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REMAINDER ESTIMATES FOR EIGENVALUES
AND KERNELS OF
PSEUDO-DIFFERENTIAL ELLIPTIC SYSTEMS

GERD GRUBB

1. Introduction.

Let X be an n-dimensional compact C® manifold without boundary,
provided with a C® density dx, and let E be a C* complex vector bundle over
Z of dimension q (n and g =1). We assume that E is provided with a smooth
Hermitian metric, so that the space of square integrable sections L?(E), and the
Sobolev spaces H*(E) (s € R) can be defined; the norms will be denoted |ul|,
(the L2-norm denoted |ull,, with scalar product (u,v)).

Let P be a classical pseudo-differential operator of order / € R, in E. That P
is classical means that P operates on the sections in E in such a way that in
each local trivialization x: E|y — U xC? (with UcR"), P has the form P,

=0p (p),
(1.1) Op (p)u = (2n)"‘f e p(x,8)ia(&)dé  for ue CF(U),
.

where p(x, &) is a C*® g x g-matrix valued function on U x R" satisfying

(12 P8 ~ 3 Px).

the pi(x, £) being homogeneous in ¢ of degree |—j and C* on U x (R"\ {0}).
Here (1.2) stands for the property:

N
(1.3) DiDE(p(x,f)- ) Pj(x,f)) is O(lgf~N"t71),  for |§] > o0,
j=o

for all multiindices « and B, uniformly for x in compact subsets of U. The
principal symbol p°(x, £) can be given an invariant meaning on T*(Z)\ 0. (See
e.g. Seeley [20] for further explanations.)

We assume that P is selfadjoint in L*(E) (so in particular p°(x,¢) is
selfadjoint at each (x, £)) and, except in Corollary 5.5, that P is strongly elliptic,
ie, p°(x,&) is positive definite at each (x,¢) (£+0). Note that the functions

———
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276 GERD GRUBB

p’(x, &) have locally bounded derivatives in £ on R" up to order I —j. Hence for
j=<1, we can apply the formula (1.1) to p’, defining operators Op (p’)=P’.
The above hypotheses imply that for u € C*(E),

(1.4) (Pu,u) Z collull3;

we may and shall assume that ¢, > 0. In the following we consider the maximal
realization of P as an operator in L?(E), which we also denote P; it is a
selfadjoint positive operator in L?(E) with domain H'(E). Since I>0, the
spectrum of P is a sequence of positive real eigenvalues going to oo. The
resolvent

(1.5 Q= (P-An"!

exists for 4 € C\R,, and it follows easily from (1.4) that for A € C\R,,

1
(16) 1Quulo £ g liulo  for ue L2(E),

where d(4) is the distance from A to R,.

We shall present a construction of Q, (for 4 outside a parabolic region
around R,) that can be used to deduce the following estimate for the number
N(t; P) of eigenvalues of P less than t:

1.7 N(t; P) = cpt"'+0(t" ¥+ for t — o0,

for any ¢>0, where

J! tr[p%(x, &) " dwdx ,

= n(2n)"
cf. Theorem 5.4 below. The spectral function of P satisfies the related estimate

njl

n(2n)*

upiformly in x € Z. We furthermore derive from (1.7) that when P is self-
adjoint elliptic of order /, but not strongly elliptic, then the numbers N (¢; P)
of eigenvalues of P in the intervals [0,t] resp. [ —t,0] satisfy

(19) NE(t; P) = cFt"'+0(t" 9  for t — 00,

(1.8) tre(t; x,x) = f tr [p°(x, &)~ dw+0(i‘"‘*”’") for t - 00,
S,

where (cf. Corollary 5.5)

F = n(21z)"f j 2 IAF (P O) ™ dwrdx .
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The principal estimate ((1.7) with the O-term replaced by o(t"")) was shown
in Seeley [19]. When P is a scalar pseudo-differential operator (i.e., E= 2 x C)
or p°(x, &) has simple eigenvalues, the remainder in (1.7-8) can be improved to
be O(t"~ 1), see Hormander [14]. (This possibly extends to the case where the
eigenvalues of p°(x, &) have constant multiplicity, cf. Duistermaat-Guillemin
[7]1) For the case where P is a differential operator, (1.7-8) follow already
from Agmon-Kannai [3] and Hormander [13]; see also the simplified proof in
Nagase [17].

The novelty of the present work is then that it obtains remainder estimates
for general pseudo-differential systems. Like Nagase [17] (and earlier Seeley
[19], Hérmander [13]) we construct Q, as a sum of terms Q% (k=0,...,N),
with symbols homogeneous in (¢, (—4)'), and a remainder term S, y. When P
is a differential operator, the Q% have rational symbols with denominator equal
to a power of det (p°(x, &) —Al); they are C® in (¢,4) € R"x (C\R,) and
satisfy convenient estimates with respect to (1 + || +]4|*") (used in [17]). When
P is a pseudo-differential operator, the Q% have a less simple structure; in
particular, the £-derivatives of their symbols satisfy convenient estimates in (1
+¢|+ |41 only up to order I—k; also S, y is more complicated. Here we
profit from the boundedness theorem of Calder6n and Vaillancourt [5]
(developed further by Cordes [6] and Kato [15]) which keeps an accurate
account of the derivatives needed for each estimate.

It is applied to operators where |4|!/' is built in as an extra variable; from this
we deduce Sobolev estimates for our operators in n variables, which imply the
appropriate kernel estimates by a well known theorem of Agmon.

A special aspect of our proof is that we have to enlarge the order of P (by
replacing P by a power (P)"), not just so that it exceeds the dimension n, but
actually the larger, the smaller ¢ in (1.7)-(1.8) is (rl~¢~'n). This is not
necessary when the same proof is applied to differential operators, see Remark
4.9 below. (Other methods of proving L™ estimates of the kernels may possibly
avoid this phenomenon, but it enters necessarily in our proof of the Sobolev
estimates, that are meant to be useful in a generalization to boundary value
problems as in [10], [11].)

In Sections 2-4 we construct the approximate resolvent in local coordinates
(this is of course of interest also for operators on noncompact manifolds or
subsets of R"). Section 5 proves the main results for operators on Z. In Section
6, we apply our theorem to obtain an eigenvalue estimate like (1.7) for strongly
Douglis-Nirenberg elliptic pseudo-differential systems P, with I denoting the
lowest order occurring in P; the O-term is under certain circumstances
replaced by a weaker estimate, see Theorem 6.3. (This improves a result of
Kozevnikov [16], also proved by the author in CIME I1I, 1973).

The author is indebted to A. Melin for valuable comments.
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2. Symbols of the resolvent in local coordinates.

In this and the next two sections we consider P in a local trivialization U
x C? for E. More precisely, we modify the symbol p(x, &) (by multiplying it
with a cut-off function) so that we now have (1.2) valid for x € R"; p and the p’
having x-support in a fixed compact set K,, with p°®(x, £) being positive definite
(for £ +0) for x in another fixed compact set K,. For simplicity of notation, we
again denote Op (p)=P. We also assume in Sections 2 and 4 that [ is integer.
For integer N<[-1, we define

N
P/ = Op (p) for jSN, P,y = z Pi-2I,

j=0

2.1 N
Ty =P-) P, sothat P—il =P,y +Ty.
j=0
Since [D4p’(x, )| S cp(1 +|&))' 77 for all B, the P; are continuous from H*(R") to
H*~'*J(R"), and Ty is continuous from H*(R") to H*~'*N*1(R"), for all real s.
The following notation will be used throughout: For A € C\ R, we write

2.2)
= i\l 1 1 T
A= —(e°w, where p = || and 6 = TArg(—-/l), 0e 77l

We now_ construct symbols ¢ (x, &) for j=0,1,...,N, so that for x € K,
Ae C\Ry,,

1 N N
s a3 p-u)o ¥ o
=0 k=0

lejgN **

= I+[terms of degree < —(N+1)];

these are determined successively by the formulas

@ g% = @°—an7",
@3) o Lo
() q5 = —q% Y 0D},

Jal+i+j=k %
i<k
where p%=p®—il, p,=p' for i>0. We note that g% is homogeneous of degree
—1—k and continuous in (& u) € R"xR,, for each kSN (£1-1), each |6
</l
The resolvent will be studied for A in a region

@4 V, = {AeC| IAZ1, ReA<0 or ImA2JA'~%},

where & will be specified later. Note that when 4 runs through V,, e®u=(—2)""
(principal branch) runs through a subset Vj,
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(2.5) Vi ={(=A"] ieVy,

of the sector {z e C I |Argzl <m/l} (see fig. 1).

Alm
Vs
o/l // /
/ Re
/
Figure 1.

It is easy to derive from the positivity and homogeneity of p°(x, £) that for
AEV,

Px,O)—Al 2 1A and  |p°(x,&)—Ad| 2 clalmEl
(the matrix norm denoted |‘|), and hence
1950, O = AP (A1 +1E7Y)

o+ for xe K,, E€R" and i€ V,,

IIA

cf. (2.2). By successive use of Leibniz’ formula:

0= Dl,{,u[(po—ll)qg] = Z Co,yVx, {u(p _AI)Dxéuql’

asy
for y>0,
we then find that for x e K,, £ e R" and 21 € V,,
(2.6) IDEDEDIGY(x, &)l S ¢, HI IO G I (41272

for all multiindices « and # and all integers j=0 (using that 4 is polynomial in
#). In particular,

2.7 |DED3DIgY(x, &) < 6u+|al+|m+1>(p+|5|) 1=lal~j
for (x,&,4) € K, xR"x V,, when |a|S!.

(The latter estimate is valid for all «, when p° is polynomial in ). For any sector
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W= {lilz1 | |Arg (-4 S po<m}
one has the stronger estimates (for |a| <)

(28)  IDIDIDIGY) S cop (HIENTITIHT for (x,8,4) € Ky xR X W,

In (2.7), there is a loss of u? for each differentiation in x, ¢ and u; in fact (2.7)
implies
(29) IDEDEDIGE(x, &) S 4 p, j(u+1E)° 7 Ul De1BIS
with ¢ =1—6, which resembles the definition of the classes S}, ; of Hormander
[12] (a cryptical remark to this effect can be found in Eskin [8]). Of course, as
function of x and ¢, g satisfies the estimates up to order [ required for the class
S75 for each i (cf. also (2.8)), but not uniformly in 4 e V,. However, the
function a(x, &,t,1)=q% 2y (x, &) (considered for fixed 6 and suitably extended
to 7 € R) satisfies the requirements up to order [ for the class S;7/(K, x R). In
order to utilize this, we shall study the connection between certain estimates for

operators in n+1 variables and families of operators in n variables
(generalizing a device found in Agmon [1]).

3. Estimates obtained by addition of a variable.

Specifically for the abovementioned purposes, we introduce the class of
symbols S7 ; , defined as follows:

DeriniTioN 3.1. Let m € R, let ¢ and 6 € [0,1], and let k be an integer =0. A
(possibly matrix valued) function a(x,&,7) on R" x R" x R is said to belong to

the class SJ. 5 ,(R*"*1) (or simply S7., ,) if the following continuous derivatives
exist and satisfy the estimates

(3.1) IDED3Dia(x, &, 1) S €4 p, (1 +|E]+ [lym 0=t D+ 1813
for |a| <k, all B and all j.

When a € S ; ,, it defines an operator A on R"*!
(32) (Af)(x,t) = Op,sy (@f = 2m)~""* fe""‘+"’a(x, &E0f(E ) déde
and a family of operators 4, on R" (parametrized by 1)
(3.3) (4u)(x) = Op, (@u = (2n)™" feix'ca(x, &na(g)de .

We assume in the following that ¢ € ]0,1] and 6 € [0, 1[ are given, with ¢
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2 6. Recall the theorem of Calderdn—Vaillancourt [5], improved to the present
form by Cordes [6] and Kato [15]:

LemMa 3.2. When p(x,¢&) is a function on R4 x R? such that
IDEDED(x,8)| < ¢, p(1 +|E|)I#1~ 1208
for all || S[d/21+1, all |BI<[d/2]+2 (BI<[d/2]+1 if 6=0), then Op (p) is a
bounded operator in L*(R%).

This implies for our operators

LemMma 3.3. Let k2[(n+1)/2]+1, and let r be an integer 20. Then if
a € 8,5 1, A is continuous from L*(R"*1) to H'(R"*) (with a norm estimated by
the constants in (3.1) for |BIS[(n+1)/2]+2+r, Ja|+jS[(n+1)/2]+1).

Proor. It is easy to see from (3.2) that for any multiindex «, any integer j =0,

(3.4) DDIAf = 0p..+1<z s ————=¢*"PDla(x, ¢, t))f

psa (x—p)! B!
where £*7PtDla(x, 1) € Spjtl-AHItBR S Tt M+ For || +jSr, we can
apply Lemma 3.1 (with d=n+1) to each term, showing that D2DiAis
continuous in L?>(R"*?!). The last statement is easily checked.

A similar result can be shown for noninteger r, under much heavier
assumptions on k.
Concerning A,, we first make some primitive observations:

Lemma 3.4. (i) If a € S7 5, with m< —([n/2] +1)6 and k= [n/2]+1, then

3.5 lAulo < clully  for ue L*(RY),

with ¢ depending only on the constants in (3.1) for |a|,|f|<[n/2]+1, j=0.
(ii) If a € ST 5, and is compactly supported in x, then its Fourier transform in
x satisfies

(3.6) la(n, &0l < en(L+In) =N (L +121+ ()™

for all integers N 20. In particular, if m< — (n+1)d, A, satisfies (3.5) with a
constant that depends only on the size of the support and the constants in (3.1) for
BISn+1, a=0 and j=0.

ProoF. When the assumptions of (i) hold, then
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IDED%a(x, &, 1) S cq p(1+ [+ )™Mt A0 < ¢,

for || and || <[n/2]+1; then the assertion follows from Lemma 3.1 (with §
=0).
(ii) Let a € S7 5 o, vanishing for x outside a compact set K, then

]

n Je“"'"a(x, E,1)dx fe'i""DZa(x, £, 1)dx

IIA

CO,a,0(1+|£|+|T|)M+Ia|éJ L dx
K

for all «; this implies (3.6). Now if m< — (n+1)d, we have for u,v e Z(R"),
using (3.6),

(A, 0)] = |, Je""éa(x,é,f)ﬁ(ﬁ)ﬁ(X)dé dx

2 f a0—¢,¢,1a(8)o(0) d¢ de!

IIA

€3 I(l 0= A G+ [T ()] 15(6) dE do

IIA

cellullolivllo

which implies (3.5).

These observations are helpful in the deduction of a much stronger result,
Proposition 3.7 below.

For pe R and s e R we denote by H**(R") the Sobolev space H°(R")
provided with the norm

3
3.7 lulls,, = (L' (A +18P7 +pyla)r? dé‘) .

It is easily seen that for each s =0, this norm is equivalent with the norm (|jul|?
+|ul**||ul|?)?, uniformly in p. H%*(R") and H **(R") are anti-duals of each
other (with respect to an extension of (u,v)); and when s>s'>s", H*"#(R") is an
interpolated space between H**(R") and H*"#(R") in an obvious way. Let {(t)
denote a function on R with the properties: { € CF(R), {=1 for |t| <4, (=0 for
|t}=1and 0={(f)<1 for all z. One easily shows (or one may consult Agmon [1,
pp. 272-273)):

LEMMA 3.5. Let r be an integer 0. There exist three positive constants c,, ¢,
and c, (depending on { and r) so that
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(3.8) collull gy S Tu) (@™ | ey S allull grae »

for all |u|=cs.
We shall now prove

ProposITION 3.6. Let a(x, &, u) € S35 with k=[(n+1)/2]1+1, and assume
that a vanishes for x outside a compact set. Let ¢ € £ (R). When m< o, there

exist constants ¢, and c,, depending on ¢ and on a certain number of the estimates
(3.1), so that

(39 14 (u(x)p (2)e™) — (A u)(x)@ (™| 2@ty S cyllull 2
for all ue L*(R"), all |y|2c,.

Proor. For u e #(R"),
(3.10) e ™A (u(x)p(t)e™)

= @n—t J xS+ mN g x, & D) (E)p(s) ds dE T .
Rl+2

Now for any N =0,

N
ax &7 = 3 j%a{a(x,é,u)(r—u)f+aN(x,:,r—u,u),

j=0

where
1
ay(x,¢,0,p) = —1\%0”“‘[ (1=hNoN*1a(x, &, u+ho)dh
: 0

satisfying, for all a,
ID3ay (x, &0, S €y(1+[E]+ [l ®H et (1 gV rIm T DeralL

and hence for all M=0 (cf. the proof of Lemma 3.4(ii)),

G11) lan(n, & 0,
S ep(L+I) ™ML+ (] + |y VD Ma(g g+ HImm (N Dt ML,

(We constantly use the estimate (1 +|a+b|)' < (1+|a)'(1+ b)) Moreover, we
have that

@n)~"-1 J xS Nig(x, &, u)(x — pYi(E)e(s)ds dl dt

= Op, (da(x, & w(x)Dip(H) = (APu)(x)Dip(®) .
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Inserting this in (3.10) and multiplying by ¢**, we find

N
Aux)pe™) = Y jl!(A‘,,”u)(x)D{'w(t)e"“+R~(u, u)(x, 1),

Jj=0

where

Ry(u,p)(x,t) = (2m)~"~* J.e“"'““’aw(x, &T—w i ()P (c—pdide.

The last term will be estimated first: For any v € £(R"*}),

[(Ry (4, ) (x, 8), v(X, )2 o+1)|

= ¢y | €4 Vay(x, ¢, 1 — 1, Wil (O (r — Wi (x, 1) d¢ dedx dt

LY
»

an(E—n, &1 — WOt — Wb, 7) dE dr dﬂl

r»

ey | (L+IE=n) ™" DA+ 1+ DY (1 + [z — phV 1IN

|4(8)@ (v — Wi (n, 7)| d& dn dx

A

by (3.11) with M=n+1; here
N =m—(N+1lp+(@n+1).
When N’'=0, it now follows by a standard application of the Schwarz
inequality, using that ¢ € ¥ (R), that
[(Ry (i, u)(x, ), 0(x, )| £ cllullzollvllzgesry
and hence
(3.12) RN () (x,)llo = clullo

where ¢ does not depend on u and u.
This terminates the proof for the case where m< — (n+1)d+g, for then
(3.12) holds with N=0, and R,(u, u)(x,t) is simply equal to

A(u(x)@ ()e™) — (4,u)(x)e ().
When m is larger, we proceed by induction: Assume that (3.9) has been

proved for all m<m, (my <), and let m<my+o (m=Zg). Then

N
Aupe™)— (A wpe™ = Y (APu)(Dlp)e™ + Ry (p,u)(x,1) ,
i=1
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where we choose N so large that N'<0. Then Ry (p, u) satisfies (3.12), and on
the other hand, we can apply the induction hypothesis to each operator AD

with ¢ replaced by Digp, which shows that for jiz1,
lAPuDlipe™ |, < | ADuDipe™ — 4D uDI pe™)]o+

+ | AP @Dipe™)||,

A

cillullo+c,llublpe™ |y < csllullo,
using that 49 is of order m — je=0. Altogether, we find (3.9) for a. Any m< o is
reached by a finite number of induction steps.

We can finally show

ProposiTiON 3.7. Let r and k be nonnegative integers with k2 [(n+1)/2] +1,
and let a € S} ,, with compact x-support. For any s<r there is a constant c, S0
that

(13) 4wl ey S clul_,, foralue HR, all peR,
and hence also

(3.149) lAgvlls,, = cllvlls—,,, forall ve H*""(R"), all ueR.

Proor. Case 1: r=0, s=0. Here we have that for |u|2c, (c, being a suitable
constant),

l4,ulle < el (AW () (B)e™ o (by Lemma 3.5)
< ¢l A((x);(0)e™)lo+csllull,  (by Proposition 3.6)
= callullo (by Lemmas 3.3 and 3.5).

For |u|<c,, we obtain the estimate, uniformly in yu, by applying Lemma 3.2
(with d=n) directly to a.
Case 2: r>0, s=0. It is seen from (3.3) that for all multiindices a,

(3.15  D*Op,(a) = Op, Z é“"’D"a> = Op,(a),

ﬂ)' (@—p)! B!

where a,(x, & p) € S; 547, Furthermore, p'a(x,¢, u) € Sg 5,4 Then altogether,

"Auu"r,u ."<= Cs("H’AM“’|o+lé "D?:Au““o)

< cgllullo

for all 4 € R, by application of Case 1 to a, (for |¢/Sr) and to ya.
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. Case 3: r=0, sSr. Letue H“S(Rn) and let W=0p,,((1 +|§|2 +ﬂ2)—3/2)u~ Then
lull -5, ,=lwllo, and

lAul, -, = 14,0p, ((1+1EP+ 2wl s, .
When s is integer, (3.13) then follows by applying the preceding cases to
A, Op, (1 +1¢P +p??) = Op, (alx, & W (1 +1¢1> + 42"

whose symbol is in S, 5%°. Next, when s is not an integer, the result is obtained
by interpolation. (3.14) is an immediate consequence, by the duality of H>#(R")
and H™**(R").

When 4, is a family of operators parametrized by p (running through R or
an interval I of R), satisfying the estimates (3.13)-(3.14) for all s<r, we say for
brevity that A, is of u-order —r (for p e I).

The conclusion of Proposition 3.7 will be needed for families of operators A4,
that are a priori only given for u on a halfline {12 pu,}. We therefore include a
lemma showing how to extend the symbols a(x,&, u) of such a family to all
values of u € R, with a control over the estimates (3.1) that is independent of u,
and a.

To be moare precise, we introduce, for any t, € R, the class SI, ,(R*"

x [0, 00[) of functions a(x, &, u) on R" x R" x [7,, oo[ for which the seminorms

(3:16) la(x, &, D)llla,p,; = sup (1+1&|+I|z)=m+d=I*He =119 DiDeDla(x, &, 7)|
x, &t '

are finite for |a| <k, all § and all j (the mentioned derivatives being continuous).
The spaces Sr;  (R**!) and ST, . (R*x[1o,00[) are provided with the
topologies defined by the seminorms (3.16), where (x, &, 7) runs through R2"*!
respectively R?" x [z, 0o[.

LemMA 3.8. Let m € R, g and J € [0, 1] and k integer 20 be given. For each t,
20 there exists a linear extension operator

E.: Sp5x(R* x [9,00[) = 7 5 (R*"*1)
(sending functions a(x,&,1) on R2"x[1,,00[ into functions (E.a)(x,&,7) on

R2"*1 that coincide with a(x,¢,1) for 1=1,), such that

(3.17) NE.@lllep,; S C@B,)  sup Ml

o' Sa,pSB.J

for all |a) <k, all B and j, with constants C(a, B, j) independent of a and of 7. (In
particular, the operators E, are continuous, uniformly in 1,20.)

Proor. For each 1, we introduce the auxiliary function
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) _ T
(318) (P(To, ést) = C<(1+|£|2+T(2))*)

(where {(t) was defined before Lemma 3.5), and observe that it satisfies the
estimates

(3.19) IDIDIp(to; &) < Clot, j)(1 +1]E|+ () 711~

for all « and j, with constants C(a, j) independent of 1,. To see this, we note that
the derivatives of ¢ vanish for |z] ¢ [3(1+|&* +13)}, (1+]¢?+13)*]; and on
the other hand, when t € [3(1 +|¢[> +t2)%, (1 4+|¢> +12)1], then

1 < 1 < 3
A+ +1d)F = JU+1EP +3e = 1+1E+1l
Using this we find, denoting max |(V(7)|=c,,
Dol = (L +1EP +d) " H) (1 +1EP +18) 74 < 3e, (L +1E+1) 7",
IDgol = I0'((1+1E1 +19) " Ho)e&(1 + €7 +10) 72 < 3¢y (1+1E[+]e) 7,

and so on, showing (3.19).
Now let 1,20 be given, and let a € SJ'; (R*"x [to,00[). Then it easily
follows by use of (3.19) that the product

. a;(x,§,1) = o(to; &, Dalx, &, 1)

belongs to S7 5 ,(R*" x [o,00[), and that

(3.20) Mayllla,p,; £ Ci(B8,j)  sup  liallle, g5 »

LN ETN Y
for all |o| £k, all B and j, with constants C,(a, f,j) independent of 7y and a.
We shall use the extension method of Seeley [21] to extend a to values of
7 less than 7, Recall from [21] that there exist sequences {g.}, {h} (for
k=0,1,2,...) such that:

(i) h,=1 for all k;
(i) 320 lgl Ih " <00 for n=0,1,2,...;
(iil) ¥ og(—=h)"=1 for n=0,1,2,...; and
(iv) by — oo for k — oo.
(One may e.g. take h, =2 or h,=k+1.) When 7,=0, we define the extended
symbol by

a(x¢&1)

§ gk(P(O; 5’ —hkt)a(x’ é’ “hk‘t)
k=0

Y gy (x, € — ), for <0,
k=0
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_it is a kind of reflection in the line 7=0. For general 7, we take the analogous
reflection in the line t=1,, given by the formula

(3'21) a (xa 6’ t) = Z 8y (x, é: hk(fo - T) + TO)? for 1 é To -
k=0

As shown in [21], this series and its termwise derived series converge uniformly
on compact sets, defining a function a' for 7 <1, having as many continuous
derivatives as a; these derivatives match the derivatives of a at T =1,. We define
E.a as the function equal to a’ for 77, and equal to a for T21,.

For the estimations of the seminorms we observe that by the definition of
@(1o; £, 1), the function a,(x,& h(to—1)+1,) (defined for t<1,) and its
derivatives can be 0 only when

(3.22) h(to—1)+10 S (L+|EP+12).
Since (14|¢2 + 12 <1 +|¢+ 10, (3.22) implies
h(to—1) = 1+
and hence
7o S b 'A+D+7 £ BT A+ I,

so that altogether (3.22) gives
(3.23) h(to—1)+1,

IIA

(1+hro + byt
c(1+Eh+ 2h+ Dt ,

where ¢=max, (1+h; !). On the other hand, we have when 7 € [0,7,],

A

h(to—7)+10 2 10 2 7],

and when 150 (so that |1|S 15— 1),
h(to—1)+10 2 h(to—7) 2 (1],
where ¢’ =min, h,; so altogether

(3.24) h(to—1)+19 2 c"|t], when 1=571,,

with ¢”=min (1,¢).
Now for t1<1,,

IDIDDI (x,&, 1) £ 3 lgal ImlIDED3Da, (x, €, O)lommiso -1+ »

k=0

where

IDEDEDIay (x,&, Olo=hieo -+t S Masllly,p, (1 +1E1+ Iy (To — D)+ Tol)Y
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with N=m— (la|+j)e +|B|6. When N>0 we use that (3.23) holds on the
support of the symbol. Hence

IDIDEDIA (x,&, ) < ¥ lgul I *NC(N)llaylll,, p, (1 + 18]+ [N
k=0

A

C(N, lllayllly, g, ;1 +181+12)V

by the property (ii) of the sequences {g,}, {h;}. When N <0, we simply use
(3.24), showing that

IDEDGDIA (x,&, 0| = ¥ Il Imudlllay e, g, ;1 + 1E] + [
k=0

IA

C'(N, MMlaglle, g, (1 +1€1+ 1D

by the property (ii). In view of (3.20), this altogether shows that the extended
symbol E_a satisfies (3.17), so that E_ has the asserted properties.

ADDED IN PROOF. In (3.18), { should be replaced by a function {, (t) that is 1
for |t| <1, O for |t|=3/2, with subsequent changes in constants.

4. Local remainder estimates.

Consider the (matrix-formed) symbol ¢5(x, £) defined in Section 2, and recall
the convention (2.2): A= —e®u' where u=|4""" and |0) <n/l. We shall replace

Jo,0(x, &) by a closely related symbol defined for all x € R" and all ueR, by
the following definitions: Let K, be a compact subset of K2 and let
n(x) e CF (R") with y(x)=1 on K; and suppncK,. For each 8 € ]—n/l, n/I[,
let
po = inf{u| €’peVy};

clearly py=1, and p, — oo when 6 approaches —mn/l or n/l. Then set (cf.
Lemma 3.8)

“4.1) 3@ (x, & p) = E, (n(x)q% gy (x,))

(extended by 0 for x ¢ K,). Clearly §3(x, &, w)=q% jou(x,&) for x € K5 and p
2 11p; and because of the uniform estimates in Lemma 3.8 it follows from (2.7)
that we have estimates like (3.1):

(42)  |DiD3DILge(x, &

< ¢ s .(1+l§l+'ul)—-l+6—(|a|+i)(1—5)+!ﬂ|6 on R2n+l ,

S Chpj

for all |a|</—1, all B and j, with constants c, s ; independent of 6. We
express this briefly by saying that

“3) G(x, & p) € S7t35,-1,  uniformly in 8.
By the way, the symbols

Math. Scand. 43 — 19
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Pi(x, &) = pP°(x,&)—4l, pi(x,&) = pi(x,&) for j>0,

can be viewed as functions of (x, &, u) € R2"*! when we replace 4 by — ey for
each 0; and it is easy to check that for each j<i-—1,

(4.4) Pl (x, &) € Sl d.1-j-1»  uniformly in 0 .

(We use that [ is integer, and (1 +|&]f < (1+|&|+|ul)® for s=0.) When j>0, we
may omit the index 4 or —e"®yu'. Let us finally define the functions §&(x, £, 1) on
R2"*1 by successive application of (2.3) (ii)

4.5) Gs = —do Z

Ial+1+i = ol

a‘ép’ ol 'Dx‘h ;

then Gk(x, &, p)=q%(x,¢&) for A= —e%u' € V; and x € K.

LeEMMA 4.1. For each k<1—1,

4.6) gh e STL35 M3 uniformly in 0 .

Proor. The statement was proved above for k =0. For general k, we proceed
by induction on k, using the elementary observatxon when a; € S35, 4, for i
=1,2, then

my +m;
a,a; € Smine,.maxd,-,mink, .

Assume that (4.6) has been proved for all k<k, (where k,<1—2). Then by
(4.5), Gko*' € SY_; 5 m» Where

max { ~ I+ +1—j—Ja| =+ —j (1—-28)+ald | lo|+j+]
= k0+1,j'§k0}
max{—1+26—j—j (1-20)~|al(1=8) | |al+j+j=ko+1, Sko}

N

]

I

Il

—14+8— (ko +1)(1—26)
(the maximum is obtained for j'=k,, Ja/=1 and j=0), and

M = min{l—j—|a|=1,1—j=1] lal+j+j=ko+1, j Sko}
I—(kg+1)—1

(the minimum is obtained for || +j=ko+ 1, j =0). This shows the statement
for k=ky+1.

]

I

For € C\R, we define (cf. (3.3))
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(4'7) Q‘i = Opn (‘io (x’ 69 [.l))

where 1= —e'%u as usual (so >0, |0| < n/l); we note that Q% = Op (7(x)q* (x, &)

when 4 € V. (The operators Op, (i(x, &, w)) are also defined for 4 <0, but since
they are not needed here, we do not introduce a special notation.) Then
Proposition 3.7 gives immediately:

LEMMA 4.2. When —1+6—k(1-28)<0and l—k—12[(n+1)/2] +1, then Q%
is of p-order —[1—3+k(1—26)] (for u>0), uniformly in 6.

It is important to observe here that the u-order does not improve with
increasing k, unless 8 <4. Since such a property is needed, we assume from now
on:

4.8) 6 =1—¢ foragiven £¢€]0,1];
one is interested in small values of ¢. With this notation,
4.9) s€ST ';60_1 k-1 S;i’;,i_-‘f.'if L

Define now, for A € C\R,

N
4.10) . QN =2 0%.
k=0

Lemma 4.2 applies to Q, y when [-N—12[(n+1)/2]+1 or, for simplicity,
when N <I—n/2—3. More restrictions on N will occur below, where we
investigate how well (P— AI)Q, y approximates the identity operator. Since the
symbols g are defined in such a way that

- spiDgh =1 for xe K3, A€V,
iSN lal+j+k=i &

we have that

(4.11) (P—iDQ, n = Op (fi(x, &)+ Ry N+ R, N+ RN,
where
4.12) fix, &) =1 for xe K3 and 1€V,
4.13) N = TnQa N;
1 : N
4.14) N = Op, (—7 ap! (x, E)DGs(x, &, u));
fal, j kSN o
la|+j+k2N+1
1 .

4.15) WN= Y [P’Q'z—Opn( ) -—,62:;’0;4:)].

LESN lalEN &
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The terms R, y and R}y can be avoided when P is a differential operator,
by taking N 21, as in [17]. The three remainder terms (4.13)—(4.15) will now be
estimated separately.

LemMA 4.3. When N £1—n/2—3, R}, y is of p-order — N (for u>0), uniformly
in 0.

Proor. As remarked in the beginning of Section 2, Ty is (for N+1=])
continuous from H*(R”) to H*~'*N¥*1(R" for all real s; the same holds for the
adjoint T#. Then for integer s=I—N-—-1 (=0) we have, by elementary
inequalities,

IA

I Twulls—rsns1p S U Taulls—ien1+# N Tyulo)

clllulle+p =N ul oy —y) £ clully,u s

A

and similarly

ITRONs— 4 N+1,0 S €0l
for all u,v € &, uniformly in u. The last statement gives by duality
(4.16) ITvulli-r4n+1,0 = Cllulliu

for integer t £0. Then it follows by interpolation that (4.16) holds for all t € R,

uniformly in p. (In particular, Ty is of y-order [—N —1.) Since Q, y is of p-

order —[I—3]= —1+1, uniformly in 6, it follows that the composed operator
WN=TnQ, n is of y-order — N, uniformly in 6.

Lemma 4.4. Let N<i(I—1). For each |0, j, kSN,

4.17) 521” (x, §)D%Gs(x, &, ) € S’{—-{i,.az,fc—_;x!:%aﬁ i’j, -1 -
Moreover,
1 ~ - &
(4.18) I e R (VT
SN +1

5o that the corresponding operator family R} y is of y-order —[2(N +1)e] (for p
>0), uniformly in 0, when N <i(1—n/2-3).

Proor. (4.17) follows immediately from (4.4) and (4.9). Then the sum in
(4.18) is of order r, where
r = max{6—j—2ke—|a(1—0) | lal,j,kSN,la|+j+k2N+1}
= §—2Ne—(1-6) = -2(N+1)e,
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since 1 —8=4%+¢22¢ By Proposition 3.7, (4.18) defines a family of operators
of u-order —[2(N + 1)¢], when

I-2N—1 2

n . 1 n
< —_——
2+2, that is, N < 2(1 2 3).

LeMMA 4.5. Let N<1(1—-2). Then

4.19)
N =) (PjQﬁ—OPn< ) —1—,3317’0;‘75» = Op, (re(x, ¢, 1)
j kSN la| SN &
where
(4.20) ro(x, & m) € SN AN P?

Hence RY y is of p-order —[N+1— (n+142)d] (for u>0) uniformly in 6, when

l
@.21) (n+1+2)3—1 < N < 5_3__2;
there exist integers N satisfying (4.21), when
4.22) ) Iz -i—(%n+3)—-n—2 .

Proor. For each j and k,

I

423)  (PIQiu)(x) = @2m)~*" Jei""é"'“""’p"(x,5)45(2,n,ﬂ)ﬁ(n)dnd2d€

= (2m)7" Je"""sj,k,o(x, n, wi(n)dn ,
where
(4.24) Siko(Xmp) = 2m)™" Je“"”"""’lr" (x,$)do(z, 1, ) dz dg
(the integral is seen to converge by applying (3.6) to gg). Inserting

@25 pxd= Y - apeenE-nr
lajSN **
1
vy Ml f (1= o3P (x,n-+ h(E— ) dh
! 0

laj=N+1

one finds (using the Fourier transform and a substitution {—n={)
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1 . N
(426) 54 00x,n0) = ZN S0, n)D3qs(x, n, u)

lal2

+rj,k,0(xa n, I‘) ’

where

427 r ok, ol m ) = 2m)™"

N+1 J ix- ;Caj (1 —h)Nazp (x, n+ he) dhgh(L,n, pwy d .

lal]=N+1
By (4.9) and (3.6),

ko )l = cm JICIN“U+|'1|+|CI)"’"N"’(1+|C|)'M'

(1+ | + | ~H+o= 2k Mo dr
< Ay(L+{n|+|p)) i~ ke N-1+M+ 1)
for M>n+1—j. In particular, for M=n+1—j+1,
Py m ] S c(1+ | +|uf) =i~ e N-1+@+i-j+2

c(1+n| +|pf) A +H-2ke =N -1+ +1+2)8

I

The derivatives are estimated similarly, using that p’ vanishes for x outside K,
and we find altogether

1+8)~2ke~N~1+(n+1+2)s
(4.28) Fixalx,mu) € Sy ’(a s, 1)—;—7v~ - ‘

Then ro(x,n, u)=3; k<N T) x0(X, 1, ) satisfies

N-1+(ntl+2)s
ro(x,n, 1) € S0 513N )

so that, when [~2N —22n/2+2 and N2 (n+1+42)0—1, Ry, =Op (re(x,n, )
is of y-order —[N+1— (n+1+2)d], by Proposition 3.7. The set of integers N
satisfying these requirements is nonempty, when

I

- 1
2 4 2 2 (n+l+2)( g),

ie, when [21/e(3n/d+3)—n—-2.

REMARK 4.6. Our estimate of the remainder in (4.19) is not nearly as strong
as the estimates in Hormander [12]; this comes from the fact that we do not
dispose of higher {-derivatives (in fact, an application of [12, Theorem 2.6]
would require more than [ +n+ 1 derivatives in £, where our symbols have only
up to ! well-behaved derivatives).
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A common feature of Lemmas 4.4 and 4.5 is that the smaller ¢ is, the larger
has to be (inverse proportionally to ¢), in order for N to exist so that R} y
respectively R’y has a given negative order. Let us find conditions on [ and N
for which the remainders are of y-order —r.

THEOREM 4.7. Let £>0 be given, and let r integer =0. Then
4.29) (P—2DQ;n = Op (fi(x,&)+R; v,

where f,(x,§)=1 for x € K and 4 € V,, and R, y is of p-order —r (for u>0),
uniformly in 0, when N =[1/2—n/4—2] with |2 1/e@Gn+3+r)—n—2, or simply

4.30) 12 e tn+3+4r).
Proor. By (4.11)-(4.15)
R,n = Ry n+R N+RY N,

where the terms are estimated in Lemmas 4.3-4.5. These lemmas require

n 1 n 1 n | n
. < mi — =3, | l===3 ),z l=-z=4)} = =—-=2,
(4.31) N £ min {I 5 3,2(1 5 3),2( 3 )} 573

so we take N =[1/2—n/4—-2] in the following. Then R; y is of u-order —r, if
(cf. Lemmas 4.3-4.5)

1
(4.32) N 2 max {r,zr—g—l, (n+1+2)(§—s)+r—-l}.

A computation shows that this holds, when

n

2

% (%n+3+r)—n—2;

the latter expression is e '(n+3+r).

1%

max {2r+ +4,:—:+E+4,%(3n+3+r)—n—-2}

2 4

Recall that the present calculations are concerned with a localized situation.
In order to pass to the global statements in the next section, we need to show
that operators of the form yQ%p with Y@ =0 are of relatively low order. An
easy variant of the proof of Lemma 4.5 gives

LemMA 4.8. Let IZn/2+4, let N=[l/2—n/4-2], and let kSN. If ¥ and
¢ € CF(R") with
(4.33) Y(x) =0 for xesuppg,

then y Q%o is of p-order —[3—n/8—1].
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Proor. One finds, like in (4.23)-(4.27)

WQhou)(x) = Qn)™" jei“'"SS(x, n, wi(n) dn

where (for M+151—k)
s,l;(x’r"“) = UII(X) | |§ 46260("( é ”)D q’(x)"'rk M(xa "’“)

here the sum over |2/ <M is 0 because of (4.33), and

M+1 (. 1
Aaubon ) = @0 Y T fe**"ca f (1= WM
jal=M+1 & 0
0%de(x,n+h{)dho(0)d( .
It follows from (4.9) that

k ~1+8-2ke—(M+1)(1 -8 —1-
ro.m(X. 1, 1) € 87255 "k Su =9 . st au N-M-2-

Taking M=[/-N—-2-n/2—2]=N or N+1, we find by Proposition 3.7, that
Y@ =0p, (rt y) is of p-order —[31—n/8—11].

REMARK 4.9. When P is a differential operator, the symbol §(x, &, ) is in .
57135, ;for all j20, and similarly the symbols gi(x, £, u) are defined as elements
of S713%7 2 for all k20, all j=0. Then no upper bound on N (as in (4.31)) is
imposed, so that for P of any order / (integer >0), we obtain a remainder R; y
of y-order —r by taking N satisfying (4.32), which can here be replaced by

r I
N2 max{ze 1, 2+2+r}
In the differential operator case one may in fact conveniently take N =/,
whereby R y and R}y will be zero, so that the remainder R; y equals R} y,
which is of u-order —[2(N + 1)c]; and our Sobolev estimates are valid without
limitations on I. The operators Q% are of y-order —[I/—8+ 2ke] for all k=0.
(Hence in the development (5.6) below, one can take N arbitrarily large,
obtaining, for N2/, that ) y is of p-order —fI—8+2(N +1)e].

5. Global constructions.

Recall that P was originally given as an operator in a complex g-dimensional
vector bundle E over a compact n-dimensional manifold Z, and Sections 2—4
refer to an operator defined from P in a local chart. We shall now define an
approximate resolvent of P on Z. Let x;: E|y — Q;x C? (22,=R") be a family of
charts so that U;g; Ely =E; let {¢;};5; be a partition of unity subordinate
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to the X; (that is, ¢; € C3° (X)), Yi<i, ;=1 on Z) and let {y;};<;,» {0:}i<;, and
{0}i<, be three other families of C* functions on X with ¥, 6; and g, € C (X)),
Y;=1 on supp @, o;=1 on suppy; and g;=1 on an open set w, containing
supp a;, for each i. We use the same notations (¢, ¥;, 7;, 0;, w,) for the functions
and sets carried over to Q;. For each i, P defines an operator P, on the g-tuples
of functions on Q,, by the formula

(5.1) xfP,.u = P(fu) for ue C§(Q,CY

(»* denoting the pull-back of sections in 2, x C? to E|y, defined from x,); P, is
of the form (1.1).

For each i, we apply definition (5.1) to g;Pg;, which gives a g x g-matrix
formed pseudo-differential operator (g;Pg;),, on R” with a symbol

P8 ~ X D),

satisfying the hypotheses of Section 2 with K, =suppg,; and K,=w, Letting
K, =suppoa,; we then construct (for some N</—1)

a

(5.2) Qin:=0%:i+...+0Y,

from the symbols pi, as described in Sections 2—4. Finally, set

(5.3) Qn = 2 Wisn, 0

iSiy

(where each (¥,Q; n,@),1 is “extended by 0” outside X)).

Defining H**(E) (for each s € R) as the Sobolev space of sections H*(E)
provided with a norm |ul, , obtained from the norms in H**(R")? by use of
local charts, we say that a family of operators 4, on the sections of E is of u-
order —r when the estimates (3.13)-(3.14) hold for u € H™*(E) respectively
ve H*""(E), s<r, uniformly in u (u € R or a subset of R).

PROPOSITION 5.1. Let ¢ € 10, 1/4] be given; let | be an integer 2¢™'(n+5) and
let N=[l/2—n/4—2]. Then
(5.4) (P—ilQ; n =I-S;n.

where S, v is of p-order —2, uniformly for i € V, (+=— (e“n)).
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Proor. Using that g, =;, we have
(P—U)Q)..N = Z (P‘M)(‘l’iQ;.,N,i‘Pi)x:’

iSip

= i; [o/(P—2De(¥:Q; N, i@k +

+ (=) (P—2De;(¥:Q: N, iP)x 1] -

In the second term, (1—o)(P—Al)W,=(1—-0)Py, is of order —oo (since
(1 —o)y;=0) and hence continuous in H**#(E) for each s, uniformly in u; then
by Lemma 4.2, the second term is of u-order —I/+1 for each i.

For the first term we have, since ¢,0,=0,

(o,(P—4il )Qi)u,'l’ Qi N,i®i
= o;(e;(P— “)Qi)x.QA, N9+ o, (P— “);,Qi(‘ﬁi - I)Q;,, N,i®i -

By Lemma 4.8, the second term here is of u-order

5 n ! n n 7
0 R [ P PR POl

since e £1. (We use that P satisfies (4.16) with N + 1 replaced by 0, for all t.) To
the first term we can apply Theorem 4.7, which gives

0:(0:(P—41)0),Q; n,i®0i = 6:0p (f1,:i(x, &))@ +0:R; N 0
= @;+0:R; N,:0;
(since f; ;(x,&)=1 for x € suppa;), with o;R; y ¢, of p-order —2. Altogether,

(P—iDQ; Ny = Y, @;+[terms of p-order < —2]
it

=1-8;n

as asserted.

In the next theorem, we shall use the following immediate consequence of
Agmon’s theorem [2, Theorem 3.1]:

LeMMA 52. When T, and T} are bounded linear operators from L*(R") to
H""(R") for some r>n, uniformly for p in an interval 1, then T, is an integral
operator on R" with a continuous kernel K(T,)(x,y) satisfying

(5.5) IK(T)x )| S clpl ™" forall pel,

Jor some constant c. This holds in particular if T, is of p-order —r (for p € I).
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Concerning operators on E we remark that when E is trivial, E=2 x CY,
then an operator T on the sections of E for which T and T* are continuous
from L?(E) to H"(E) with r>n, has a well-defined kernel K(T)(x,y) that is a q
x g-matrix valued continuous function on X xZX; Lemma 5.2 extends
immediately to such operators. For general E, T has a kernel in every local
chart, and K(T)(x,x) has a meaning on X (as a continuous section in
Hom (E, E)).

THEOREM 5.3. Let £>0 be given with e<1/4, let | be an integer >¢™'(n+5)
and let N =[1/2~n/4—2]. There exists 7.4>0 so that for 2 € Vs with |2| Z 74 (cf.
(2.4), 5=14—¢), the resolvent Q,=(P—AI)"" is of the form (cf. (5.4))

(560  Q;=Q%+...+0Y+S,n  with

o
... +0¥ =Qun and Sy n = Qin Y (S
r=1

here the Q% are pseudo-differential operators of order —I—k and of p-order
—[l1—4+ (2k+1)e), and S, y is a pseudo-differential operator of order —!—N
—1 and of p-order —I1—1 (uniformly in Argi, with u=|A|"""). The kernels of
the operators satisfy, in each local chart U x C4,

G.7) Ix =YK (@D, y)| S ¢j A1 IO ER DG for ik,
uniformly on compact subsets of U,
(5.8) K(Q%(x,x) = ¢ (x)(=2)~tFm-bit
for certain C*® q x g-matrix valued functions c,(x); and
(5.9) IK(S, )x D] S clz] =t
In particular, c,(x) is defined on X by

(5.10) Colx) = (2m)™" J (P°(x, &)+ 1)~ dE .

T

PrOOF. Since S,  is of y-order —2, there exists %, so that the operator norm
in L>(E) of S, y is <4 for |A|2 4o Then the series of iterates T (SiN)
converges uniformly, and

(P=iDQin Y Sin)f = Zo (SN = 21 Syn =1

r=0
so that

00

(P=iD™' = QN ¥ (Sin) = Qun+Qun X (Sun)-

r=0 r=1
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Defining §; y=0,—Q; y and setting
(5.11) 0% = Y W05 for kSN

i<l
(cf. (5.2)), we find (5.6). The statements on the orders follow from Lemma 4.2
and Proposition 5.1 (when we use the elementary fact that if A} and A’ are of
p-orders —r, respectively —r, (r; and r,20), then A}A47 is of p-order —r,
—r,). For the kernels we have in local coordinates, by (4.9),

]

[(x—yPK(Q,)(x, ) = 2m)™" Je“’ TS, (x, §) dl

A

c I(l+|6|+u)-—l+§—(2k+l)e—lal(§+s)d€

IIA

(‘1(1 +u)n—l+4}‘(2k+l)s—|a|(§+e)

for |a) <I—k, this implies (5.7). For x=y, we have in particular:
K(Q4.)(x,x) = 2m)™" JQQ,i(x, Qde,

where ¢} ;(x, &) is homogeneous in (¢, (—4)'") of degree —/—k, and analytic in
4 € C\R,. Using the homogeneity for 4 € R_ and continuing analytically, we
find that

K(QY)(x,x) = (=470 iQm ™ fq"-,,xx,n)dn :
By (5.11), this leads to (5.8). In particular, the formula
K02 0)(x,x) = (=4~ ""'(21) "p;(x) ~[(p?(x,r1)+1)"d'1 )

in local coordinates, carries over to 2 where it gives (5.10) after a summation
over i (d¢ denoting the Lebesgue measure in T¥ induced by dx).
Finally, Lemma 5.2 applied to §) y gives (5.9).

Further applications of Theorem 4.7 show that for r>0, §), y is of p-order
—Il—r—1 when IZ¢ Y (n+r+95).

It is now an easy matter to deduce estimates of the spectral function of P and
the eigenvalue distribution, by methods like those used in Agmon-Kannai [3]
and Beals [4]. The spectral function is the kernel e(t; x,y) (which is in fact
globally defined) of the projector &, in the spectral resolution {&,},.x of P; we
note that since Su=3%; o, (u,u)u;



REMAINDER ESTIMATES FOR EIGENVALUES ... 301

(5.12) tre(t; x,x) = Z Cuj(x),u;(x)>  (scalar product in E,),

7,5t

defined from the normalized eigenfunctions u; belonging to the eigenvalues 4;
<t;and e is C* in x and y for each t. We shall also remove the various
hypotheses on .

THEOREM 5.4. Let £>0 be given, and let P be as defined in Section 1, of order |
>0. The spectral function of P satisfies

(5.13) tre(t; x,x) = cp(p"'+O(" "+ for t —» 00,

uniformly-in x, where

1
5.14 cp(x) = —— tr[p%(x, &))" dw ,
(514) P0) = o Les, °(x.9™"
and the number of eigenvalues less than t satisfies
(5.15) N(t; Py = cpt""+0@" 9 for t — o0,
where
(5.16) . cp = J cp(x)dx .

L

Proor. Choose a number r € R, for which I'=rl is an integer Z&~'(n+5),
and let (P)" be the rth power of P defined by the calculus of Seeley [19]; then
Theorem 5.3 applies to (P)". Since

((PY —il)"! = r (=)' dé,
0
tr K((P) — 2I)~ ) (x,x) = Jw (t"=7) Ydtre(t; x,x) .
0

Here tre(t; x,x) is a nondecreasing function of t € R, so we may apply a
tauberian theorem of Malliavin, cf. Pleijel [18], Beals [4]: The estimate

¢

(5.17) J (t'=2)"da(t) = co(—if+0(4P)
0

for |z| — oo with Re/20 and |Imi|=|A", where —1<f<a<0<y<]1, and

a(t) is nondecreasing in t; implies

sinm(o+1)

t(z+l)r+0(,(z+7)')+0(tw+l)r)
n({a+1)

(5.18) olt) = ¢
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as t — 00. We have by Theorem 5.3 that (5.17) is valid with o(t)=tre(x; t,1), a
=—1+n/rl and f=—1+ (n—1)/rl (cf. (5.8)~(5.9)), y=1— (4 —¢)/rl and

¢ = (2m)~" L* tr[(p°(x, & +1)7'7d¢ .

Then, by (5.18)

sin (nn/rl)

nn/rl f"/l + O(t(n—§+t:)/l)+ 0(1("_ ])/l) ,

tre(t; x,x) = ¢q

cp(M Oy

where ¢p(x)=cy(sin nn/rl)rl/nn. Choosing a norm [¢| in the fibres of T*(Z) and
a measure dw on the unit sphere S, in each fibre so that

f f(c)de:=r J SO dodid]
T s,

o

we find (5.14) by using the homogeneity of p°(x,&) together with a
diagonalization. ((5.14) can be given an invariant meaning, cf. Hérmander [14,
p. 216].) Finally, (5.15) and (5.16) follow from the fact that N(t; P)
=(gtre(t; x,x)dx, cf. (5.12).

One advantage of having a result for pseudo-differential operators is that it
permits manipulations with differential operators, like taking fractional
powers, etc. We can for instance easily obtain

CoRrOLLARY 5.5. Let £>0 be given, and let P be an invertible selfadjoint
classical pseudo-differential operator in E of order 1>0 (not necessarily strongly
elliptic). Then the numbers N* (t; P) and N~ (t; P) of eigenvalues of P in the
interval [0,t] respectively [ —t,0] satisfy

(5.19) NE(t; P) = cpt"'+0(" ) for t — 0,
here '

i .
— st (n0 -nfl
n(zn)n J;: js‘ Z l/‘j (P (X, 5))’ dw dX ’

where the sum is over the positive, respectively negative, eigenvalues of p°(x, {).

(5.20) k=

Proor. The result follows from a direct application of the method of proof of
[10, Proposition 8.9] (one applies Theorem 5.4 above to P, ,= (P?)* +aP, for
some a € 0, 1[).
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This result is new also for differential operators.

6. Further developments.

One of the reasons for working with Sobolev estimates in the above theory is
that this is very well suited for a treatment of pseudo-differential boundary
value problems in the framework developed in [10], [11]. On the other hand it
is possible that some estimates for the Dirichlet problem (for pseudo-
differential operators of even order on an open subset Q of X with smooth
boundary I, satisfying the transmission property with respect to I') can be
obtained more directly on the basis of the above estimates for (P—4I)"! on X,
by a generalization of differential operator methods; other boundary
problems are easily included, cf. [11]. We intend to take up this subject
elsewhere, and conclude the present work with a generalization of Theorem 5.4
to Douglis—Nirenberg elliptic systems.

We first show the following extension of a theorem of Ky Fan [9]:

ProPOSITION 6.1. Let A and B be compact operators in a Hilbert space H, and
let 5;(A), respectively s;(B), be the sequences of s-numbers of A, respectively B
(sj(A)=Alj(4*A)* for j € N, etc.), counted with multiplicity and arranged non-
increasingly. Let there be given positive constant a, b and ¢, and f>a>0, y>a
>0 so that

(6.1) Isj(A)—aj ™% < bj~*

(62) Is;(B)l < ¢

for all j. Then there exists ¢’ >0 so that

(6.3) Is{A+B)—aj™ < ¢j™% foradllj,
where

(6:4) B = min{B,y(1+a)/(1+y)] .

Proor. We use that, as shown in [9],
(6.5) Sj+k-1(A+B) £ 5;(A)+5,(B)

for all j,k. Let d € J0, 1[, to be chosen later. For each m € N, let k=[m']+1
and let j=m—[m®]. Then (6.1)-(6.2) imply (using that (1 +x)*<1+4¢ x for
small x)
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Sm(A+B) < a(m—[m*])"*+b(m—[m*]) " +c([m*]+1)77
am'“(l —E%j)_z+bm‘”<1 ——Ml>_ﬂ+cm""7

IIA

m

A

am™*+bm P4 cm 2t pom BT L oY
< am™*4cam™F

where ' =min{f,a—d+1,f—d+1,dy}]. Taking d=(1+a)/(1+7), we have
(6.4). This shows that
s(A+B)—aj™* S cij 7"
the other estimate is shown similarly on the basis of the formula
Si(A+B) Z sj44-1(A)—5,(B) .

J

The next step is the observation

LeEMMA 6.2. Let A be a selfadjoint positive operator in H with compact inverse.
Let a>0 and let > a>0. There exists ¢, >0 such that

(6.6) ls,(A")—aj™" < c,j" forall jeN,
if and only if there exists ¢, >0 so that
6.7) IN(t; A)—a'™t'?] < c,t""* 278 for all 1>0.
Proor. Note first that (6.6) implies s;(4~')~aj~*; hence since s;(47")
=/(A)"", (6.6) holds if and only if
(6.8) li(A)—a~ 1] < c,j** forall jeN,

for some c,>0. Next, note that the functions j — /;(4) and t — N(t; A) are
essentially inverse functions of one another. Consider e.g. the inequality

(6.9) A S a7+t [=00)].
Set t=¢(j) (defined for j € R,), then (6.9) implies

(6.10) N(t; A) = ¢ '(t) for sufficiently large ¢ .
Now a~!j*+c¢,j** # =t implies

(@' = j(1+c, 7o)
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and hence, since t Scsj°%,
97 = = (@) A (14T
2 (an)(1 —cet* ™"
— al/ztl/z_c7t(l +a—f)a .

This shows part of the implication (6.8) <> (6.7); the remaining implications
are shown similarly.

THEOREM 6.3. Let {Ej,_, . be a family of hermitian vector bundles over X
of dimensions r,>0, let {m.} _, , be a sequence of positive numbers with

(6.11) my>m, > ... >m >0,

and let P=(Py), <, be a selfadjoint system of pseudo-differential operators P,
Jrom E, to E_ of orders m,+mg, P being strongly Douglis-Nirenberg elliptic (i.e.
the symbol matrix (p%(x,&))s, <, is positive definite for all (x,&) e T*(Z)\O0).
Assume that P is positive and denote P~' =P (= (Pal)s.l§q)' Then the eigenvalues
of P satisfy, for any ¢>0,

(6.12) N(t; P) = cpt" +0(t°) for t — o0,
where

(6.13) cp = n(21t J J tr [p2, (x, & ] dwdx ,
with

1 .
- _ n—i+e n(n+Q
l'=2m,I'=m+m,_,, and ¢ = max{ I i+

Proor. We first note that

0...0 0
. p=1: - T.
(6.14) 0.0 0 +
0...0 P,
where T is of order < —m,—m,_, = —I Then the s-numbers of T satisfy
Is{T) < ey,

by a theorem of Agmon [1]. qu is the inverse of an elliptic positive selfadjoint
pseudo-differential operator P’ of order I, whose eigenvalues are estimated by
Theorem 5.4, with cp satisfying (6.13). By Lemma 6.2, this gives

Math. Scand. 43 — 20
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I5j(Pog) — i < yjmU+A

Applying Proposition 6.1 to (6.14) with a=1I/n, = (I+4—¢)/n, y=1/n, we then
find that

Is;(P) =™ < ™",

where

, . fl+3—e l(n+),
”‘"“"{ nnnaD)

Then

e n—3+e n(n+))
(1+a—pf) o = max{ o I(n+l’)}

so that (6.12) holds by Lemma 6.2.

(When [14] can be applied to (13,”)”‘, e.g. when dimE =1, the above

argument gives
= max n—1 n(n+l)
7= T It D)

in (6.12).)
For example, if

2 4
)]

where A is a suitable 3rd order operator, and n=3, then n/l=3/2, and
o=max{(3—3+¢)/2, (3:5)/(2-6)} =3 +¢. (¢ =0if — 4 acts on scalar functions.)

The principal estimate ((6.12) with the O-term replaced by o(t"")) was shown
by Kozevnikov [16]. (See also the simple proof by the author in CI.M.E. 111,
1973)
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