.

PROOF. Choose a unitary  $\varrho$ -extension  $P: G \to u(H)''$  of u, with P and  $P^*$  measurable fields, [7, Theorem 1(a)]. Define an operator  $Q \in \mathcal{L}(L^2(G, h(u)))$  by (Qf)(g) = P(g)(f(g)),  $f \in \mathcal{L}^2(G, h(u))$ . Then Q is unitary, and commutes with  $p(L^{\infty}(G)) \otimes 1$ , and

$$Q(V(\gamma) \otimes u(\gamma)) = (V(\gamma) \otimes 1)Q, \quad \gamma \in H;$$

therefore

$$Q([p(L^{\infty}(G)) \otimes 1]' \cap (V \otimes u)(H)')Q^{-1}$$

$$= [p(L^{\infty}(G)) \otimes 1]' \cap [V(H) \otimes 1]'$$

$$= [p(L^{\infty}(G))' \otimes \mathcal{L}(h(u))] \cap [V(H)' \otimes \mathcal{L}(h(u))]$$

$$= (p(L^{\infty}(G))' \cap V(H)') \otimes \mathcal{L}(h(u))$$

$$= q(L^{\infty}(G/H)) \otimes \mathcal{L}(h(u)).$$

Here we have used that  $p(L^{\infty}(G))$  is maximal abelian, and Lemma 1. When

$$A \in [p(L^{\infty}(G)) \otimes 1]' \cap (V \otimes u)(H)'$$
,

then by Lemma 2  $QAQ^{-1}$  has a disintegration b satisfying

$$\forall g \in G \quad \forall \gamma \in H: \quad b(g\gamma) = b(g)$$
,

and A has the disintegration  $g \mapsto a(g) = P(g)^{-1}b(g)P(g)$  satisfying

$$\forall\,g\in G\quad\forall\,\gamma\in H\colon\,a(g\gamma)\,=\,u(\gamma)^{-1}a(g)u(\gamma)\;.$$

THEOREM. Let u and v be representations of the closed subgroups H and K of the locally compact group G on the Hilbert spaces h(u) and h(v) respectively. The von Neumann algebra

$$[p(L^{\infty}(G)) \otimes 1 \otimes 1]' \cap (V \otimes u \otimes 1)(H)' \cap (U \otimes 1 \otimes v)(K)'$$

on  $L^2(G) \otimes h(u) \otimes h(v)$  is isomorphic to the von Neumann algebra

$$[p_u(L^{\infty}(G/H)) \otimes 1]' \cap ((\operatorname{ind} u) \otimes v)(K)'$$

on  $h(\operatorname{ind} u) \otimes h(v)$ .

PROOF. Let  $u \otimes 1$  denote the representation  $\gamma \mapsto u(\gamma) \otimes 1$  of H on  $h(u) \otimes h(v)$ ; note that  $h(\text{ind } (u \otimes 1))$  is naturally identified with  $h(\text{ind } u) \otimes h(v)$ , and that with this identification  $p_{u \otimes 1} = p_u \otimes 1$ .

Let B denote the C\*-algebra of bounded maps  $b: G \to \mathcal{L}(h(u) \otimes h(v))$ , such that b and  $b^*$  are measurable fields, and

$$\forall g \in G \quad \forall \gamma \in H: \quad b(g\gamma) = (u \otimes 1)(\gamma)^{-1}b(g)(u \otimes 1)(\gamma)$$
.

When  $b \in B$  let b(G) denote the operator on  $L^2(G, h(u) \otimes h(v))$  defined by

$$(b(G)f)(g) = b(g)(f(g)), g \in G, f \in \mathcal{L}^2(G, h(u) \otimes h(v)),$$

and let  $\bar{b}$  denote the operator on  $h(\text{ind }(u \otimes 1))$  defined by

$$(\tilde{b}f)(g) = b(g)(f(g)), \quad g \in G, f \in \mathscr{F}(u \otimes 1)$$
.

Then  $b \mapsto b(G)$  is a homomorphism of B onto

$$[p(L^{\infty}(G)) \otimes 1 \otimes 1]' \cap (V \otimes u \otimes 1)(H)'$$

by Lemma 3, with kernel

$$\{b \in B \mid \forall \xi \in h(u) \otimes h(v) : b(g)\xi = 0 \text{ l.a.e.} \}$$

and  $b \mapsto \overline{b}$  is a homomorphism of B onto  $p_{u \otimes 1}(L^{\infty}(G/H))$ , by [7] Proposition 2, with the same kernel, by [7] Lemma 1. The counter image of  $(U \otimes 1 \otimes v)(K)'$  under  $b \mapsto b(G)$  is

$$\begin{aligned} \{b \in B \mid \forall k \in K \quad \forall \xi \in h(u) \otimes h(v) \colon b(kg)\xi \\ &= [1 \otimes v(k)]b(g)[1 \otimes v(k)^{-1}]\xi \text{ l.a.e.} \}, \end{aligned}$$

and so is the counter image of  $((\operatorname{ind} u) \otimes v)(K)'$  under  $b \mapsto \tilde{b}$ .

COROLLARY. The von Neumann algebra

$$[p_u(L^{\infty}(G/H))\otimes 1]' \cap ((\operatorname{ind} u)\otimes v)(K)' \text{ on } h(\operatorname{ind} u)\otimes h(v)$$

is isomorphic to the von Neumann algebra

$$[1 \otimes p'_v(L^{\infty}(K \setminus G))]' \cap (u \otimes \operatorname{ind}' v)(H)' \quad on \ h(u) \otimes h(\operatorname{ind}' v) \ .$$

Proof. By symmetry

$$[1 \otimes p'_v(L^\infty(K \setminus G))]' \cap (u \otimes \operatorname{ind}' v)(H)'$$

is also isomorphic to

$$[p(L^{\infty}(G)) \otimes 1 \otimes 1]' \cap (V \otimes u \otimes 1)(H)' \cap (U \otimes 1 \otimes v)(K)'.$$

Nielsen's theorem is the case h(v) = C,  $v \equiv 1$  of the corollary.

### REFERENCES

- 1. R. J. Blattner, On a theorem of G.W. Mackey, Bull. Amer. Math. Soc. 68 (1962), 585-587.
- 2. N. Bourbaki, Intégration, Chap. 1-4, 2. ed. (Act. Sci. Ind. 1175 no. 13), Hermann, Paris, 1965.
- 3. N. Bourbaki, Intégration, Chap. 5 (Act. Sci. Ind. 1244 no. 21), Hermann, Paris, 1956.
- 4. N. Bourbaki, Intégration, Chap. 7-8 (Act. Sci. Ind. 1306 no. 29), Hermann, Paris, 1963.
- 5. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann) (Cahier Scientifiques 25), Gauthier-Villars, Paris, 1957.
- J. Dixmier, Les C\*-algèbres et leurs représentations (Cahier Scientifiques 29), Gauthier-Villars. Paris. 1964.
- E. T. Kehlet, A non-separable measurable choice principle related to induced representations, Math. Scand. 42 (1978), 119–134.
- 8. E. T. Kehlet, Disintegration theory on a constant field of non-separable Hilbert spaces, Math. Scand. 43 (1978), 353-362.
- G. W. Mackey, Induced representations of locally compact groups, I, Ann. of Math. 55 (1952), 101-139.
- 10. G. W. Mackey, Unitary representations of group extensions, I, Acta Math. 99 (1958), 265-311.
- 11. O. Maréchal, Champs mesurables d'espaces hilbertiens, Bull. Sci. Math. 93 (1969), 113-143.
- O. Maréchal, Opérateurs décomposables dans les champs mesurables despaces Hilbertiens, C.R. Acad. Sci. Paris Sér. A 266 (1968), 710-713.
- 13. O. A. Nielsen, The Mackey-Blattner theorem and Takesaki's generalized commutation relation for locally compact groups, Duke Math. J. 40 (1973), 105-117.
- M. A. Rieffel, Strong Morita equivalence of certain transformation group C\*-algebras, Math. Ann. 222 (1976), 7-22.
- J. Vesterstrøm and W. Wils, Direct integrals of Hilbert spaces, II, Math. Scand. 26 (1970), 89– 102.

MATEMATISK INSTITUT
KØBENHAVNS UNIVERSITET
UNIVERSITETSPARKEN 5
DK-2100 KØBENHAVN Ø
DENMARK