MATH. SCAND. 43 (1978), 250-258

DETERMINANTS OF A CLASS OF
TOEPLITZ MATRICES

TOM HOHOLDT and JORN JUSTESEN

Abstract.

Let T,(f)=(a;-)), i, j=0,1,... n be the finite Toeplitz matrices generated by
the Laurent expansion of an arbitrary rational function f. In his paper [2] K.
M. Day has calculated det T,(f). The present paper contains a new proof of
Day’s formula (4.1.).

1. Introduction.

Toeplitz matrices occur in a variety of applications of mathematics [4]-[8],
and the determinants of Toeplitz matrices of special classes have been studied
by several authors [1], [3], [9]. In connection with some problems in digital
signal processing [4] it is necessary to calculate the determinants of the
Toeplitz matrices generated by the Laurent expansion of a rational function.
We have solved the problem by a method somewhat different from that of Day,
which gives a new proof of his results. The main ideas in our proofs are: 1)
Reduction of the problem to a special case, 2) observing that the determinants
are almost the same as those obtained from a Laurent polynomial and finally
3) that the determinants can be calculated by solving a system of linear
equations.

2. Preliminaries.

With each formal power series f(z)=Y2% _ a,z* we associate the Toeplitz
matrices T,(f), where t;=a;_; i,j=0,1,...n. Now let R, and R, be real
numbers such that 0 R, <R,. Let D(z) be a complex polynomial of degree k
with roots 8,,0,,. . .,, where |§,] <R, and F(z) a polynomial of degree h with
T0OtS 04,05, . ., 0, satisfying |o;| = R,. Finally let G(z) be a polynomial of degree
p, with distinct roots ry,r,,. . ., 1.

Let 3% __ a,z’ be the Laurent expansion of f(z)=G(z)/F(z)D(z) in the

annulus {z € C | R, <|z|]<R,}. We want to express det T,(f) in terms of the
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roots of G(z), F(z) and D(z). If we assume that k=1, h=1, p=k+h and that
G(2) has no factor in common with F(z) or D(z) then the Laurent expansion
has both positive and negative values of v such that a,+0.

3. Determination of det 7,(f) in a special case.

Let the notation be as above, and suppose p=h+k. Let the polynomials be
normed such that

k h

D) =[] z=9), F@=1]] l-ej'2, G2 = 'l:lpl(z—r,-)'

j=1 ji=1
Lemma 3.1.
det T,(f) = det(A+ T,(z"*G))

where A has zeros everywhere except in the (p—k)x k upper left corner.

Proor. Let
h k
F)= Y fz and z*D(2) = Y d_z7/.
i=0 j=0

From det T,(F)=1=det T,(z~*D) it follows that

det T,(f) = det T,(F)det T,(f)det T,(z~*D)
and hence
3.1.1. det T,(f) = det[T,(F)T,(f)T,(z"*D)] .
Now let

T,(z7*G) = T,(F-f-27*D) = (b,)
and r,s=0,1,...,n
T,(F)T,(N)T,(z"*D) = (c,)

By calculation we get

k h
brs = Z Z d-j.fiar~s~i+j

j=0i=0
and
min (s, k) min (r,h)
Cpy = Z d—jfiar—s—i+_i
j=0 i=0

1) If s2k and r=h we conclude that b,,=c,,.
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2) If s=zk and r<h we have
h k
b,s—C" = Z fiyl" Where yi = z d_la'_s_i+j .
i=r+l j=0

It is seen that y, is the coefficient of z ~*~i** in the Laurent expansion of
2*f(2)z7*D(z) = G(2)/F (z), in which only nonnegative powers of z occur. Hence
y; equals zero for i=r+1,r+2,...,h, and therefore c,,=b,,.

3) If s<k and r=h we have

k h
by—c,= Y xid_;, where x; =) fa,_, ;.
j=s+1 i=0

It is seen that x; is the coefficient of 2"~$*J in the Laurent expansion of F(z)f(z)
=G(z)/D(z), in which only powers of z with exponent less than p—k + 1 occur.
Hence if r2 p—k, x; equals zero for j=s+1,5s+2,...,k and therefore ¢, =b,,.
Using the assumption p—k=h the Lemma follows.

LEMMA 3.2. Let I be a k-subset of {1,2,...,p} and I={1,2,...,p}\I. Let
gi@ =l U-rz7) and hz) =[] z-r)

jel jel
then
3.2.1. T,(h)T,(g) = B+ T,z *G)

where B, has zeros everywhere, except in the (p—k)x k upper left corner.

Proor. Note that h;(z)g;(z) =z *G(z). Simple calculation of the elements of
T,(z"*G) and those of T,(h;)T,(g)) yields the result.

3.3. From the lemmas we see that the matrices
T(F)T,()T,(z"*D) and T,(h)T,(g)

differ only in the (p—k) x k upper left corner. The determinant of the latter is
easily calculated:

det T,(h)T,(g) = [] it (—1)p-0e+D
jel

We now claim that there exist constants x;, I ={1,2,...,p}, I|=k such that

33.1. det T,(f) = ¥ x;det T, (h))T, (g;)
1

or by 3.1. and 3.2.
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3.3.2. det (A+T,(z7*G)) = ) x,det (B;+ T,(z"*G)) .
I

Expressing the determinants of a sum of matrices as a sum of products of
minors and complementary minors 3.3.2. is implied by

3.3.3. A = Z x1B; 13 1=1,2,.. ,(i) =q
1

where A, is the Ith minor of the (p— k) x k upper left submatrix A’ of 4, and By,
the corresponding minor of the submatrix B; of Bj.

The next lemmas show that the homogeneous system corresponding to 3.3.3.
has the zero solution only and hence the solution of 3.3.3. is unique. Moreover
we shall derive an explicit expression for the x,’s satisfying 3.3.3. Baxter and
Schmidt [1] have expressed det T,(z"*G) as a function of the r;’s and have
given a simple derivation. From lemma 3.1. it follows that det T, ( f) satisfies the
same linear recurrence equation as det T,(z"*G). Thus the claim follows
directly from this observation and the result of [1]. We now procede to solve
3.33.

LeEmma 3.4. Suppose p—k=k. With the same notation as above we have:

x; = (=1)*det (4" =By []|(ri—r)~"
iel
jel

Proor. In 3.3.3.

A = ;xlBl,l‘

we enumerate the minors such that A, and A,_, are complementary. Let J be a
k-subset of {1,2,...,p}. Multiplying each of the equations in 3.3.3. by By ,—,
(—1)**# where « equals the sum of row and column indices used in forming A,
and where f is the number of rows in B, ,_, and adding all the equations leads
to

M=

q
AIBJ’q_I('—l)a = Z El:x,B,,,BJ,q_,(-—l)“
1=1

1

1
which is

34.1. det (4'—B)) = ¥ x;det (B;— B))
1

Since p—k=k we have
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Bi—B) = T (h)T-1(g)—Ti—1(h))T -1 (g))

Let Z be the k x k-matrix with elements z;;=9;_, ; Then
Ty () = rli (Z-rE) and T, () =[] (E-r2ZD),
je ) jel

where E is the k x k unit matrix and T denotes transpose. Therefore:

Bi—By =[] -rE)[1 Z-rZ"-[] (Z-r.E) [] (E=r.Z"),
jel jel melJ mel

which equals

I1 (Z—r,.E)[ [1 @-rE) [] (E-rZ")-

jeIng 1eI\J leINJ

- Il @-r.B) I] (E —r,,,ZT)] [T (E-r;Zh).
meJ\T meJ\1 jeJNnI

Noting that INJ=J\ 1T and I\ J=J\1T, it is seen that if J NI % ¥, the matrix
in square brackets contains a row of zeros, and therefore det (B; — B) equals
zero in this case.

If INJ =, that is J =1, we consider det (B; — B)) as a polynomial in the r;’s.
Determination of the degree and one of the coefficients of this polynomial
yields

det (Bj—Bp) = (=D [] (ri—r)
"ieI

3.4.1. then reduces to
det(4'—Bp) = (=1fx [] (ri—r)

iel
jel

from which the lemma follows.

What remains is to derive an expression for det (A’ — Bj). We do this in the
next lemma.

LemMA 3.5. Using the same notation as before

det(A'~Bp = (- ] (e-d)"' I —=¢6) II (a-r).
se{l,.. ..k iel jel
teél,...,hi se{l,... k} te{l,...,h}

Proor. It is enough to prove the lemma in the case where the roots of
F(z)D(2) is distinct and different from zero. The general validity of lemma 3.5.
then follows by continuity. We have
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h k
A~By =[] E-e'D)T () [] (E=82Z0)-]] (Z-r;B) ] (E-r;ZT).
s=1 jel T

t=1 jel
If r; =4, for some j, in I we have
h k
A’ —Bj = [ﬂ (E—o¢7'Z)T (/) ] (E-5,2")-
= Fa
[1Z-rp 1 (E—r,ZT)](E—rj,ZT)
jel jel

J*i
where f(z)=G,(2)/(F(z)D,(z)) the degree of G,(z) is p—1 and the degree of
D,(z) is k—1.

By direct calculation as in 3.1. and 3.2. it is seen that the matrix in square
brackets has zeros in its last column, so in this case det (4’ — Bj) is equal to
zero.

Similarly, if r; =g, for some i, in I, det (4'— By)=0.

Since det (4’ — Bj) is a polynomial in the r;’s we have

det(4-Bp=a [] (=6) [] (e~r)

iel jel

sell,.. k! tell,.. ..h!

where a is independent of the r/s. If we set all r’s equal to zero the above
expression is

k h
det T,_ (F) = (=Da [] % I o
=1 =1

where f(z)=z*/F(z)D(z).

It is well known, at least for F(z)=D(z™!), that

k
3.5.1. detT,_ () = [T [I (1-deH7".
s=1  se{l,2,....k}
te{l,2,...,h}

This determinant may be calculated directly, nothing that the relevant terms of
the Laurent series f(2)=3% _ d,z" are

k
i, = Y b7, v< 2%
i=1

where

h k
bt =[] =007 I (4;-6) .
s=1

t=1
s¥j
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Thus T,_,(f)=MN where m;=b;6?*"1~% n, =48l i,j=0,1,...,k—1 and

3

h
det T, (J) = TT 5,85 [T 6,9
j=1 i)
which proves 3.5.1. We conclude that
a= (-1 J] (a—96)"
te{l,...,h;
se{l,.. .k

which finally proves the lemma.

Summarizing the previous results, we have so far proven that if p—k =k, and
f(2)=G(z)/F(z)D(z) then

3.6. detT,,(f)=; q ri—d) [I (e-r)

Jjel
se{l,.. .k} te{l,...,h}
I @8I e—r) I
se{l,.. .k iel iel
teil,...,hg Jjel

where the summation runs over all k-subsets of {1,...,p}.
In the next section we will extend this result to the case where we only
assume that p—k=h, that is to Day’s result.

4. The theorem of K. M. Day.

THEOREM 4.1. Let Ry and R, be real numbers such that 0< R, <R,. Let D(z)
be a complex polynomial of degree k with roots 8,,0,,. . ., 0, satisfying |6, <R,,
and F (z) a polynomial of degree h with roots gy,0,,. - .,y satisfying |o;|Z R,. Let
G(z) be a polynomial of degree p with distinct roots r,,. . .,r,. Let the polynomials
be normed such that

p

k h
D(z) = H (Z"(Sj), F(z) = I:Il (I—Qj'lz), G(2) = n (Z—"j).

j=1 j=1

Let 3% _ . a,z’ be the Laurent expansion of f(z)= G(2)/F (z)D(z) in the annulus

{ze C| R, <|z2l<Ry}. Let T,(f)=(a;_), i,j=0,1,...,n. Then if p=k+m, m
Zh,

411, detT,(f) = (-1y"*vyY [ r=6) [] (e-r)
1

jel jel

se{l,....k} te{l,...,h}

[T @=6)"[]i=rp~" TT ™
teil,...,hi iel iel
sefl,.. .k jeI



DETERMINANTS OF A CLASS OF TOEPLITZ MATRICES 257

where the summation runs over all m-subsets of {1,2,...k+m} and I
={1,2,.. ,k+m}\ L

Proor. Suppose that k>p—k=h. Choose nonzero element
Tp+1sTp+2s- - -» T2 distinct and different from the roots of G(z), such that |ry|
ZR,, i=p+1,...,2k. Then

2k 2k
fie) = (=p** ] (z——r,)G(z)/F(z)D(z) [T A=rt2(rpeyrpsz- - 12
Il=p+1 I=p+1

Hence by the formula (3.6.) already proven:

detT, (N =bY [ —=6) [I (e—r)
1

iel je
sef{l,.. .k} tef{l,...,v}
[T (@@= ' [T ri=r)~" [Tri"!
seﬁl,...,k? iel iel
tel{l,...,v jel

where v=h+2k—p and b= (— 1"+ D(—1)@k=PE+DE o r) "+ and
the summation now runs over all k-subsets I of {1,2,...,p,p+1,.. .;2k} and
where 9,41 =rps+1. .., Qh+2k-p=ra It is seen that if IN{p+1,... 2k} + 0,
then the product equals zero, and if IN{p+1,...,2k} = cancellation of
equal terms leads to

412, detT,(f) = (=pe Py [T (rn=8) [l (-1
1

iel jel

se{l,....h} teil.....h}
M @=8)"[Tei=r) * TI i
s€ 1,...,ki iel iel
reil,...,h jel

where the summation now runs over all k-subsets I of {1,2,...,p}. If p>2k, we
choose nonzero distinct elements 7, .. . .7 p+ (5 21 different from the roots of
G(z). Then

p—2k p—2k
fz) =G [] (z—r,,H)/F(z)D(z) [T z=rps)
=1 =1

G,(2)/F(2)D,(2)

where D, (z) now has degree p—k and G, (z) has degree 2(p—k). Applying the
result 3.6. once more yields 4.1.2. Inserting p—k=m, noting that

(0)-3)- ()

Math. Scand. 43 — 17
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and changing indices finally results in 4.1.1.
AckNOWLEDGMENT. The proof of 3.5.1. was suggested by the referee.
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