ESSENTIAL FUNCTION ALGEBRAS WITH LARGE SILOV BOUNDARY

P. J. DE PAEPE

1. Introduction.

In this note we construct, starting with a function algebra A on its homomorphism space ΔA, a function algebra B on ΔB which shares a number of properties with A but such that the Silov boundary ∂B of B equals ΔB. The easiest way to do this is to consider $X = \Delta A \times [0, 1]$ and to take B the algebra of all continuous functions f on X such that $f \upharpoonright \Delta A \times \{0\}$ belongs to A. Then $\Delta B = \partial B = X$ but B is not essential on ΔB. Our construction provides an algebra B which is essential on ΔB and such that ΔB can be considered as a subset of C^{n+2} if $\Delta A \subset C^n$.

2. Notation and definitions.

Let X be a compact Hausdorff space. $C(X)$ will be the algebra of continuous complex-valued functions on X with the supremum norm. A function algebra A on X is a closed subalgebra of $C(X)$ containing the constants and separating the points of X. The maximal ideal space of A is denoted by ΔA and its Silov boundary by ∂A. If K is a compact subset of X and $f \in A \ f \upharpoonright K$ denotes the restriction of f to K and $[A \upharpoonright K]$ will be the closure in $C(K)$ of the restrictions to K of elements of A. A is called essential on X if the minimal closed subset K of X with the property $f \in C(X)$ and $f \upharpoonright K = 0$ implies $f \in A$ equals X.

For a compact subset X in C^n $P(X)$ will be the closure in $C(X)$ of the algebra of polynomials on X and $R(X)$ is the closure in $C(X)$ of the algebra of rational functions having poles outside of X.

For information on function algebras we refer to [6].

3. The construction.

Let Y be a Swiss cheese (e.g. [5]) such that $R(Y) \neq C(Y)$ and $\Delta R(Y) = \partial R(Y) = Y$. $R(Y)$ is essential on Y. Let A be a function algebra on a metrizable compact space X with $\Delta A = X$. Choose a dense sequence $\{x_n\}$ in X.

Received June 8, 1978.
Consider in $X \times \mathbb{C}^2$ the following subsets:
\[
\tilde{X} = \{(x,0,0) : x \in X\}
\]
\[
Y_n = \{(x_n,t,y) : y \in tY, 0 \leq t \leq a_n\}
\]
where $tY = \{ty : y \in Y\}$, $n \in \mathbb{N}$ and $\{a_n\}$ is a decreasing sequence of positive numbers having 0 as limit. Let Z be the union of the sets \tilde{X} and $\{Y_n\}$ in $X \times \mathbb{C}^2$. Let B be the algebra of all continuous functions f on Z such that

(i) the function on X defined by $x \mapsto f(x,0,0)$ belongs to A (abbreviation $f|\tilde{X} \in A$)

(ii) the function on $Y_{n,\alpha} = Y_n \cap \{t = \alpha\}$ defined by $y \mapsto f(x_n,\alpha,y)$ belongs to $R(\alpha Y)$ for all fixed n and $0 < \alpha \leq a_n$ (abbreviation $f|Y_{n,\alpha} \in R(Y_{n,\alpha})$).

Then it is clear that

1. Z is compact in $X \times \mathbb{C}^2$ and connected if X is,
2. B is a function algebra on Z,

and we will show

3. $\Delta B = Z$,
4. $\partial B = Z$,
5. B is essential on Z.

4. Proofs.

Proof of Assertion 3. Consider the function t on Z and let $\varphi \in \Delta B$. Then $\varphi(t) \in [0,a_1]$, let $\varphi(t) = \alpha$. Let f_α be a continuous function on $[0,a_1]$ of the variable t peaking at α and consider f_α as a function on Z. Then $f_\alpha \in B$. Using this function it is easily seen that

\[
\varphi \in \Delta[B|Z \cap \{t = \alpha\}].
\]

If $\alpha = 0$, then $\varphi \in \Delta[B|\tilde{X}] = \tilde{X}$, since $B|\tilde{X} \simeq A$.

If $\alpha \neq 0$ then $Z \cap \{t = \alpha\}$ consists of a finite union of disjoint sets $Y_{n,\alpha}$:

\[
Z \cap \{t = \alpha\} = Y_{1,\alpha} \cup \ldots \cup Y_{n(\alpha),\alpha},
\]

with $n(\alpha)$ the greatest integer such that $a_{n(\alpha)} \geq \alpha$. Let μ be a Jensen representing measure for $\varphi \in \Delta[B|Z \cap \{t = \alpha\}]$ on $Z \cap \{t = \alpha\}$. If $\mu(Y_{n,\alpha}) > 0$ for some n then consider a function $g_{n,\alpha} \in B$ such that $g_{n,\alpha} = 1$ on $Y_{n,\alpha}$, $g_{n,\alpha} = 0$ on $Z \setminus Y_n \cap \{t \geq \alpha/2\}$ and $0 \leq g_{n,\alpha} < 1$ on $Z \setminus Y_{n,\alpha}$. Now

\[
\log|\varphi(1 - g_{n,\alpha})| \leq \int_{Z \cap \{t = \alpha\}} \log|1 - g_{n,\alpha}| d\mu = -\infty
\]

since $\mu(Y_{n,\alpha}) > 0$. So because μ represents φ we have $\mu(Y_{n,\alpha}) = 1 = \|\mu\|$. Hence
\[\varphi \in \mathcal{A}(B \mid Y_{n,z}) = Y_{n,z} \]

since \(B \mid Y_{n,z} \cong R(Y_{n,z}) \). So if \(\varphi \in \mathcal{A}B \) then \(\varphi \in Z \). Hence \(\mathcal{A}B = Z \).

Proof of Assertion 4. Consider a peak point \(y_0 \in Y \) for the algebra \(R(Y) \) with peak function \(h \) (these points are dense in \(Y \)). Now \(z = (x_n, \alpha, \alpha y_0) \) where \(0 < \alpha \leq a_n \) is in \(Z \) and the function \(h(y/\alpha)g_{n,z} \) peaks at \(z \) and belongs to \(B \). Moreover points \(z \) of the above type are dense in \(Z \). Hence \(\partial B = Z \).

Proof of Assertion 5. Let \(K \) be a proper compact subset of \(Z \) then \(Z \setminus K \) contains an open subset of some \(Y_{n,a} \), \(a > 0 \). Since \(R(Y_{n,a}) \) is essential on \(Y_{n,a} \), not every element of \(C(Z) \) vanishing on \(K \) belongs to \(B \), hence \(B \) is essential on \(Z \).

5. Remarks.

In [4] Glicksberg posed the following question: if \(B_1 \subset B_2 \subset C(\mathcal{A}B_1) \) and \(\partial B_1 = \partial B_2 \), must \(\mathcal{A}B_1 = \mathcal{A}B_2 \) ?

The answer is negative and a well-known example is the following: let \(A_1 \) and \(A_2 \) be function algebras on \(X \) such that \(A_1 \subset A_2 \) and \(X = \mathcal{A}A_1 \neq \mathcal{A}A_2 \). Then the algebras \(B_1 \) and \(B_2 \) on \(X \times [0,1] \) of all continuous extensions to \(X \times [0,1] \) of elements of \(A_1 \), respectively \(A_2 \), on \(X \times \{0\} \) provide a counter example.

Using our construction it is possible to obtain \(B_1 \) and \(B_2 \) essential algebras on \(\mathcal{A}B_1 \): start with \(A_1 \) (on a metrizable space \(X \)) and construct \(B_1 \) as in section 3. Let \(B_2 \) be all continuous functions \(f \) on \(Z \) such that \(f \mid Y_{n,a} \in R(Y_{n,a}) \), \(0 < \alpha \leq a_n \), \(n \in \mathbb{N} \), and \(f \mid \tilde{X} \in A_2 \) (notation of section 3). Then

\[\mathcal{A}B_2 = Z \cup \{ (z,0,0) : z \in \mathcal{A}A_2 \setminus X \} \neq \mathcal{A}B_1 = Z. \]

But \(\partial B_1 = \partial B_2 = Z \).

In [1] and [2] Csordas and Reiter asked for a solution of the following problem: is there a non-separating essential function algebra \(B \) on a (connected) space \(X \) for which \(\mathcal{A}B = \partial B = X \)? (a function algebra \(A \) on \(X \) is called separating if for every proper compact subset \(Y \) of \(X \) and every point \(x \) in \(X \setminus Y \) there exists \(f \in A \) such that \(f(x) \notin f(Y) \)). The answer is positive and given by Eifler [3].

Starting with a non-separating function algebra \(A \) on a connected metrizable space \(X \) with \(\mathcal{A}A = X \) and using the construction in section 3 we find a function algebra \(B \) satisfying all statements in the question of Csordas and Reiter. For \(A \) one can take \(P(X) \) where \(X \) is the unit polydisc in \(C^2 \), \(B \) then becomes a function algebra on a compact set in \(C^4 \). Eifler’s example shows some similarity with ours: the crucial ingredient is again the algebra \(R(Y) \), \(Y \) a Swiss cheese. His algebra \(B \) is a subalgebra of \(R(Y) \) which is a function algebra on a quotient space of \(Y \).
REFERENCES

MATHEMATISCH INSTITUUT
UNIVERSITEIT VAN AMSTERDAM, THE NETHERLANDS

Author's present address:
INSTITUUT VOOR PROPEDEUTISCHE WISKUNDE
UNIVERSITEIT VAN AMSTERDAM, THE NETHERLANDS