ESSENTIAL FUNCTION ALGEBRAS WITH LARGE SILOV BOUNDARY

P. J. DE PAEPE

1. Introduction.

In this note we construct, starting with a function algebra A on its homomorphism space ΔA , a function algebra B on ΔB which shares a number of properties with A but such that the Silov boundary ∂B of B equals ΔB . The easiest way to do this is to consider $X = \Delta A \times [0, 1]$ and to take B the algebra of all continuous functions f on X such that $f \mid \Delta A \times \{0\}$ belongs to A. Then $\Delta B = \partial B = X$ but B is not essential on ΔB . Our construction provides an algebra B which is essential on ΔB and such that ΔB can be considered as a subset of C^{n+2} if $\Delta A \subset C^n$.

2. Notation and definitions.

Let X be a compact Hausdorff space. C(X) will be the algebra of continuous complex-valued functions on X with the supremum norm. A function algebra A on X is a closed subalgebra of C(X) containing the constants and separating the points of X. The maximal ideal space of A is denoted by ΔA and its Silov boundary by ∂A . If K is a compact subset of X and $f \in A$ $f \mid K$ denotes the restriction of f to K and A is called essential on A if the minimal closed subset A of elements of A is called essential on A if the minimal closed subset A of A with the property A is called essential on A in the minimal closed subset A of A with the property A is called essential on A in the minimal closed subset A of A with the property A is called essential on A in the minimal closed subset A of A with the property A is called essential on A in the minimal closed subset A of A with the property A is called essential on A in the minimal closed subset A of A with the property A is called essential on A in the minimal closed subset A of A is called essential on A in the minimal closed subset A of A is called essential on A in the minimal closed subset A of A is called essential on A in the minimal closed subset A of A is called essential on A in the minimal closed subset A of A is called essential on A in the minimal closed subset A of A in the minimal closed subset A of A is called essential on A in the minimal closed subset A of A is called essential on A in the minimal closed subset A of A in the minimal closed subset A is called essential on A in the minimal closed subset A is called essential on A in the minimal closed essential on A in the minimal closed essential essentialy essential essential essential essential essential essential ess

For a compact subset X in \mathbb{C}^n P(X) will be the closure in C(X) of the algebra of polynomials on X and R(X) is the closure in C(X) of the algebra of rational functions having poles outside of X.

For information on function algebras we refer to [6].

3. The construction.

Let Y be a Swiss cheese (e.g. [5]) such that $R(Y) \neq C(Y)$ and $\Delta R(Y) = \partial R(Y) = Y$. R(Y) is essential on Y. Let A be a function algebra on a metrizable compact space X with $\Delta A = X$. Choose a dense sequence $\{x_n\}$ in X.

Received June 8, 1978.

326 P. J. DE PAEPE

Consider in $X \times \mathbb{C}^2$ the following subsets:

$$\tilde{X} = \{(x,0,0) : x \in X\}$$

$$Y_n = \{(x_n, t, y) : y \in tY, 0 \le t \le a_n\}$$

where $tY = \{ty : y \in Y\}$, $n \in \mathbb{N}$ and $\{a_n\}$ is a decreasing sequence of positive numbers having 0 as limit. Let Z be the union of the sets \tilde{X} and $\{Y_n\}$ in $X \times \mathbb{C}^2$. Let B be the algebra of all continuous functions f on Z such that

- (i) the function on X defined by $x \mapsto f(x,0,0)$ belongs to A (abbreviation $f \mid \tilde{X} \in A$)
- (ii) the function on $Y_{n,\alpha} = Y_n \cap \{t = \alpha\}$ defined by $y \mapsto f(x_n, \alpha, y)$ belongs to $R(\alpha Y)$ for all fixed n and $0 < \alpha \le a_n$ (abbreviation $f \mid Y_{n,\alpha} \in R(Y_{n,\alpha})$.

Then it is clear that

- 1. Z is compact in $X \times \mathbb{C}^2$ and connected if X is,
- 2. B is a function algebra on Z,

and we will show

- 3. $\Delta B = Z$,
- 4. $\partial B = Z$,
- 5. B is essential on Z.

4. Proofs.

PROOF OF ASSERTION 3. Consider the function t on Z and let $\varphi \in \Delta B$. Then $\varphi(t) \in [0, a_1]$, let $\varphi(t) = \alpha$. Let f_α be a continuous function on $[0, a_1]$ of the variable t peaking at α and consider f_α as a function on Z. Then $f_\alpha \in B$. Using this function it is easily seen that

$$\varphi \in \Delta[B|Z \cap \{t=\alpha\}].$$

If $\alpha = 0$, then $\varphi \in \Delta[B | \tilde{X}] = \tilde{X}$, since $B | \tilde{X} \cong A$.

If $\alpha \neq 0$ then $Z \cap \{t = \alpha\}$ consists of a finite union of disjoint sets $Y_{n,\alpha}$:

$$Z \cap \{t = \alpha\} = Y_{1,\alpha} \cup \ldots \cup Y_{n(\alpha),\alpha},$$

with $n(\alpha)$ the greatest integer such that $a_{n(\alpha)} \ge \alpha$. Let μ be a Jensen representing measure for $\varphi \in \Delta[B \mid Z \cap \{t = \alpha\}]$ on $Z \cap \{t = \alpha\}$. If $\mu(Y_{n,\alpha}) > 0$ for some n then consider a function $g_{n,\alpha} \in B$ such that $g_{n,\alpha} = 1$ on $Y_{n,\alpha}$, $g_{n,\alpha} = 0$ on $Z \setminus Y_n \cap \{t \ge \alpha/2\}$ and $0 \le g_{n,\alpha} < 1$ on $Z \setminus Y_{n,\alpha}$. Now

$$\log |\varphi(1-g_{n,\alpha})| \leq \int_{Z \cap \{t=\alpha\}} \log |1-g_{n,\alpha}| \, d\mu = -\infty$$

since $\mu(Y_{n,\alpha}) > 0$. So because μ represents φ we have $\mu(Y_{n,\alpha}) = 1 = \|\mu\|$. Hence

$$\varphi \in \Delta[B | Y_{n,\alpha}] = Y_{n,\alpha}$$

since $B \mid Y_{n,q} \cong R(Y_{n,q})$. So if $\varphi \in \Delta B$ then $\varphi \in Z$. Hence $\Delta B = Z$.

PROOF OF ASSERTION 4. Consider a peak point $y_0 \in Y$ for the algebra R(Y) with peak function h (these points are dense in Y). Now $z = (x_n, \alpha, \alpha y_0)$ where $0 < \alpha \le a_n$ is in Z and the function $h(y/t)g_{n,\alpha}$ peaks at z and belongs to B. Moreover points z of the above type are dense in Z. Hence $\partial B = Z$.

PROOF OF ASSERTION 5. Let K be a proper compact subset of Z then $Z \setminus K$ contains an open subset of some $Y_{n,\alpha}$, $\alpha > 0$. Since $R(Y_{n,\alpha})$ is essential on $Y_{n,\alpha}$ not every element of C(Z) vanishing on K belongs to B, hence B is essential on Z.

5. Remarks.

In [4] Glicksberg posed the following question: if $B_1 \subset B_2 \subset C(\Delta B_1)$ and $\partial B_1 = \partial B_2$, must $\Delta B_1 = \Delta B_2$?

The answer is negative and a well-known example is the following: let A_1 and A_2 be function algebras on X such that $A_1 \subset A_2$ and $X = \Delta A_1 + \Delta A_2$. Then the algebras B_1 and B_2 on $X \times [0, 1]$ of all continuous extensions to $X \times [0, 1]$ of elements of A_1 , respectively A_2 , on $X \times \{0\}$ provide a counter example.

Using our construction it is possible to obtain B_1 and B_2 essential algebras on ΔB_1 : start with A_1 (on a metrizable space X) and construct B_1 as in section 3. Let B_2 be all continuous functions f on Z such that $f \mid Y_{n,\alpha} \in R(Y_{n,\alpha})$, $0 < \alpha \le a_n$, $n \in \mathbb{N}$, and $f \mid \tilde{X} \in A_2$ (notation of section 3). Then

$$\varDelta B_2 \; = \; Z \; \cup \; \left\{ (z,0,0) \; : \; z \in \varDelta A_2 \smallsetminus X \right\} \neq \varDelta B_1 = Z \; .$$

But $\partial B_1 = \partial B_2 = Z$.

In [1] and [2] Csordas and Reiter asked for a solution of the following problem: is there a non-separating essential function algebra B on a (connected) space X for which $\Delta B = \partial B = X$? (a function algebra A on X is called separating if for every proper compact subset Y of X and every point $X \setminus Y$ there exists $f \in A$ such that $f(x) \notin f(Y)$. The answer is positive and given by Eifler [3].

Starting with a non-separating function algebra A on a connected metrizable space X with $\Delta A = X$ and using the construction in section 3 we find a function algebra B satisfying all statements in the question of Csordas and Reiter. For A one can take P(X) where X is the unit polydisc in \mathbb{C}^2 , B then becomes a function algebra on a compact set in \mathbb{C}^4 . Eifler's example shows some similarity with ours: the crucial ingredient is again the algebra R(Y), Y a Swiss cheese. His algebra B is a subalgebra of R(Y) which is a function algebra on a quotient space of Y.

REFERENCES

- G. L. Csordas and H. B. Reiter, Separating function algebras, Nagoya Math. J. 47 (1972), 101– 109
- G. L. Csordas and H. B. Reiter, Some results on separating function algebras, Bull. Amer. Math. Soc. 78 (1972), 578-581.
- 3. L. Q. Eifler, Nonseparating function algebras, Bull. Amer. Math. Soc. 78 (1972), 604-605.
- 4. I. Glicksberg, Maximal algebras and a theorem of Radó, Pacific J. Math. 14 (1964), 919-941.
- 5. R. McKissick, A non-trivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391-395.
- E. L. Stout, The theory of uniform algebras, Bogden and Quigley, Inc., Tarrytown-on-Hudson, N.Y., 1971.

MATHEMATISCH INSTITUUT
UNIVERSITEIT VAN AMSTERDAM. THE NETHERLANDS

Author's present address:

INSTITUUT VOOR PROPEDEUTISCHE WISKUNDE UNIVERSITEIT VAN AMSTERDAM, THE NETHERLANDS