MATH. SCAND. 43 (1978), 241-249

BOUNDS FOR QUATERNIONIC LINE SYSTEMS
AND REFLECTION GROUPS*

S. G. HOGGAR

1. Introduction.

Let F denote R, C or the quaternions H. We are here concerned with bounds
on the size of sets X of unit vectors in F which carry a specified set or specified
number of angles.

Results in a unified manner for R, C were obtained by Delsarte, Goethals
and Seidel [3], using Koornwinder’s addition formula in certain spaces of
harmonic polynomials [9]. Following a program proposed in [8] we use
addition formula results [6] described in section 2 to attack the case F=H,
which turns out interestingly different.

Let A denote the set of all values of [<&,n)|? for pairs ¢ #7 in X. Bounds on
v=|X] for specified A (special bounds) are the subject of section 3. Our results
show, for example, that five quaternionic reflection groups of vectors (Conway
[2], Cohen [1]) are not only non-extendable, but of maximum size as systems
of vectors carrying the given angles.

In section 4 we derive bounds depending not on the specific angles but on
their number |A4| (absolute bounds). One bound is met by J. H. Conway’s 165
vectors in H® with 4={0,1}.

2. Jacobi polynomials and an addition formula.

Henceforth ¢ k will denote non-negative integers and n an integer greater
than 1.

For convenience, let m=2n in this section. We need the polynomials derived
in [6], namely

Qi(x) = QURY > (2x 1),
where the right hand side is a Jacobi polynomial [10] suitably normalized, and
2.DQ:(1) = (k+e+2)p_3tk+1),_3(e+1)2k+m+e—1)/(m—1)! (m=3)!
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crn _ (+DQRk+m+e—1) & [k
22) Qi(x) = kT (m—1)! I;O(—l)" l<l)(l+6+2)k+m-3x”

where (a), denotes a(a+1) ... (a+b—1) for arbitrary a and positive integer b.
When working with a fixed ¢ we will often omit suffix e&. For any ¢ and
polynomial F(x) of degree k we have its expansion f,Q,+ ... +f,Q, The
coefficients for a polynomial G(x) will be denoted by g,.

2.3. LemmA ([6], cf. [3]). For k,e=0,1,... we have

£+1 x e+ 1

12 ek = A+1Qks1 + (L—490% ,

(a)

e+2
®) —0i+1 = M Q3T+ 0=,
e+1
where A, =k/QQk+m+e—1), y,=(k+e+2)/2k+m+e¢).

2.4. LEMMA.

i+j

Q9 = Z a(i, Q. with qo(i,1)=Q;(1) .

k=1i-Jl
If eSm—4, then all ¢, 20.

2.5. LEMMA. Let G(x) = Q,(x)F (x)/Q, (1), with eSm—4. Then g,=f,, and if all
£i20, then all g;=0.

Lemma 24 comes from Gaspar [5] and implies 2.5, stated for the
polynomials used in the real case in [4].

2.6. Define

Ri(x) = Qo(x)+ ... +Q4(x).
Then if Q,(x)=Q,(m; x) we compute from [10, p. 71] that

2.7 =" .
(2.7) R,(x) 2k+m+st(m+1, x)
e+l (k+m+e—1\k+m-2
2.8 R =T
28) (1) k+e+1( k+e )( k >

2.9. We now come to the reason for introducing these polynomials. To fix
notation, we define the innerproduct
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{(ag,...,a,), (by,....b)> =3 ab,

in H", writing <£,n> =z + jw (z, we C) and |{¢&, n)]* =r. Let Q be the unit sphere
in H", with volume |Q)|.

For each integer ¢20 there is a sequence of mutually orthogonal linear
spaces W, W,,... of (harmonic) complex functions on Q, with W, of
dimension N =Q, (1), such that the following holds [6].

Addition formula for W,. For any orthogonal basis S, S,,...,Sy of W, with
norm |S,|2=|9Q|, and any £,n € Q, we have

N S
(2.10) Y S(OS.(n) = FQu(r) .
t=1

REMARK. Although this need not concern us here, W, is the Sp (n)-irreducible
subspace of harm (k +¢, k) with highest weight (k+¢,k,0). See [6] for further
details.

3. Special bounds.

A complete solution for case n=2, A ={a}, is given by the author in [7]. For
the general case we first prove an auxiliary result, for which the notation was
established in sections 1, 2.

3.1. THEOREM.

Z rgi(n 2 6k.0(5+1)l’2 (e,k=0).
&neX

Proor. Case k= 1. We proceed by induction on & For =0, let x be the N-
vector with rth component ¥ x S,(£). Then

0 IxIP =Y (); 8—(’5)(2 S,(n)) =3 (; 37(’58,(:1)).

t &n

The last expression is the left hand side of Theorem 3.1 by the addition formula
for W,, so the inequality holds for ¢=0. Now assume the result for some £20.
Then 2.3a implies

Q) = ) rf(AQk+ . (N + BOL()
&n &n

where 4, B=0. By the induction hypothesis, the last expression is 20.
Case k=0. Again we use induction on ¢. The result holds for =0 since

L0 = () = o
N

&n
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Assume it holds for some £=0. To apply this hypothesis we set k=1 in the first
case, using the formula 2.2 for Qj to obtain

e+2
— >
é,z"r‘(r 2n+s) 20,

and so

e+2
retipetl > e+1, re > (e+ 202
Troigrtz T(e g )z 6

by the induction hypothesis. This completes the proof of Theorem 3.1.
3.2. DeFiNITION. We say F(x) has property P, if all £, =0 in its expansion in
the polynomials Qj.
3.3. TuEOREM. If F(x) is P, and (*) x*F(x)S0, Vx € A, then
v=|X| < FQ1)/(e+1)fy (provided f,>0).

Proor. We have

oF()= ) F) 2z Y rF(r) by (¥

geX & neX

> A X rOin)

k20 &n

= v’(e+1)f,, by P, and Theorem 3.1.

3.4, REMARKS. With the factor ¢+ 1, the bound of Theorem 3.3 is best
possible in the sense that it is actually attained for certain values of the
parameters (3.6-9, 3.14). The corresponding bound for vectors in R” or C" has
the form F(1)/f,, likewise attained [3]. We cannot here use characteristic
matrix arguments as in [3] for ¢21, because the “quaternionic” addition
formula 2.10 involves separately the z-part of the quaternion (&, n).

3.5. DeFINITIONS. Let A* = A\ {0}. Theorem 3.3 yields the following table of
bounds v(4) if we let

Fo =11= (@e4"),

the annihilator of AA, and set e=1 if 0 € A4, otherwise ¢=0.. Each bound is valid
when its denominator is positive and, where appropriate, a+ <L (see [3] for
the prototypes of tables 1 and 2).
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Table 1. Special bounds.

A v(A) L
n(l —a)

tod 1 —no

(B} n2n+1)(1-2)(1-p) 3

’ 3—2n+D(a+B)+n(2n+ Dap n+1

n(2n+1)(1—«)

0.9 3— Q2n+ 1

(0.0.8) n(n+1)2n+1)(1 —a)(1 —p) 8

6-3(n+1)(@+p)+ (n+1)2n+1)af  2n+3

We notice the first line is the van Lint-Seidel bound of the real and complex
case (cf. [6]); setting f=0 in the second gives the third. The following three
examples realize bounds of the table and so are of greatest possible size for the
parameters. They come from reflection groups.

ADDED IN PROOF. Line two of the table is further realized by the 64 diameters
of a polytope in H* with 4={},4}, due to the author.

3.6. ExaMmpLE [2]. 63 vectors in H? with A={0,4,3}.

3.7. ExampLe [1, 2]. 36 vectors in H* with 4={0,1}.

3.8 ExampLE [2]. 165 vectors in H®> with 4={0,1}.

A fourth reflection group example requires a separate calculation because of
its large number of angles.

3.9. ExampLe [2]. 315 vectors in H® with 4={0,1,4, (3+]/5)/8}.

The annihilator F(x)= (128x* —192x3 +96x* — 18x + 1)/15 has non-negative
coefficients f, for =1, and so the bound of Theorem 3.3 is v<1/(e+1)fo= 315.
Hence this also is a maximal set.

At this point the reader may wonder if it is really useful to consider £> 1.
One reason is that 3.3 can “almost always” be made to yield a bound, by

suitable choice of &. We have

3.10. THEOREM. Let a <4 for all o € A. Then the annihilator of A is P, for some
¢ (see Definition 3.2).

Proor. The annihilator (3.5) is a positive multiple of the product of the
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factors x —a, so by Lemma 2.4 it suffices to prove the result for x —a, provided
we ensure ¢ <2n—4. But Q3" "4(x) is a positive multiple of x—1, so

)
with 4, B =0, provided a<1i.

3.11. REMARKS. 3.10 is not best posgible since 4 in 3.9 contains (3+[/§)/8
>4, whereas the annihilator of A4 is P, for e=1. If all £;20 but f,=0 in
Theorem 3.3 (for some F with equality in *), suppose f,>0. Then from 2.5 the
polynomial G(x)=Q,(x)F(x)/Q,(1) satisfies the hypotheses of 3.3, and g, =/,.
Thus we still have a bound

v = G(l)/(e+1)go = F(1)/(e+1)fs.

Now let (F), denote the expression F(1)/(e+ 1) f, for any polynomial F with
Jo=f%+0. The following is an easy consequence of Lemma 2.3.

3.12. THEOREM. (a) If F(x) is P,, then xF(x) is P,_,,
(b) (F),=(xF),-;,
(c) If F is P,, then it is also P, ,.

3.13. RemaRks. Part (b) does not depend on coefficients being non-negative.
3.12a,b says that if F(x) gives a bound (3.3) for some ¢, then we get the same
bound by expanding x°F in terms of the Qf. But of course the higher degree
polynomial takes much more work to expand. On the other hand, the converse
of 3.12a is false. For in the next example xF has non-negative coefficients in the
Q? whilst F has some negative coefficient in the Q..

3.14. ExampLE [1]. A reflection group of 180 vectors in H* with 4={0,4,1}.
With ¢=1 and F(x) the annihilator we obtain f,=1/360, f, = —1/3960, f,
=1/1485. By 3.12b this implies v<1/2f,=180, and hence that the set is
maximal, provided we somehow know xF has non-negative coefficients g, in
the polynomials QY. But we can check this without using a 3rd degree
polynomial xF and a new set of Q’s, for by relations 2.3a we have

18 = Af; Ay = 3/13
38 = Lfi+(U=A)fy, Ay =2/11,
38 = L+ U= A =1/9
g0 =fo-

Thus all g;>0 and the set is maximal.

I
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4. Absolute bounds.
4.1. THEOREM. Set ¢=1 if 0 € A and £=0 otherwise. Let S=|A*|. Then
v < Rs(1)/(e+1).

If equality occurs, then the annihilator of A is Rg(x)/v(e+1).

Remark. The last part implies that if the bound is met, then the non-zero
elements of A are the roots of Rg(x). These all lie in the interval (0,1) as
required, from the theory of orthogonal polynomials [10]. We note as in 3.3
the factor ¢+1, again distinguishing the quaternionic from the real and
complex cases [3].

Proor oF 4.1. We use an extension of the characteristic matrix methods of
[3]. First assume ¢=1, 0 € 4.

In the notation of the addition formula (2.9, 2.10) we define for W, the v
x Qi (1) characteristic matrices H,, V, by (Hy),,=Sd&) and (V)), ,=S.(nj).
Then

(Hil)e.n = 2 S,(8S,() = 20i(r)
t
where H, is the conjugate transpose. With F(x) the annihilator of 4, let I, be
the identity. matrix of order Q,(1) and
4 = folo®... ®fsls,
of order Rg(1). The compound matrices
H =[H\H,...Hg], V=[V,V,...Vs]

are v x Rg(1) and satisfy

HAH =Y fH,H, = [ZF(N] =1,

k

since zF(r)=0 for r € A and F(l)=1.

Now (& njd=—w+jz, so HAV=[ —wF(r)]=0. For similar reasons V4A
=0, V4V =1, so that

o o [EJETr

2v < rank [g] £ Rg(D),

establishing the first statement of the theorem, for e=1.
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In case of equality [¥] is square, hence non-singular by (1). It follows all f;
>0. Then from 3.3, 3.11, all f, <1/2v. Thus
s 5

vF(1) = ¥ 0fil@i()) £ Y 30:(1) = $Rs(1) = v.

k=0 k=0

Since F(1)=1, all these are equal, implying each f,=1/2v and hence F(x)
= Rg(x)/2v as required for ¢=1.
For ¢=0 we simply use matrix H.

Table 2. Absolute bounds.

A Bound annihilator (normalized)
{a} (22") @n+1)x—2

{a,B) n<2"3+1) (n+1)(2n+3)x2 —6(n+ )x+3

(0,a) (2";1) 2n+1)x—3

(0,0, n(z": 2) (n+2)2n+3)x2—4(2n+3)x+6 .

4.2. ExampLE. The third bound is realized by J. H. Conway’s reflection group
of 165 vectors in H® with 4={0,4} ([2]). Also by the 10 diameters of a polygon
in H? with 4={0,1} due to D. W. Crowe [Canad. Math. Bull. 2 (1959), 77-79].

A conjecture.

In our known examples with 0 € 4, the annihilator works well, giving
exactly the right bound. For 0 ¢ A, results can be better with a polynomial
multiple of the annihilator. We recall from 3.11 that any non-zero f; can be
used in Theorem 3.3, although so far f; has been the best choice.

4.3. ExaMpPLE. A= {}}, n=4. Special bounds F(1)/(e+ 1) f, for some choices of
F(x) are shown below, with G(x) the annihilator.

F(x) e k=0 k=1 k=2

G(x) 0 (f,<0)

xG(x) 0 (fo=0 90 440

G(x) 1 (fo=00 80

G(x) 2 120 22
(15x—4)G(x) 0 22 0 968/3
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The best result is the last line, obtained by optimizing the result for (x
—a)G(x). The same bound is given by the formula of [6, Corollary 4.5]. The
middle three rows of the table give valid bounds in case 4={0,5}, n=4; the
best is v < 80.

The optimization of F(x) in general seems a complicated question, but
further experimentation suggests the following is true.

4.4. ConJECTURE. Let X be of greatest size for given n, A. Then for some ¢ and
some polynomial multiple F(x) of the annihilator, we have strict equality

v=|X|=F)/(e+1)f.
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