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TOWARDS A GALOIS THEORY FOR
CROSSED PRODUCTS OF C*-ALGEBRAS

MAGNUS B. LANDSTAD, DORTE OLESEN,
and GERT KJERGARD PEDERSEN

Introduction.

Let (#,G,a) be a W*-dynamical system and denote by (G x M, G, &) its dual
system (cf. [7]). Assuming that .# is a factor, A. Connes and M. Takesaki
establish in [2, Theorem 4.1] a Galois type correspondence between the set of
closed subgroups of G and the set of W*-algebras .4#° such that #c A
=G x# and a,(A)=A forall tin G. They show that for each such 4" there
is a unique subgroup H determined by

H' = {t1eG| &(x)=x Vxe 4}

such that A/*=H x 4.

When trying to extend this result to C*-algebras there are obvious
difficulties. If (4, G, «) is a C*-dynamical system, there is a corresponding dual
system (G % 4, G, d), but if G is not discrete, it is no longer true that AcG x A.
Rather, A = M(G x A)—the multiplier algebra of G x A. One aim of this paper
is to define a C*-subalgebra &, of M (G x A4) which is large enough to contain
(in the natural embedding) every crossed product H x A of A with any closed
subgroup H of G; but no larger than we can find each H x 4 in &/, given H.

In the case where G is discrete and A is simple, we obtain a C*-version of the
Connes-Takesaki result concerning Galois correspondence. When G is not
discrete, however, no such result seems within reach—in fact it is not even
clear how one should formulate a reasonable analogue. If G is discrete, but A is
not simple, the Galois correspondence fails.

1. Notation and preliminaries.

Throughout the paper, G will denote a locally compact abelian group and G
its dual group. If A is a C*-algebra and a: G — Aut (4) is an automorphic
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representation of G such that each function t — «,(x), x € 4, is continuous, we
call (4,G,a) a C*-dynamical system.

Let s be a Hilbert space, A = B(o#). Let X denote L*(G, »#). Take H to be
a closed subgroup of G, and denote by K(H, 4) the continuous functions with
compact support from H into A. Define an isometric representation of K(H, 4)
with the L'(H, A)-norm, cf. [6], on X" by

W) = L a_s(y(W)E(s—h)dh

where y € K(H, A) and ¢ € X". Then H x A is isomorphic to the C*-algebra
s/ y generated by K(H, A) on X#". When H=G, we put &/ =o/;=G X A. Recall
that A has a natural representation 1 as operators on J, defining

(1H@)(s) = a_(@)(),
and that with (4,&)(s)=¢&(s—1) we have
(@) = A(@)i_,,

so that (4, G, o) is covariantly represented on J¢". With this terminology, each y
in K (H, A) identifies with [y 1(y(h))4, dh.

Recall further that the dual action d of G on & is given by &,=Ad u,, where
the unitary group on X is defined by

(;8)(s) = (5,0)8(s) .

If G is discrete, it was shown in [4, Theorem-4] that 1(A) is the fixed-point
algebra under & i.e. 1(4) equals

A= {xed| 4,(x)=xVoeG}.

If G is not discrete, the chafacterization of 1(A) is more complicated. It was
shown in [4, Theorem 4] that a in M (&) belongs to 1(4) if and only if

(i) ai; € o and isa € & for every fin L'(G);
(ii) The function t — A,ai_, is norm-continuous;
(iii) &,(a)=a for every o in G.

In section 2, we generalize this characterization from 1(4)= o) to o/, where
H is any closed subgroup of G. In section 3, we specialize to the case where G is
discrete, thus a(4)= %, and A is simple. We show that under these conditions
there are no d-invariant algebras between &/ and & other than the algebras
d”-
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2. A characterization of &/ and M (/) in M (o).

For each closed subgroup H of G let H* denote the annihilator of H in G
and identify A with G/H".
Our main result in this section is the following

THEOREM 2.1. Let (A, G, a) be a C*-dynamical system, (£, G, «) its dual system.
Let H be a closed subgroup of G. Then of  is the C*-algebra consisting of those
x in M (&) for which

(M1) xi, € o and A;x € o for every fin L'(G);

(M2) The function t — A,xA_, is norm-continuous on G;
(H1) &,(x)=x for every ¢ in H*;

(H2) The function h — A,x is norm-continuous on H.

2.2. Define &/, to be the C*-subalgebra of M (%) consisting of those x in
M () for which
(M1) xi, e o and i,x € o for every fin L'(G);

(M2) The function t — 4,x4_, is norm-continuous on G;
(M3) The function y — &,(x) is norm-continuous on G.

ProrosITION 2.3. o/ ./ and furthermore every x in oy satisfies
(H1) &,(x)=x for every y in H*;

(H2) The function h — A,x is norm-continuous on H.

ProOF. Let y € K(H, A), f € K(G). Then yi,=yxf, where

*N) = L y(f(t—h)dh,

so yi, € /. That A;y € o is proved analogously. This argument also shows
that y € M(«/), since choosing x in & and a net {f;} in K(G) such that A,x
— x we have

yx = limyi,x = lim (yxf)x e o« .

Now (Ayi_)(s)=0,(y(s)) € K(H, A) for every t in G, so (M2) is easily verified,
and (&,(0))(1)=(¢,7)y(r) immediately yields (H1). Finally, 4,y.belongs to
K(H, A), because

Ay(k) = oy(y(k—h),
which proves (H2). Since K(H, A) is dense in &/y, the proof is complete.
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2.4. Take B, to be the set of x in B(') for which there is some K =0 such
that

J‘Hl &, (x*x)¢ &> dy = K&

for all ¢ in . Define Iy: B,*B, — B(X') by

dg)iny = Ll <a,0¢nydy
where £ and n belong to .

LemMa 2.5. Take f,, f5, 81,8, to be in K(G), the set of continuous functions
with compact support from G into C. Let f=f,xf,, g=g, *g,. If b € B(X) then
Asbi, € BB, and

(Al = |l L L If ()g(h—1)ldhdt .

If &,(b)="b for all y in H* we get

Iy(A,bA,) = L Lf(t+h)g(—z)/1,+,,bz_,dhdt.

Proor. Let £ e X', b=0. Put g*(t)=g(—1t). Then

e (&, (AgrbA )L | > dy

< |Ibll J g*(D)g()(s+1,7){ A+, £ &> dsdtdy
JH' JG JG

= bl J g*(t)g(s)(s+1,9)< A4 L] pdsdtdy
JHY JG JG

r~ r

. (g**2) W) (u,7XA,1E> dudy

= |bl
L Hl v
P

= | bl ; (8* @) (<A | &) dh

< lblign? L I(g* *g)(h)| dh

= |bl IIA‘IIZ_" J lg*()g(h—1)| dhdt
GJH
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We have here used the Poisson formula ([3, 31.46(e)(xi)])

I j (u, Y)h(u) dudy =I h(y)dy =J h(u) du
H JG H! H

for each h in L'(G) with h in LY(G).
This shows that b*A, € B, thus b*1,. € B, and so

Jgbi, = (b*A)*(b*A,) € B§B, .

The estimate of ||Iy(4;b4,)| follows by direct computation.
Assume that &,(b)=>b for every y in H*. Then

Iy(A,ba,) = Ll 8,(4bA,)dy

= J J a,(A4,bA)f()g(s)dtdsdy
H Je Je

~

.
j (t+5,9)A4bAf (D)g(s)dt dsdy
JurJe Je

= J (,Y)AbA, -, f()g(u—1)dt dudy
JH* JG JG

- J iubiy_ f(O)g(h=0)dhdt ,
GJH

o

using the Poisson formula again.

LeMMA 2.6. With b in o, f and g as in lemma 2.5, we get
IH(Afbllg) € dH .

Proor. (i) Assume that b e 1(4), that is, b=1(a), a€ A and (1(@)é)(s)
=a_,(a)é(s). The formula above yields

Iy(Asbay) = J;I (JG 1o, (@) f ()g(h—1) dt) Aydh .

Now recall that by definition &y is the closed span of operators of the form
{u1(y(h))A, dh, where y € K(H, A). But this is exactly the form of Iy(A,bA,)
above, as

y(h) = j o(a)f ()g(h—1)dt € K(H, 4) .
G
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(ii) Assume that b=a®e, ¢ € K(G), a € A, that is, b(s)=a@(s) for every s in
G. Then the result follows from (i) and the computation

Iy(ibi) = L (L 1o, (@) f (g (h—1) dt>,1¢),1,, dh .

(iii) Assume b to be arbitrary in . Given ¢>0 there are finite sets (¢@,) in
K(G) and (a,) in A such that

1
“b"'z @0l < ‘Mﬁ s

where M =g [y|f()g(h—1)|dhdt. Thus Iy(i, (X a,®@@p)i,) € oy and
"IH("if(b_Z ak@‘Pk)'lg)” < M”b"z 4@l < &.
From this the conclusion follows, since &7y is norm-closed.
ProoF oF MAIN THEOREM. That every x in &7y satisfies M1-3 and H1-2

follows from proposition 2.3. Take x in M (&) and assume that it satisfies M1-
2 and H1-2. Let fe K(G), e>0. Then i,x € &, so by lemma 2.6 we get

b = Iy(ApesepXtsagep) € Ly -
Choose a neighbourhood U of e in G such that
lidpxi_,—x|| <& VieU YheUNH.

Choose V to be a neighbourhood of e such that V= —V and V+Vc U, and let
f be chosen so g=fxfxf has support in V and furthermore

J J g(t+hg(t)dhdt = 1.
GJH

Ib—x|l = Mu(Agxig)—xI

Then

J J\ g(t+h)g(t)(ft,+,,xi_,—-x)dhdt
GJH

This integrand is non-zero only if t+he Vand t € V, thatis,te Vand he V
~¥cU, so by the choice of U,

b—x|| = sf j g(t+h)g(t)dhdt = ¢ .
GJH

RemARrk 2.7. The characterization of &y may also be formulated in the
following way:
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oy is the C*-subalgebra of {x € o, | 4,(x)=x, Vo € H*} consisting of
those elements x such that h — 4,x is norm-continuous on H. In particular,
1(A)= ().

This formulation amounts to saying that </} is characterized by satisfying
conditions M1-3 and H1-2. However, as we have seen above, (M3) is free,
since it follows from the other four conditions. No such interdependence
remains between the remaining four conditions, as the following examples will
show.

ExampLE 2.8. Suppose that (4,G,a) is a C*-dynamical system where « is
trivial. Then &/ =Cy(G, 4) (=C*(G)®A) and by [1, Corollary 3.4] M(&)
= C*(G, M(A)), where M(A) is endowed with the strict topology. Note that for
x in C*(G, M(4))

(@.(x)(0) = x(6—71)

for all 7,0 in G. Condition (M1) asserts that x(a) € A for all ¢ in G, (M2) is
empty, (H1) requires x to be periodic, thus a function on H, whereas (H2)
forces x(6) — 0 as ¢ — oo in H, because (4,x)(d)= (t,0)x(s). Consequently

Ay = Co(H,A).

Note that ./ =C8 (G, A), as (M3) requires x to be uniformly continuous.
If H={e}, (M1) and (H1) are necessary to show o/, =A4.
If H=G, (M1) and (H2) are necessary to show o/;=C,(G, A).
So in this example, all conditions but (M2) are in play.

ExampLE 2.9. Consider the C*-dynamical system (Co(G),G,a) where
(2, (x))(s)=x(s—1) for each x in C,(G). Then & =C(L*(G)) (see e.g. [6,
Proposition 3.3]), whence M (&)= B(L?(G)). To simplify matters assume that G
is compact. Then each operator A, fe L'(G), is compact, being unitarily
equivalent with the multiplication operator m; on L?(G). Thus condition (M1)
is empty.

If H={e}, condition (H1) implies that x € L*(G) and (M2) that x € C*(G).
(H2) is empty. Thus (H1) and (M2) characterize A.

2.10. We shall now see that theorem 2.1 can be used to characterize the
multiplieralgebra M (/). First note that since &y < M (/) and &/ contains
an approximate identity for &/ we have M(&/y)c M(H), cf. [1, Proposition
2.6]. Using the terminology of theorem 2.1 we have

THEOREM 2.11. M(sfy) is the C*-algebra consisting of those x in M (&) for
which
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(H1) &,(x)=x for every y in H*;
(H3) The function t — A,(xy+zx)A_, is norm-continuous on G for all y and z in
Ay

Proor. It is obvious from 2.1 that the elements of M (/) satisfy (H1) and
(H3). So suppose x € M(«/) which satisfies (H1) and (H3). Let y € /. We
want to prove that yx satisfies (M1), (M2), (H1) and (H2).

Take fin L' (G); then A;yx € o/ x = o since y satisfies (M1). In order to prove
that yxA, € o/ it suffices to prove (using (H3)) that

b= j‘ g(Ayxi_Apdt € o
G
for all f,g in K(G). Now

b= f F (O, dsdt
GJG

= J f(s+t)g(t)AyxA dtds
GJg

r»

= Anyxigds € of
G

o

since 4,y € o, where hy(t)=f(s+1t)g(t).
This proves that yx satisfies (M1). Since yx obviously satisfies (M2), (H1)
and (H2), we have that yx € &/j.

3. A Galois correspondence for discrete crossed products.
In this section we have the following main result:

THeoreM 3.1. Let (4,G,a) be a C*-dynamical system with G discrete and A
simple. Denote by (4, G,&) the dual system. Take # to be an G-invariant C*-sub-
algebra of o which contains 1(A). Then # is isomorphic to sfy=H x A where
H is the subgroup of G that annihilates

r={yeG| ab)=bVbe%}.
‘We prove this in two steps. The first is a direct corollary of theorem 2.1:

LemMA 3.2. Let (A, G,a) be a C*-dynamical system with G discrete. For each
subgroup H of G we have

gy ={xed ' d,(x)=x Yye H'}.
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LemMaA 3.3. Let (B, K, p) be a C*-dynamical system with K compact and the
fixed-point algebra B® simple. Assume that for each y in Sp (B) there is a unitary
eigenoperator u, in M(B) (ie. B,(u)=(t,y)u,). If D is a P-invariant C*-
subalgebra of B containing Bf put

H={teK| B(x)=x,YxeD},
B" = {xeB| B(x)=x,Vte H}.
Then D=BH,

Proor. If y € Sp (B| D) the eigenspace D*{y} is non-zero. But then u*DF{y} is
a closed, non-zero ideal of B’, since
BPuD'{y} = u}(u,B'u¥)D*{y} < uyB’D*y} < upD*{y}.

As B’ is simple this implies that u}D?{y} = B, thus D#{y} =u,B’. In particular,
Ve §p (BID) if and only if u, € M(D). It follows that Sp (8| D) is a subgroup I'
of K and that

D= @ Dy} = @ uB.

yel yel

From this it is immediate that H=T" and that

. D=@ uBc B,
vel

However, if O%x e u,B*NBY, then y e H'=TI, whence x e D. Since B
=@ u,B? we conclude that BH <D and the proof is complete.

PrOOF OF THEOREM 3.1. Using that 1(4) =% when G is discrete we see that
(o, G, &) becomes a dynamical system of the kind described in lemma 3.3. The
unitary eigenoperators are the 4,. We conclude that

B = Aot = Al(A) = o8H"
= @ )

teH!

and so lemma 3.2 yields the desired result.

That A has to be simple in order for theorem 3.1 to hold follows from the
ensuing

EXAMPLE 3.4. Let A be a C*-algebra, I a non-trivial ideal of 4. Let G={e, ¢}
be the two-element group, and « the trivial action of G on A. Then

o = {f: G- A}
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equipped with the multiplication (fg)(t)=3 f(s)g(t —s) and involution f*(t)
=f(®*

We have G = {e, 5} where e is the identity, o(¢) = — 1. The dual action of G on
& is given by

&(f) =1 &UNWO = a®f@).
Take B={fe o | f(e) € A, f(¢) € I}. Then
(4) = {fed | fey=0} ¢ B and A is é-invariant ,
but 1(A)+B+ .

ReMARK 3.5. Note that we do not get a Galois correspondence for the d-
invariant subalgebras of M (&) even if A is simple and G is discrete. This is seen
by taking 4 simple without unit and G={e}. Then &/ =4 and we will in
general have many C*-subalgebras between 4 and M (A).

REMARK 3.6. As pointed out to us by G. A. Elliott theorem 3.1 remains true if
A is only assumed to be G-simple (no non-trivial G-invariant closed ideals, see
[5]. If namely the unitary family {u,} in Lemma 3.3 is commutative, each of
the ideals u*D?{y} will be invariant under all automorphisms of B of the form
Ad u;. This being excluded (when B?= A is G-simple) we may again conclude
that D?{y} =u, B’.
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