A MAXIMAL SUBALGEBRA OF R(X)

P. J. DE PAEPE

Introduction.

Let X be a compact set in the complex plane, consisting of an annular domain U together with the boundary of U consisting of two disjoint simple closed curves Γ_1 and Γ_2 , Γ_1 lying in the bounded component of $C \setminus \Gamma_2$.

Let V denote the bounded component of $C \setminus \Gamma_1$. Let A be the function algebra on X consisting of all elements of R(X) which have a continuous extension to $X \cup V$, which is analytic on V. R(X) denotes the function algebra on X consisting of uniform limits on X of restrictions to X of rational functions whose zero sets miss X. We will prove: A is maximal in R(X).

If Γ_1 is not too wild A equals the algebra P(X) of uniform limits of polynomials on X by Mergelyan's theorem since every element of A is actually analytic on $U \cup \Gamma_1 \cup V$, i.e. on the bounded component of $C \setminus \Gamma_2$. This happens if Γ_1 is rectifiable for instance. However it may happen that $A \neq P(X)$.

For instance, assume that Γ_1 contains an arc α of positive two-dimensional Lebesgue measure, then it is well-known that there are functions which are continuous on the extended complex plane and analytic off α but are not approximable by polynomials on X.

In [2] and [3] it is shown that for well-behaving Γ_1 , P(X) is a maximal subalgebra of R(X), i.e. if B is a function algebra on X such that $P(X) \subset B \subset R(X)$ either B = P(X) or else B = R(X). The purpose of this paper is to prove the analogous theorem for general curves Γ_1 . The proof given here uses only basic facts from the theory of function algebras, together with Rossi's local maximum modulus principle [5] and a version of Wermer's famous maximality theorem [7]. The first part of the proof is similar to the first part of the proof of lemma 3.2 contained in [1] but is given here for reasons of completeness. (See also the proof of theorem 10.7 in [8].) For the basic facts on function algebras we refer to [4] or [6].

THEOREM. Let X and A be as above. Then A is a maximal subalgebra of R(X).

PROOF. Let B be a function algebra on X such that $A \subset B \subset R(X)$ and let

 $\pi: \Delta B \to \Delta A$ be the projection map defined by $\pi \varphi = \varphi \mid A$ (Δ denoting maximal ideal space). By Arens' theorem (see e.g. [4]) $\Delta A = X \cup V$. Suppose $y \in \Delta B$ such that $\pi y = x \in \Gamma_2$. Let m be a representing measure for y on X then

$$\hat{f}(y) = \int_X f dm$$
 for all $f \in B$.

(here \hat{f} denotes the Gelfand transform of f).

For $f \in P(X) \subset B$

$$f(x) = \hat{f}(y) = \int_X f dm,$$

so since x is a peak point for P(X) m has to be point mass at x, hence y = x. Let $y_1, y_2 \in \Delta B$ such that $x = \pi(y_1) = \pi(y_2) \in U$.

Let Γ be a simple closed curve in X, with x in the bounded component of $C \setminus \Gamma$ and such that $\overline{\Gamma \setminus \Gamma_2}$, the closure of $\Gamma \setminus \Gamma_2$, is polynomially convex and such that $\widehat{\Gamma}$, the polynomially convex hull of Γ , is contained in X. Let $Y = \pi^{-1}(\widehat{\Gamma})$. Then by Rossi's local maximum modulus principle $\partial B_Y \subset \pi^{-1}(\Gamma)$ (∂ denoting Silov boundary and B_Y the function algebra on Y generated by the restrictions to Y of elements of B). Let μ_i be a representing measure for y_i on $\pi^{-1}(\Gamma)$ for the algebra B_Y (i=1,2) and let $\tilde{\mu}_i = \mu_i \circ \pi^{-1}$ on Γ . Then

$$\int_{\Gamma} f \, d\tilde{\mu}_{i} = \int_{\pi^{-1}(\Gamma)} \hat{f} \, d\mu_{i} = \hat{f}(y_{i}) = f(x) \qquad (i = 1, 2)$$

for all $f \in P(X)$. Since $P(\Gamma)$ is a Dirichlet algebra on Γ , $\tilde{\mu}_1 = \tilde{\mu}_2$, so $\mu_1 = \mu_2$ on $\Gamma_2 \cap \pi^{-1}(\Gamma) = \Gamma_2 \cap \Gamma$. Now suppose $y_1 \neq y_2$; let $g \in B$ such that $\hat{g}(y_1) = 1$, $\hat{g}(y_2) = 0$, so $\alpha = \hat{g}(\mu_1 - \mu_2)$ represents $y_1 \in \Delta B_Y$. Hence

$$\int_{\Gamma} f d\tilde{\alpha} = f(x) \quad \text{for all polynomials } f.$$

Since $\tilde{\alpha} = 0$ on $\Gamma \cap \Gamma_2$ and $\overline{\Gamma \setminus \Gamma_2}$ is polynomially convex this is absurd. So $y_1 = y_2$. Hence π is one-to-one over $U \cup \Gamma_2$.

Now

$$\Delta B_{\Gamma_1} = \left\{ y \in \Delta B : |\hat{g}(y)| \le \|g\|_{\Gamma_1} \text{ for all } g \in B \right\}.$$

Since $B_{\Gamma_1} \supset P(\Gamma_1)$ it follows from Wermer's maximality theorem that $B_{\Gamma_1} = P(\Gamma_1)$ or else $B_{\Gamma_1} = C(\Gamma_1)$. In the first case every element of B extends analytically to V, hence B = A. In the second case $\Delta B_{\Gamma_1} = \Gamma_1$. If there were $y \in \Delta B$ such that $\pi y = x \in V$ choose $g \in B$ such that $|\hat{g}(y)| > ||g||_{\Gamma_1}$. The component M of $\{z \in \Delta B : |\hat{g}(z)| \ge |\hat{g}(y)|\}$ containing y then satisfies $M \cap \partial B \subset M \cap (\Gamma_1 \cup \Gamma_2) = \emptyset$, in contradiction with Rossi's local maximum modulus

324 P. J. DE PAEPE

principle. So $\Delta B = X$, hence the function $z - \alpha$ is invertible in B for all $\alpha \in V$. So B = R(X).

BIBLIOGRAPHY

- J.-E. Björk, Analytic structures, Papers from the summer gathering on function algebras at Aarhus, July 1969, 19-28, Various publications series No. 9, Matematisk Institut, Aarhus, 1969.
- J.-E. Björk and P. J. de Paepe, Maximal subalgebras, Papers from the summer gathering on function algebras at Aarhus, July 1969, 36-39, Various publications series No. 9, Matematisk Institut, Aarhus, 1969.
- 3. S. D. Fisher, Invariant subalgebras of the backward shift, Amer. J. Math. 95 (1973), 537-552.
- 4. T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 5. H. Rossi, The local maximum modulus principle, Ann. of Math. 72 (1960), 1-11.
- E. L. Stout, The theory of uniform algebras, Bogden and Quigley, Tarrytown-on-Hudson, N.Y., 1971
- 7. J. Wermer, On algebras of continuous functions, Proc. Amer. Math. Soc. 4 (1953), 866-869.
- 8. J. Wermer, Banach algebras and several complex variables, Markham Publishing Company, Chicago, 1971.

MATHEMATISCH INSTITUUT
UNIVERSITEIT VAN AMSTERDAM

Author's present address:
INSTITUUT VOOR PROPEDEUTISCHE WISKUNDE
UNIVERSITEIT VAN AMSTERDAM