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THE ALGEBRA OF POLYTOPES IN AFFINE SPACES

BORGE JESSEN and ANDERS THORUP

0. Introduction.

In this paper we shall study the equivalence of polytopes with respect to the
group of translations in finite dimensional affine spaces. The problem was
studied and solved for dimension two by H. Hadwiger and P. Glur [11]. For
dimension greater than two, necessary conditions for equivalence were
discussed by H. Hadwiger [3], [7], who proved their sufficiency for dimension
three [8]. We shall prove that Hadwiger’s conditions are sufficient in spaces of
arbitrary dimension. Part of our treatment of the subject is merely a more
algebraic exposition of the basic results of Hadwiger. We also obtain results
about the structure of the group of equivalence classes; we show that it can be
organized as a vector space, and that the dilation operator has a simple
spectral decomposition.

Hadwiger considered polytopes in euclidean spaces, but might as well have
considered affine spaces over an arbitrary ordered field. We have chosen to
treat the subject in this generality. In order to make the exposition self-
contained, we have included brief proofs of the known results which we need.

The present investigation dates from 1972-73. Its principal results have been
mentioned and used by H. Hadwiger [9], [10] and P. Miirner [14], [15], [16],
[17]. Another treatment of the subject has been given by C. H. Sah [18].

1. Preliminaries.

Let L denote an ordered field, and A an affine space over L of dimension k
21 with vector space V. In 4 and V we use the topologies induced by the order
topology of L. When speaking of subspaces of 4 and V we normally mean
subspaces of positive dimension.

By a polytope in A we mean a subset of 4 which is the union of a finite
number of k-dimensional simplices whose interiors are disjoint.

A polytope P in A is said to be composed of the polytopes P,,.. ., P, or to
be decomposed into P,,...,P, if P=P,U...UP, and the interiors of
P,,...,P, are disjoint. If P is composed of P,,...,P, we also say that P is
obtained from P,,...,P, by elementary addition, and if P is composed of P,
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and P,, we say that P, is obtained from P and P, by elementary subtraction.

By the polytope group P in A we mean the free abelian group generated by
the polytopes. By € we denote the subgroup of P generated by all elements P
— P, —P,, where P is composed of P, and P,, and all elements P—Q, where Q
is obtained from P by a translation. Two elements X and Y of B are called
translation equivalent and we write X~ Y, if X —Ye €.

The group IT=P/E of equivalence classes will be called the polytope group in
A modulo translations. The equivalence class containing an element X of B will
be denoted by [ X]. An element x of IT is said to be represented by the element
X of B, if x=[X].

We shall be concerned with two problems: (1) to find necessary and sufficient
conditions for two elements X and Y of ‘B to be translation equivalent, or, what
amounts to the same, for an element X of B to be translation equivalent to 0;
and (2) to discuss the structure of the group II.

Instead of P and € we shall also write P(A4) and €(A4), and instead of IT
we shall also write IT(A) or II(V). The latter notation is justified by the fact that
there is a canonical identification between the group IT and the polytope group
modulo translations in V (considered as an affine space). Indeed, by choosing a
point p, in A4, and considering the map p + v of A onto V determined by pgp
=, we obtain a bijection of B(A) onto P(V), which determines a bijection of
I1(A) onto II1(V) independent of p,.

Let P,,.. ., P, be polytopes in subspaces A,,. . ., 4; of A, with corresponding
vector spaces Vy,...,V,, such that V=V, @®...®V, The product P=P,; x ...
x P, defined as the set of points in 4 whose projection on each A4; in the
direction determined by the sum of the spaces V,, h+j, belongs to P, is a
polytope in A. Such a polytope P is called an i-cylinder. If P,,...,P; are
simplices, it is called an i-simplotope. A cylinder I x Q, where I is a simplex in a
one-dimensional subspace, is called a prism with base Q. A k-simplotope is a
parallelepipedon. Note that an i-cylinder is also a j-cylinder for any j<i.
The map (P,,...,P)+ P, x...x P, extends uniquely to a map, denoted
(X5 X)— X, x ... x X, from the cartesian product of P(4,),...,B(4))
into B, which is additive in each variable. The equivalence class [ X, x ...
x X ;] depends only on the equivalence classes [X,],...,[X,]. It will be called
the product of [X,],...,[X,] and denoted by [X,]x ... x[X;]. The map
(Xg5. - .y X;) > x; X ... X X; from the cartesian product of II(4,),. . ., I1(4;) into
I1 is additive in each variable.

The subgroup of P generated by € and the i-cylinders will be denoted by J,,
and the quotient group J3,/€ by Z,. In this way we obtain the filtrations

T P=3123:2--.2%k=2€C
nN=2z222,2...22,2{0}=2.,.
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The notation Z, ,, for {0} is introduced for convenience. Instead of 3; we shall
also write 3;(A), and instead of Z; we shall also write Z;(4) or Z,(V).

For arbitrary linearly independent vectors a,,...,a, in V we denote by
[ay,...,a,] the equivalence class which, for an arbitrary point p,, contains the
simplex with vertices po,p;,...,p, Where m’,:a,- for je{l,... k}.
Combining this notation with the notation for a product, we obtain for the
equivalence class containing an i-simplotope the notation [ay,...,a;]1x ...
x[a;_, +15---,a,], where ay,. . .,a, are linearly independent vectors, and 1 £j,
<...<Ji_y <k

Let ® be an arbitrary abelian group. Every mapping from the class of
polytopes into & can be uniquely extended to a homomorphism from P into
®. Homomorphisms f: P — &, which vanish on €, or, what amounts to
the same, homomorphisms f: IT — ®, correspond uniquely to mappings
P — f(P) from the class of polytopes into ® which are additive and translation
invariant, i.e., for which f(P)=f(P,)+f(P,), when P is composed of P, and P,,
and f(P)=f(Q), when Q is obtained from P by a translation. Note that we use
the same notation for a homomorphism from P into &, which vanishes on €,
and for the corresponding homomorphism from IT into 6.

It is known that, in order to define an additive and translation invariant
mapping from the class of polytopes into ® it is enough to define a translation
invariant mapping from the class of simplices into ®, which is additive with
respect to decompositions of a simplex into two simplices by a (k—1)-
dimensional subspace through k—1 of its vertices.

The existence of homomorphisms f: 1 — L, which do not vanish
identically, will be proved in section 2. It implies that IT4 {0}, and also that the
endomorphism ring End IT of the abelian group II contains a copy of Z.

With every automorphism ¢ of the vector space V there is associated an
automorphism ¢ of II, with the property that @([P])=[«(P)] for the
automorphisms o of A for which x(p)a(q) = @(pg) for all p,q € A. For any two
automorphisms ¢ and ¥ of V, we have @V = @. The subgroups Z; are stable
under the maps ¢@.

Denoting by (4) for 4 € L\ {0} the homothesi in V defined by é(4)a=4a,
we define the dilation operator d(4) in I1 by d(#)=6(x), when 4>0, and d(4)=
(—1)%5(4), when 1<0. Furthermore, we define d(0) as 0. Note that d(1)=1.
Note also that d(i) commutes with @ for every automorphism ¢ of V. The
introduction of the sign (—1)* in the definition of d(4) for 4 <0 connects with
the fact that we do not work with an oriented space and oriented polytopes.
The function d: L — End IT is multiplicative, i.e., d(4u)=d(4)d(y) for arbitrary
ApelL.

The notation d(4) will be used also for the dilation operator in the
polytope groups modulo translations belonging to subspaces of A.
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Let P be a polytope, let B be a (k— 1)-dimensional subspace of 4, and B one
of the open halfspaces bounded by B. We say that P has a face in B
corresponding to B, if there are points p on the boundary of P for which the
intersection of B and a neighbourhood of p is contained in P. The closure of
the set of these points p is the face of P in B corresponding to B; it is a polytope
in B. It is called negative or positive with respect to a vector ¢ not in B,
according as B is or is not the ﬁalfspace into which e is pointing. Note that
each face F of P determines a unique (k — 1)-dimensional subspace B of A and
a unique halfspace B bounded by B, such that F is the face of P in B
corresponding to B.

Remark. Two polytopes P and Q are called “zerlegungsgleich” modulo
translations, and we write P~ Q, if there are decompositions P=P, U ... UP,
and Q=Q, U ... UQ, such that Q, is a translate of P, for every i € {1,...,n}.
Obviously, if PxQ, then P~ Q. But conversely, from P~ Q it follows only that
P and Q are “erginzungsgleich” modulo translations, i.e., that there exist
polytopes R~S and RxS§, such that R is composed of P and R and § is
composed of Q and $. However, “ergidnzungsgleich” implies “zerlegungsgleich”,
if the ordered field L'is archimedean, cf. J.-P. Sydler [19], H. Hadwiger [4],
V. B. Zylev [20], and V. G. Boltjanskii [1].

2. The equivalence theorem. First part.

Let S, denote an arbitrarily chosen simplex in A. For an arbitrary simplex S
in A, there are (k+ 1)! automorphisms of A which take S, into S. The absolute
values of their determinants are equal. The function from the class of simplices
into L, whose value for a simplex S is the absolute value of these determinants,
is translation invariant, and additive with respect to decompositions of a
simplex into two simplices by a (k — 1)-dimensional subspace through k—1 of
its vertices. It therefore defines a group homomorphism Vol,: B — L which
vanishes on € We call this homomorphism, and also the corresponding
homomorphism Vol,: IT — L, the k-dimensional volume with respect to S,. Its
value for a polytope is positive. The volumes corresponding to different choices
of 8, are proportional. When we speak of the volume, it will be understood to
be with respect to a chosen S,. When we speak of the volume Vol; for i-
dimensional subspaces of A, it will be understood to be with respect to
simplices that for parallel subspaces are translates of each other, whereas we
make no assumption connecting the volumes for subspaces that are not
parallel.

The vanishing of Vol,: # — L on € means that the condition Vol, X =0 is
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necessary for the equivalence X ~0. If k=1, this condition is also sufficient. For
k> 1, further conditions are obtained as follows.

Let A*™! be any (k—1)-dimensional subspace of A, let V* ! be the
corresponding subspace of V, and let ¢! be a vector not in ¥*~ . We consider
the homomorphism

B4R, B P(akY)

whose value for a polytope P is defined in the following way: Consider those
faces F of P which are parallel to A*~!, and denote by F’ the projection of such
a face on A4* ! in the direction determined by e*~!. Then h(4*~!,¢*"!)P is the
sum 3 eF’ extended over all these faces, where for each face F the factor g is +1
or —1 according as the face is positive or negative with respect to ¢!, One
sees immediately that if X ~0, then h(A4*"',e*"')X ~0. This necessary
condition for the equivalence X ~0 means that h(4*"!,¢* ') defines a group
homomorphism from P into I7(V*~!) vanishing on €, and hence a group
homorphism from IT into I1(V*~!). This group homomorphism is easily seen
to be the same for all subspaces A*~! of the same direction V*7!, and all
vectors e* ~! lying at the same side of V¥ !, whereas for vectors ¢* ! at different
sides of V*~! the homomorphisms differ by a factor —1. Thus we have
essentially only one condition for each V*~!. Note that, for each X € P, the
condition h(4*~1,e*"1)X ~0 is trivially satisfied for all but a finite number of
subspaces V*~!, namely for those subspaces V*~! for which there are no faces
of direction ¥*~! in the polytopes generating X.

It was proved for k=2 by H. Hadwiger and P. Glur [11] and for k=3 by
H. Hadwiger [8] that these conditions together with the condition Vol, X =0
are also sufficient for the equivalence X ~0. We shall prove in section 6 that
they are sufficient for all k.

This gives the first form of the equivalence theorem:

THEOREM 1. An element X of the polytope group B(A) is translation equivalent
to 0, if and only if Vol, X =0, and, for any (k — 1)-dimensional subspace A*~! of
A and any vector ¢~ not parallel to A*™?, the element h(A*~*,e*"1)X of the
polytope group P(A* 1) is translation equivalent to 0.

Applying the necessity of the conditions in Theorem 1 for dimension k-1,
one sees that the condition h(4*7',¢* )X ~0 implies that
Vol,_, h(4*"1,e*"1)X =0, and also that for any (k —2)-dimensional subspace
A*2 of A*~! and any vector ¢*~2 parallel to 4*~! but not to 4*~2, we have

h(4*~2 = )h(A* 1" HX ~ 0.
Proceeding in this manner, one arrives at a system of necessary conditions for
the equivalence X ~0, involving volumes in subspaces of all dimensions. These
conditions can be formulated as follows.
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Consider descending sequences Vo> V* !> .. oV, where each V/ is a
subspace of V of dimension j. For each such sequence, let V7 for every j be one
of the two open halfspaces of V/*! bounded by V/ (here V* means V). The
sequence ¢ = (V, V¥=1 .., V) will be called an i-flag in V. With each flag ¢ we
now associate a Hadwiger function Hg: B — L. There is only one k-flag, viz. ¢
= (V). For this we define the Hadwiger function as H,=Vol,. For an i-flag &,
where i<k, we define the Hadwiger function by

HtP(X) = VOlih(Ai,ei) . h(Ak—l’ek..l)X ,

where each A’ is a j-dimensional subspace of 4 of direction V4, and each ¢’ is a
vector in V7. From the remarks made above it is clear that the volume on the
right hand side for a given X depends only on . The function H;:  — Lisa
group homomorphism vanishing on € The necessary conditions for the
equivalence X ~0 can now be written H4(X)=0. For two flags & and ¥
corresponding to the same sequence V> V* 1> ... o V' the functions H, and
Hy are either identical or they differ by a factor — 1. Thus we have essentially
only one condition for each sequence V> V* 1> .. oV Note that, for each
X € P, the condition H4(X)=0 is trivially satisfied for all but a finite number
of flags. Note further that, for each flag @, there are simplices S for which H4(S)
+0.
We can now state the second form of the equivalence theorem:

THEOREM 2. An element X of the polytope group B(A) is transtation equivalent
to 0 if and only if Hy(X)=0 for all flags ®.

For k=1 the two theorems are identical. Since the conditions in Theorem 2
follow from the conditions in Theorem 1, it is evident that if the conditions of
Theorem 2 are sufficient, then the conditions of Theorem 1 are also sufficient.
The converse is easily proved by induction after the dimension.

Note that the Hadwiger function H for an i-flag &, considered as a function
Hg: I — L, is homogeneous of degree i with respect to the dilation operator,
that is to say that for every x € IT and every A € L we have Hy(d(4)x)=A'Hg(x).

3. Basic geometrical lemmas.

Our treatment of the algebra of polytopes depends on two lemmas on
simplices and simplotopes.

LeMMA 1. For arbitrary linearly independent vectors a,,. . .,a, and arbitrary
A u € L we have

k
dA+wla,,....a] = jzo dwlay,. ..,a]xdDaj4y,. .., 4] .
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The terms corresponding to j=0 and j=k shall mean d(i)[a,,...,a,] and
d(u)la,,. . .,a,], respectively.

Proor. If =0 or u=0, the formula is obvious. Assume now that 140, u=0.
From the validity of the formula when 4+ u> 0 follows its validity when A+ pu
<0 by replacing 4, u by —4, —u. From its validity when 4 <0, u>0 follows its
validity when 41>0, u <0 by writing [ —a,,. . ., —a,] instead of [a,,. . .,a,]. It is
therefore sufficient to consider the cases A>0, u>0 and 4<0, A1+ u=0.

(i) A>0, u>0 (see fig. 1). In a coordinate system with a,,...,a, as base
vectors, d(A+pla,,. . .,a,] is represented by the simplex

S={(ty -t 0SS .. St Sh+p},
and the jth term of the sum is represented by the polytope
Py = {(ty,. .ty | 0St,S.. . St;, SASHS . S, S+

Since S is composed of Py,. .., P,, the formula follows.

k=2 k=3

0 A A4 0
Fig. 1 Atp
(i) A<0, A+pu>0 (see fig. 2). In a coordinate system with a,. . .,a, as base
vectors, d(A+ p)[a,,. . .,a,] is represented by the simplex
S = {(ty.. )| 0SH,S... St Sh+pu}.
The jth term of the sum is now (—1)*"/[P;], where P; is the polytope
P = {(ty,.. . t) | ASH;S.. . St;SA+p At S, 2420
Consider for 0<j<k the polytopes
0 = {(ty .t | G SHS . SHSA+s AStL S S6S0),
and put Q,=P,, Q,=S5. Since P; for 0<j <k is composed of Q;_, and Q;, we
find

k k
Y (=DP] = (—DMQod+ X (=DF([Q;-11+[Q:]) = [2W] -
i=0 j=1
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k=2 k=3

N

/ ey

Fig. 2

(iii) A<O0, 4+ pu=0. The proof is as in the preceding case, with 0 instead of S.

CoroLLArY. From Lemma 1 it follows that
d(i+wlay,...,a) = d(A)ay,....a]+dwlay,...,aq] modZ, .
Hence, for every n € N,
dn)fay,....a] = [nay,...,na] = nfa,,...,aq,] modZ, .
LemMa 2. For arbitrary linearly independent vectors ay,. . .,a, and arbitrary
4,0 € L we have for every je {1,...,k—1}
d(Wlay,. . .,a]xdwlaj,y,. .., a]
= dplay,. . .,q;] xd(W)a;44. . .,a] mod Z; .

For k=2 this is a classical result on parallelograms. The lemma was proved
for k=3 by H. Hadwiger [8] and for k=3 and k=4 by B. Jessen [12]. The
following proof for arbitrary k is due to A. Thorup.

Proor. For fixed i,u € L and every pair x, € II1(V,), x, € 1(V,), where
V=V,®V,, we denote by x, *x, the element of IT determined by
xy#x; = d(A)x; xd(p)x; —d(p)x, x d(A)x, .
From Lemma 1 it follows that

(d(A+p)—d(A)—dw)lay,. . .,a]

k-1
'Zx d(Alay,...,alxdwlaj.y,. .. a]
=

It

k-1
-Zx dwlay,. . .,a]xd(Dajy,. .., a] .
j=

Hence

k-1
Y [ay,....a]%[aj,1,..,a] = 0.
i=1
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We must prove that all terms of this sum belong to Z;. We do this by proving
that if for some i € {2,...,k—1} we have

1) Y [ay,-..,a0x[a;4ys. ... a] € 24
ji=1

for arbitrary linearly independent vectors a,,. .., a,, then

V)] [by,.. ., b1*[aisy,. .. 0] € Z;

for arbitrary linearly independent vectors by,...,b;,a;4 s . ., G4
For arbitrary natural numbers n;>1,...,n,_;>1 and for j e {2,...,i} we
introduce the abbreviations

2[“1,- . "aj] = [ay,.. -aaj]_[ahaZ/ni—b' . '9aj/ni—-l:l

ay,...,a] = *[ay,...,a]-2[ay,a5,a3/0;_3,. . .,a;/n;_;]

ay,...,a] = "ay,...,a]—""ay,....a;_pa/m ;4]

The vector space spanned by a;,,,...,a, we denote by V.
We replace a,,...,a, in (1) by ay/n;_,,...,a/n;-, and multiply by n;_,.
Since, by the corollary of Lemma 1,

n_ilaj /oy ani] = [ajy,. . ,a] modZy(V),
we obtain the relation

i
Y [anax/ni—y,. . afni-J*[ae,. . @l € Zs.
=1

Subtracting this relation from (1) we obtain
(3) Z z[al,...,aj]*[aj+1,...,ak:]EZ3.
j=2

We replace as,...,a, in (3) by as/n;_,,...,a/n;—, and multiply by n;_,.
Since
N[y /Mg /ni—y] = [a540,- @] mod Z,(V) ,

we obtain the relation
i
Y ay,a5 a3/ g, . ai/n ]2 la540, 0] € 25
i=2
Subtracting this relation from (3) we obtain

i
Z 3[01,. . .,aj]*[aj+l,. . .,a,,] € 23 .
i=3
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Proceeding in this manner we obtain after i—1 steps the relation
4) i[ala'"9a|’]*[ai+la~--9ak]GZS'

From (4) we shall now deduce (2). We consider a set of linearly independent
vectors by,...,b,a;,4,. . .,a; and denote by W the subspace of V spanned by
b,,...,b, and by B a subspace of 4 of direction W. In (4) we let a,,...,q; be
any set of linearly independent vectors in W.

For a polytope Q in a proper subspace of B and a point p € B not in this
subspace we denote by p(Q) the pyramid

p(Q) = {p+tpg | te[0,1], ge Q}

with base Q and vertex p. By p(n)(Q), where n>1 is a natural number, we
denote the truncated pyramid

p()(Q) = {p+tpg| te[l/n1], g Q}.

A polytope p(n)(Q) obtained in this way from Q with some p and some n>1
will be called a stump with base Q.

For given natural number n,>1,...,n;,_;>1, the element ‘[a,,...,a;] of
II(W) is represented by a pyramid P in B obtained in the following way (see
fig. 3). Choose a point p; € B and consider the points p;_;,. . ., p, determined
by ppi_i=ay,. .., P1Po=a; Let

i=3

Qo=1{Po} n.o=2 Po
4 1
and form successively the stumps n=3

,=
0, = p1(n)(Qo)
0, = p2(n))(Qy) p Py
Qi1 = Pi-1(ni-1)(Qi-7) . P2

Fig. 3

Then the pyramid P=p,(Q;_,) represents ‘[a,,...,a;].

A polytope P in B obtainable in this way from a point p, linearly
independent vectors a,,...,a;, and natural numbers n,>1,...,n,_,>1, will
be called a special pyramid in B. The relation (4) means that we have

[Pl*[a;sys..., 4] € Z4

for every special pyramid P in B. From this we deduce (2) by proving that any
simplex in B belongs to the class of polytopes obtained from the special
pyramids by successive elementary subtractions.

A polytope as the Q; above obtained from a point p,; in some [-dimensional
subspace C of B, linearly independent vectors a;_;.,,. . .,a; in C, and natural
numbers n;>1,...,m>1, will be called a special stump in C. As a special
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pyramid is simply a pyramid whose base is a special stump, it suffices to prove,
for any affine space C, that any simplex in C belongs to the class of polytopes
obtained from the special stumps by successive elementary subtractions.

As a special stump is a stump whose base is a special stump, an inductive
argument shows that it is sufficient to prove that any simplex S in C belongs to
the class D of polytopes obtained by successive elementary subtractions from
the stumps whose bases are simplices.

In a suitable coordinate system in C with base vectors c;,. . ., ¢, the simplex
S is determined by

S = {(ty....t)| 0sy<... S, $1}.
Consider now (see fig. 4) for i=0,1,... the polytopes
St = {(ty,...,t) | 0SyS. .. <1y, iSt Si+1}
§7 = {(ty,.. -, t) € Siyy I t, 2t -1}

S = {(ty.. 1) €Sy | 321,—1)

St = {(ty,..,t) e SITH| 2t —1}.

(We shall actually use only those S/ for which i+j<!+1.) The polytopes T;
=S1U... U8} i1, are stumps whose bases are simplices; hence they belong
to . Since T, for i>2 is composed of T;_, and S}, it follows that all 5}, 21,
belong to D. We want to show that also Sj=S belongs to D. Let 1,,15,. .., 7
denote the translations determined by c¢,,¢, +¢y,...,¢;+ ... +¢. Then for i
>0 we have decompositions

St =nuStUS?
St =1STUS]

-1 -1 1
Sivi =148 US;
and, moreover, we have the relation
1 — i
Sivr = 1Si.

Using the decompositions when iz1, we prove successively that all
S2,83,...,5. i=1, belong to D. Using the relation when i=0, we see that S;
belongs to D, and now, from the decompositions when i=0, we prove
successively that S§™7,. .., S¢ belong to D.
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1=3 s S2 53

So
s! s2 _
% | Mﬂ
~ /

<& 1177

Fig. 4

4. Polynomic functions.

Our investigation will depend on certain purely algebraic theorems. It will be
convenient to present these theorems in a somewhat more general form than
that in which they are actually needed.

Let L and E be abelian groups with addition as composition. For every
function d: L — E and every a € L we define the function 4,d: L — E by

4,d(A) = dii+a)—d(z).
For arbitrary a,fe L we have dpd,d=4,4,4d. For 4, ...4,d, where
dy,. .., o, are all =«, we write AZd.

As a generalization of the notion of a polynomium we define polynomic
functions from L into E as follows.

Let k20 be an integer. A function d: L — E is called polynomic of degree k, if
either d is the zero function, or 4, ...4,d is constant for every set
oy,...,0 € L, and this constant is not O for all sets a,,...,a, Thus the zero
function is polynomic of degree k for every k, whereas for a polynomic function
which is not the zero function, the degree is well-determined. The polynomic
functions of degree 0 are the constants, and the polynomic functions of degree

<k are for every k the functions for which 4,, ... 4, d is constant for every set
ay,...,0 € L, or, equivalently, for which 4, ... 4, d is the zero function for
every set ay,...,0 44 € L.

For a polynomic function d: Z — E of degree <k we have for every g € Z

& (4
dig) = Y (p)d‘x’d(o)-
p=0

Consequently, for a polynomic function d: L — E of degree <k we have for
every a € L and every g€ Z

d(qu) = i (g)Agd ().

p=0

A+ 1

Suppose now that E is uniquely divisible, i.e., that E is a vector space over Q.
Let k2 1. For an arbitrary multi-additive function f: L¥ — E we define the
symmetrized function f¥™: L* — E by .
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SNl k) = *Zf(/nm, . ’}*n(k)) s

where the summation is over all permutations = of {1,...,k}. It is also multi-
additive. If f'is symmetric, we have f*™={. The function d: L — E defined by

d(2) = flh.. s 2) = [Ty ., 4),

ie., the function obtained by considering f or /™ on the diagonal of L" is
polynomic of degree k, since

A, ... A, dG) = KIf™ (o, ) .

Such a function d is called homogenic of degree k. Clearly, d(0)=0. One sees,
that if d is homogenic of degree k, then there exists just one symmetric, multi-
additive function d: L* — E, such that d(i)=d(4,. . .,4), namely the function
determined by

1
d(ay,...,0) = —4,,

F a4

Note that a homogenic function of degree 1 is simply an additive function
d: L — E. For such a function we have d=d.
A function d: L — E is called homogenic of degree 0 if it is a constant.

THEOREM A. Let L be an abelian group and E a uniquely divisible abelian
group. Any polynomic function d: L — E of degree <k has a unique
decomposition

d=dy+d +...+4d,,

where d;: L — E is homogenic of degree i. The components d; are determined
recursively by the formulae

di(ay,. .., o) = ki .. A,d(A)
L

di(ay,. .., o) = —‘ o4, d—dy— . —di )R for i<k

ProoF. Since d is polynomic of degree <k, the function 4, ...4,d is
constant for every set a,...,a, € L. Let its value be denoted by f(x;,. . ., ).
The function f: L* — E is clearly symmetric. It is also multi-additive. In order
to prove this, it is enough to prove the additivity in the last variable. For given
Ay, .., 0, We write 4, ... 4,d(A)=g(4). Then we must prove that

A,4+48(2) = 4,8(A)+4,8(4) ,
and this is clear, since 4, ,8(4)=4,8(A+B)+4,8(4), and 4,g is a constant.
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We now put d;(4)= (1/k!)f(4,...,A). Then d, is homogenic of degree k, and

1
ak(al" . -’ak) = —k—if(alv . 'a“k) .

The function d —d, is therefore polynomic of degree <k - 1. The existence of
the decomposition, and the recursion formulae, therefore follow by induction.
Its uniqueness also follows by induction, since for any decomposition of the
considered type we must have 4, ...4,d=4, ... 4,d, and hence d,(4)
=1/kNf(4,...,A).

Assume now that L and E are commutative rings. The terms polynomic and
homogenic will refer to the additive structures of L and E. We shall be
concerned with a special class of polynomic functions.

THEOREM B. Let L be a commutative ring containing Q, and E a commutative
ring containing Z. Let d: L — E be a function satisfying the following conditions:

(i) d is multiplicative, and d(0)=0, d(1)=1;
(ii) d is polynomic of degree <k.

Then E contains Q, i.e., every n € Z\ {0}, considered as an element of E, is
invertible. More precisely, it has the inverse

L B ot
The homogenic components dy,d,,. . .,d, of d are determined by d,=0 and
d,()) = dWE  for ie{l,... k},

where
1=¢&+...4+¢
is a decomposition of 1 € E into orthogonal idempotents ¢, =d;(1).
Note that the first part of the theorem implies that E (as additive group) is
uniquely divisible, so that Theorem A is applicable, and it makes sense to speak

of the homogenic components of d. For the first part of the theorem, the
multiplicativity of d is not needed.

Proor. (a) Since d(0)=0, we have for every a € L and every q€ Z

k
dig) = ¥ (Z)Agd(O) .

r=1
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For g=nk!, where n € Z\ {0}, all the binomial coefficients are divisible by n.
By choosing a=1/nk! we therefore find

k
1=dl)=n Y ¢, 48,d(0),
=1

p

where the c, , are the integers

k! (nk!—l)
Cop = — .
p\p-1
(b) Since d(0)=0, we have d,=0, so that the decomposition of d into
homogenic components has the form
d=d,+...+d,.
Using the multiplicativity of d we find
dap) = dy(A)  +...+d (i)
= d(Dd(p) = d()dy W+ . . . +d(Ddy () .

Here stand, for fixed A, two decompositions of the polynomic function
u+— d(Ap) into homogenic components. Consequently, d;(Au)=d(2)d;(1) for
every i € {1,...,k}. Hence

dad;(p) = dy(Adi(w+ . .. +di(Ad; (W + . .. +d(1)d;(w)
= 0 +...+ dUp +...+ 0.

]

Here stand, for fixed p, two decompositions of the polynomic function
4+ d(A)d;(1) into homogenic components. Consequently

d;(A)d;(p) = di(Ap)
Thus, on placing d,(1)=¢, we have &=¢, and &¢&=0 for j+i, so that

&,. .., & are orthogonal idempotents. Moreover, 1=d(1)=¢ +... +¢&,
Finally, since d,(Au)=d(4)d,(u), we have d;(1)=d(A)¢;

Since ¢,,. . ., &, are orthogonal idempotents, the sets &,E will be orthogonal
subrings of E. Note that the range of each d; belongs to &E, and that,
consequently, also the range of each d; belongs to &E.

Tueorem C. Let L be a commutative ring containing Q, and E a commutative
ring containing Z.
If : L — E is a ring homomorphism with o(1)=1,and if 1=¢(,+ ... + &, isa

Math. Scand. 43 — 15
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decomposition of 1 € E into orthogonal idempotents, then the functiond: L — E
defined by

* d(A) = e+ ... + oA,
satisfies the conditions

(i) d is multiplicative, and d(0)=0, d(1)=1;
(ii) d is polynomic of degree <k;

(i) di(Ay,. ., A)=di(L,..., LA ... 4);

(v) d:Q1,...,Liw=d,1,...,1,0dQ1,...,1,u;
™) &y, =0y ... 2)E;;

i) &(1,...,)=¢&;

i) 4,V +d, (L, A+ ... +d,(1,...,1,)=0(4).

Conversely, if a function d: L — E satisfies the conditions (i), (ii), (iii), then
there exist a unique ring homomorphism ¢: L — E with ¢(1)=1, and a unique
decomposition 1 =&, + ... + & of 1 € E into orthogonal idempotents, such that d
is determined by (*).

Note that, in the first part of the theorem, the existence of the
homomorphism implies that E contains Q, and that, in the second part, by
Theorem B, the conditions (i) and (ii) imply that E contains Q. Note also that
condition (iii) simply means that d;(4,,...,4,) depends on 4, ... 4; only.

Proor. (a) Suppose that d has the form (*).

Condition (i) is immediate. Conditions (ii) and (v) follow by observing that
the function i > @(AY)¢; is the restriction to the diagonal of L' of the multi-
additive, symmetric function (4,,...,4)+ @(4;...4)¢. The remaining
conditions (iii), (iv), (vi), (vii) are easy consequences.

(b) Suppose that d satisfies (i), (i), (iii).

Theorem B gives us the orthogonal idempotents ¢&,,...,&¢ ‘and the
expressions d;(4)=d(1)¢; for the homogenic components.

Consider now for each i the function ¢;: L — E determined by ¢;(4)
=Ji(1,. ..,1,4). Clearly, it is additivee. We shall prove that it is also
multiplicative, i.e., that (iv) is satisfied. Using (iii) we find

oA = di(A,.. ., ) = d;() = d(V&; .
This shows that the function 4 > @,(4) is multiplicative, i.e., that
@A) = (X)) .
Thus, for fixed p, the two multi-additive, symmetric functions

A ) P 014y ... Agh) and  (Ay,. ., A)@(hy ... Aei(u)
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coincide on the diagonal of L. Hence they are identical, i.e., we have ¢,(iu)
=@;(7)@;(1)). Repeating the argument, we find ¢,(/u)= ¢;(7)e;(u).
We now consider the function ¢: L — E defined by (vii), ie, by

0() = @A)+ ... +o4).

We find ¢(l)=d,(1)+ ... +d,(1)=1. Since each ¢, is additive, ¢ is additive;
and since each ¢; is multiplicative, and the terms are orthogonal, ¢ is
multiplicative. Hence ¢ is a homomorphism with ¢@(1)=1.

Finally, since ¢; is orthogonal to the range of ¢; when j#+i, we find

@A) = @(A)¢; = d(A);,

whence (*).

Note that if L is a field, the ring homomorphism ¢: L — E must be injective,
so that ¢ determines an embedding of L in E (an extension of the embedding
of Q). In this case we may, for every 4 € L, use 4 also as notation for the
corresponding element of E. The decomposition of d thereby takes the form

d(2) = 2E 4+ ...+ ik, .

5. The structure of the polytope group modulo translations.

In our study of I1=1IT (V), the commutative subring E of End IT generated
by the set {d(4) | 7 € L} will play a decisive role. Since d: L — End IT is
multiplicative, E consists of all endomorphisms

a, = Y v(2d(),
iel
where v: L — Z has finite support. The ring E contains Z. We proceed in a

number of steps.
(@) Let ay,...,aq, be linearly independent vectors, and write

xij = [@i4y,...,a;] for 0Si<jsk.

The formula of Lemma 1 (with « instead of p) can then be written

k

A4,d(A)xg), = Z d(@)xo; x d(2)X ;.

j=t
(The term corresponding to j=k means d(a)x,.) Hence, for arbitrary
Aay,.. .., € L, where 0 <p =<k, we have

4, ... 4, d(D)xe, = Y d(a,)xg;, % . .. xd(@,)x;

O<iy<...<i, Sk

X d(3)X -

p-1ip
(4
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(A term corresponding to indices i,,. . .,i,, where i,=k, means d(x;)xq; X ...
x d(a,)x;,_ ) In particular

4, ... 4, d(A)xe, = d(a)la;]x ... xd(w)la] -
Using that the elements [a,,. . .,q,] generate II, and that
d(oa)la,]x ... xd()la] £ 0 when «,...0=*0,
we find:

The dilation operator d: L — E is polynomic of degree k.
For arbitrary 4,a,...,a, where 0<p<k, the endomorphism 4, ... 4,d(4)
maps I1 into Z,

(b) Thus the dilation operator d: L — E satisfies the conditions of Theorem
B. Consequently, E contains Q, which implies that II is uniquely divisible, and
we have the decomposition d=d, + ... +d, of d into homogenic components
determined by d;(1)=d(4)&;, where 1 =&, + ... + &, is a decomposition of 1 € E
into orthogonal idempotents £;=d;(1). Since d is of degree k, we have &, +0.

Introducing the subgroups &II1=Z;, we have

I=5®.. 5.

Each of the subgroups Z; is stable under the automorphism ¢ for every
automorphism ¢ of V, since ¢&;=¢;p. Instead of Z; we also write Z;(4) or
Z(V).

The notation d;(4) for the homogenic components of the dilation operator,
and the notation d;(1)= ¢, will also be used in relation to the polytope groups
modulo translations belonging to subspaces of A.

(c) Let V=V,®...®V,, and let x, € [I(V,),...,x; € [I1(V)). The function
. d(A)(x; x ...xx;) from L into the uniquely divisible group IT is a
polynomic function of degree <k with the homogenic components A
d;(2)(x, x ... xXx;). Since

d(2)(x; % ... xx) = d(2)x; % ... xd(A)x;,

we have

k
dA)(xyx ... xx) = Y Y d(A)xy x . oxdy(A)x; .
Py
Each term
dy (A)xy % o oxdy (A)x; = dy (Ao )X X o Xy (e A)X

with [, + .., +1;=j is the restriction of a multi-additive function from L/ into
I to the diagonal of L/, namely the function obtained by replacing the 4’s on
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the right hand side by 4,,.. ., 4; and is therefore homogenic of degree j. Hence

we have
d;(A)(x; x xx) =0 for j<i
di(A)(xyx ... xx) = Z dy (A)xy x ... xd(4)x; for j2i,
Li+...+l=j

in particular
di(A)(xy x .o xx;) = dy(A)x;x ... xd(A)x; .
On placing A=1, and considering only values j<i, we obtain

Eilxyx ... xx) =0 for j<i

Eilxyx oooxx) = Exyx .o xEx;.
x x;, where x, €

(d) Since Z; is generated by the elements x,; x
., Vi such that V=V, @...@V,

I(\Vy),...,x; € II(V), for all choices of V,,..
. xx;)=0for j<i 1mphes that Z,2=Z,®... ®E,. On the

the relation & (X %
other hand, since d,(A) d(4)¢;, we have (for every 2)

1 .
di(y,...,0) = FA‘,. o A d(R)E;

and consequently

. 1
&= AdD G4

From this it follows, since 4}d(4), as shown in (a), maps II into Z,, that £, Z,,

and hence that Z,®... ®=5,£Z;. Thus we have

Zi = Ei@" .@Ek .

(e) From E,£Z; and §I1=5,=¢.E,; it follows that E,=¢,Z;. Since Z; is

generated by the elements x, X ... X x;, where x, € [I(V,),. . .,x; € I1(V)), for

all choices of V,,...,V; such that V=V,®...®V, it follows that Z; is

generated by the elements &;(x, x ... x x;). Since &;(x; x ... xx)=&x X ...
x &,x;, we find:

the elements x;x ...xXx;, where

is generated by
V, such that V

The group Z;
x, € Z,(Vy),...,x; € E;(Vy), for all choices of Vi,...,
= Vl @ PN @ Vl"

The subset of E; consisting of these elements will be denoted by I';.. Note that
I' =Z,. The whole group IT is generated by the set I'=I' | U.... Ul
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(f) Let V=V,®V,. From Lemma 2 it follows that for arbitrary x, € I1(V,)
and x, € II1(V,), and for arbitrary /,u € L, we have

d(2)x, xd(u)x,—d(u)x, xd(A)x, € Z, .
Suppose now that x, € Z,(V,) and x, € E,(V,). Then also

d(2)x, € E,(Vy), d(px, € E,(V)

d(2)x, € Z((V,), d(u)x, € Z,(V,) .
Hence, by (c),

d(2)x, xd(Wx, € E,, d(u)x, xd(2)x, € E,,

and consequently

d(a)x; xd(u)x, —d{u)x, xd(1)x, € =, .
Since Z,N E,={0}, we conclude that

d(2)x, xd(u)x, = d(u)x, xd(4)x, .
In particular,
d(A)xy x x5 = xy xd(4)x, .

By repeated use of this, and using the multiplicativity of d, we find:

If V=V,@®...®V, and x, € Z(V),...,x; € E,(V), then for arbitrary
Atse .., A; € L we have

dlAdx; % .ooxd(Adx; = Xy X . XXy Xd(Ay ... A)X;

In other words: For an element x, x . .. x x; of the generating set I'; of £, the
element d(4,)x,; x ... xd(4)x; depends only on the product 4,...4. An
operator d(4) can be moved freely from one factor of x; x ... x x; to another.

(g) Let V=V,®...®V, and let x, e [I(V,),...,x; € [I(V). For the
ith homogenic component A+ d;(2)(x;x ... xx) of the function 2 m—
d(#)(x; x ... xx;) from L into I1 we found in (c) the expression

di(A)(xyx ... xx) = d(Ax; x ... xd(4)x;.

From this we deduce, for arbitrary 4,,...,4; € L,
. . 1 . .
Ay A)(Xy X .. X X)) = il Y dyGin)Xy X - o X dy (A, s
where the summation is over all permutations = of {1,. . .,i}. Indeed, on both

sides we have a symmetric, multi-additive function from L' into II, whose
restriction to the diagonal of L' is d,(A)(x; x . .. x x)).
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Suppose now, in particular, that x, € £,(V,),...,x; € £,(V,). Then the
formula can be written

, \ 1 , \
di(Ayy. . A0 X ... xx) = T Y dAga)xy X - .o X d(Ag)X; -

For each term on the right hand side we have, by the result in (f),
d(AgapXy X oo Xd(Ag)X; = Xy % 00X Xy Xd(Ay .02 A)x; .
Hence we find
iAo AYXp X oo X X)) = Xy X XXy Xd(Ay L A%
whence
iAo A X oo xx) = di(1,. . LA A (X X .. X X))
Using that d;(4,,. . ., 4;) vanishes on E;for j+iand all 4,,...,4; € L we see that
Ay, A)x = di(1,.. . 0,4, ... 4)x

for all elements x of the generating set '=I", U ... UT, of I1, and hence for all
x € I1. Thus

Ay i) = di(1,. . 1A 4.

(h) Thus the dilation operator d: L — E satisfies not only the conditions (i)
and (ii), but also the condition (iii) of Theorem C. Consequently, the function
¢@: L — E determined by

o) = d\(AH+d,(LA+...+d,...,1,4)

is a ring homomorphism with ¢(1)=1, and the decomposition of d into
homogenic components is determined by

d) = oW1 +... +o (A, .

Since L is a field, ¢ determines an embedding of L into E (extending the
embedding of Q). For the element ¢(4) of E we shall therefore write 4, so that
the preceding formulae take the form

A=diWD+d,(LAY+ ... +d,(,...,1,4)
and
d(A) = A&+ ... +A%¢, .

Through the embedding of L in E, the group IT becomes a vector space over L,
the scalar multiplication by an element A € L being the endomorphism A. The
subgroups Z; and &; become subspaces, and the expression for d shows that the
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restriction of d(%) to E, is scalar multiplication by +'. The expression is called the
spectral decomposition of d.
For an element x; x ... x x; of the generating set I'; of Z; we find from (g)

Ay X oooxx) = di(1,. LA X L X x) = Xy XL XXy Xd(A)x; -

(j) Let h: IT — L be an additive. function, which is homogeneous with
respect to d(4) of degree i € N, i.e., for which h(d(£)x)=A'h(x) for all x € IT and
all 2 € L, and which is not the zero function. We then have

Ah(x) = h(A& )+ ... +h(i*¢Ex) .

For a fixed x, the function 4 — A'h(x) from L into L is the restriction of the
symmetric, multi-additive function (4,,...,4) — 4, ... 4;h(x) to the diagonal
of L', and the jth term on the right hand side is the restriction of the
symmetric, multi-additive function (4,,...,4) — h(4,...4¢x) to the
diagonal of L. Choosing an x, for which h(x)=+0; we see that i must be one of
the numbers 1,. . ., k. Thereafter we see that for every x and for arbitrary A’s we
must have

h(dy ... 4¢x) =0 for j+i
h(Ag ... AX) = 4 ... 4h(x).

From this it immediately follows, that h is a linear function on the vector space
I1, which vanishes on Z; for j#i.

There is an obvious converse: If h: IT — L is a linear function which
vanishes on Z; for j#i, then h is homogeneous of degree i with respect to d(4).

The Hadwiger function Hg: IT — L for an i-flag @ is additive, and
homogeneous of degree i with respect to d(4), and is not the zero function.
Hence it is a linear function which vanishes on Z; for j+i. Hence Z; % {0}, that
is to say, £;#0 for all i € {1,...,k}.

(k) From the spectral decomposition of d it follows that, for an arbitrary
function v: L — Z with finite support, the corresponding element «, of the ring
E will be determined by

a, = 3 v(Ad@A) = 4 +. ..+ A4S,
Ael
where
Gigor e oidg) = Y V(AN 25 .
Ael

Hence E consists of all a=4,& +...+4&, where A,,...,4, € L. The
endomorphism o is simply the linear transformation of the vector space IT
whose restriction to each Z, is scalar multiplication by ;. Since all Z; are * {0},
the coeflicients 4,,. . .,4, are uniquely determined by a. Since ~
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(Al + A+ (i + . b)) = A +u)é+ .o+ G+ ),
(4184 al) il + o+ ml) = A+ Al

we see that E is isomorphic to the product ring L*, the isomorphism from L*
onto E being determined by (4,,...,4) — 4, &+ ... + 4,

From the expression for «, in the form 4,&, + ... +4,¢, it follows that L* as
additive group is generated by the set {(/,..., 7% I s € L}, and that o,=0, if
and only if the function v: L — Z satisfies the condition

Y V(A4 .., 2 = (0,...,0).
iel
Examples of such relations were first given by H. Hadwiger [5].

Collecting the principal results of the preceding analysis, we see that we have
proved the following theorem.

THEOREM 3. Let E denote the subring of the endomorphism ring of the group I1
=I1(V) which is generated by the set {d(4) I 4 € L}. The functiond: L — E is
polynomic of degree k. The elements & ,=d;(1)=d,(1,...,1) determine a
decomposition 1 =¢&,+ ...+ &, of 1 € E into orthogonal idempotents &;#+0, and
thereby a decomposition

II=Z®®&...85
of the group II into the groups E;=¢,I1. For every i we have
Z,=E5®...0F.

The map 7.+ d,(2)+d,(1,/)+ ... +d,(1,. . .,1,%) determines an embedding of
L into E, and thereby makes the group Il into a vector space over L, scalar
multiplication by an element 4 € L being the endomorphism 4. The subgroups Z;
and E; become subspaces. The group Z; is generated by the products x; X ... x x;,
where x, € E,(V\),....x; € E,(V)and V=V, ® ... @V, For such a product the
scalar multiplication by 4 is effected by applying d(4) to one of its factors.

The ring E consists of all 1 ¢+ ...+ A&, where Ay,...,A €L, and is
isomorphic to the product ring L.

The dilation operator has the spectral decomposition

d(A) = A&+ ...+, .

Our formulae for ¢,.....&. and for 4 (as element of E), show us how to
express any element 4,¢, + . . . + 4, of E by means of dilations, but they lead
to complicated expressions. One reason for this is that the factors 1/i! in the
expressions for the homogenic components in Theorem A must be determined
by means of the formula in Theorem B. It is simpler to proceed as follows.
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Insert in the spectral decomposition of d(4) for 4 the k values i/k!,i € {1,...,k].

By solving the equations we find expressions

1 1 k
H{,’ = a“d(z’!)‘f‘ e +aikd(ﬂ> .

where the coefficients a;; are integers. On the other hand, from 2'¢;=d(2)¢; we
find

. i 1
46 = 44 ‘Azid(o)?,’fi .

Thus we obtain an expression for 4,&,+ ...+ 4., by means of dilations
without having to use the formula in Theorem B to get rid of the fractions.
. For k=2 we find from

ad) = ém%cz} hat { &= 4dd)—dQ)
d) = &+ & 24} +d(),

e
o
I

whence
ME + a8, = 4d(3Ay)—d(4)
=2dGi, + D) +2d(Gi)+2dB) +d (2, + 1) —d(4y)—d(1) .

Another method is to develop formulae for expressing an arbitrary x € IT in
terms of elements of the generating set '=I, U ... UT, introduced in (e). It is
enough to do this for elements x which are represented by simplices. Such
formulae can be found by induction after the dimension. For 4;,=1, the above
formula for 4, takes the form

1 )
¢ o= il £, where g = 41d(0).

For the equivalence class x=[a,,...,a,] of a simplex, we have, using the
notation from (a),

gx = Y Xoj, X - oo X Xj_ 1k -
0<jy<...<jio <k

Using (c) and (h) we therefore find

1
éix = z élxojl XX flx]l—zji-l x d("T)élxji~lk .
0<jy<...<ji- <k i
(In each term, the dilation d(1/i!) can be placed on any of the factors.)
For k=1 we have £, =1. Suppose now that we have developed formulae
for ¢,[a,,...,a;] for all dimensions j e {1,...,k—1}. Then the expression
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for ¢lay,...,a,] allows us to write out formulae for
Elag,. . a6, . ., Elay,. . .,a.] in terms of elements from the sets I',..., I,

and hence, since £, =1—¢,— ... —¢,, to write out a formula for &,[a,,...,a].
For k=2 (see fig. 5) we have

glay,a,] = [a,1x[a,].
Hence

&alag,a,] = [a 0% [%az] s
and thereby

¢ila,a,] = (1-&))ay,a,] = [%axa%az]‘[‘%aza%ax] .

[a,a,] ¢alay,a,] ¢ilay,a,]

Fig. §
For k=3 (see fig. 6) we have

&la,az,a;] = [a,]1x[a,] x[a;5]

gxla;,az,a5] = [a;] x[ay,a3]+[ay,a,] x[a,] .
Hence

&3lay,a5,a3] = [a,] % [a,] x [§as]

and
&lay,az,a5] = [3a,]1x ¢ [az,a5]1+ ¢ [ay,a,] % [3a;]

= [a,] x ([3a5,3a5] — [3as 3a;0) + ((ay, 3,1~ [ay, 30, ) x [Fas]
and thereby

&ilag, az,03] = (1=¢;—&3)ay, az,a5]
= 2[}a,,3a;,3a3] +[3a,1 x [3a;,34,]
+[3az,3a,] x [$a;] —[a,] x [a,] x [2a5] .
A simple consideration leads to the simpler expression

¢ilag,az.a;] = [‘Z-a,,%az,%a3]‘+[%as,%az,%al] —[4a,] x [3a,] x [}as] .

[01,02,03] &slag,az,a5] &lay,a5,a;] 51[“1"'2,“3]
Fig. 6



236 BORGE JESSEN AND ANDERS THORUP

6. The equivalence theorem. Second part.

We are now in a position to prove that the necessary conditions for
translation equivalence in Theorems 1 and 2 are also sufficient. It will be
convenient to state this as theorems on the group I1. Since the necessity of the
conditions has been established, we can consider Vol, and the functions Hg as
functions from IT into L. With regard to the homomorphism

h(A* =1 ek 71y B — P(A* Y,

it was observed that it defines a homomorphism from IT into IT(V*~ 1), where
V=1 is the subspace of V corresponding to A*!, and that this
homomorphism is the same for all subspaces 4*~! of direction V*~!, and all
vectors €* ! lying at the same side of V*~!, whereas for vectors ¢*~! lying at
different sides of V*~! the homomorphisms differ only by a factor —1.
Denoting by V*~T one of the two open halfspaces of ¥ bounded by V*~!, we
shall denote the homomorphism from I into IT(V*~') which we obtain by
choosing ¢~! in V¥~ by f(V*°Y): I — I (V*™Y). The sufficiency of the
conditions of Theorems 1 and 2 can now for dimension k be expressed as
follows:

1,. If x € II satisfies the conditions Vol,x=0, and f(V*"")x=0 for every
halfspace V*~1, then x=0.
2. If x € II satisfies the condition Hy(x)=0 for all flags @, then x=0.

As previously noted, the two statements are identical, and true, for k=1. It
was also noted that 2, implies 1,, since the conditions of 1, imply the
conditions of 2,, and that one easily proves by induction that 1, implies 2,. It is
therefore sufficient to prove, for k> 1, that 2, _, implies 1,.

Proor. Let x € IT satisfy the conditions of 1,, and hence also the conditions
of 2,. Assuming 2,_,, we must prove that x=0.

(a) We write V=U@®V,, where U is one-dimensional. Let e =0 be a vector in
U, and let ¥, be the open halfspace bounded by V, which contains e. Let 4,
be a (k— 1)-dimensional subspace of 4 of direction V,, and let 4, be the open
halfspace bounded by A, corresponding to V,.

Let Q be the subgroup of IT generated by the elements d(4)[e] x y,, where
4+€Landy,ell(V,),and let x: IT — II/Q be the canonical map of IT onto
the quotient group I1/Q which takes every element of IT into the equivalence
class of IT modulo Q to which it belongs.

For every polytope F in some (k— 1)-dimensional subspace 4*~! of 4 of
direction V*~! not containing e. and belonging to 4, we denote by g(F) the
polytope in 4 which is the union of all segments joining a point of F and its
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k=2 F ;1*
/ W
Ay
Fig. 7

projection on A4, in direction U (see fig. 7). For two such polytopes F, which
are translates of each other, the corresponding polytopes g(F) are either
translates of each other, or one of them is composed of a translate of the other
and a prism I x R, where I is a segment of direction U and R, is a polytope in
A,. Hence the map F > y(F)=%([g(F)]) is translation invariant. To a
decomposition of F corresponds a decomposition of g(F). Hence the map is
also additive. The restriction, that F should lie in 4, is removed by defining
y(F) for an F not in A, as the value of y for a translate of F in A4,. Thus the
map F — y(F) defines, for every V*~! not containing e, a homomorphism from
(V¥ ') into I1/Q. This homomorphism is also denoted 7, for all such V*~1,

An arbitrary x € IT is represented by an element X € B generated by
polytopes in A,. For every such polytope P we have (see fig. 7)

(P1 =} elg(F)],

where the sum is extended over all faces F of P whose direction does not
contain e, and ¢ for each F is +1 or —1 according as F is positive or negative
with respect to e. Hence

x([P) = Y ex([g(F)]) = Y. ey(F).

Using the definition of the functions f(V*~'): IT — II(V*~'), we obtain from
this the formula

x(x) = Y y(f (V- ),

where the summation is over all halfspaces V*~! containing e.

Thus, for our x, which satisfies the conditions of 1,, we must have »(x)=0,
that is to say, we have x € Q.

(b) For every generator d(4)[e] x y, of the group £, the element y, € I1(V,)
is generated by products y; x ... xy;,, where y, € £,(V,,),...,y; € E,(V,;) and
Ve=Vu®...®V,,; For each such product y, x ... x y; we can in the product
d(4)[e] x y, x ... x y; move the operator d(4) from the first factor to the second
factor. This shows that d(4)[e] x y, is of the form [e] x z,, where z, € II(V,).

Hence the group Q is simply the group of all [e] x x,, where x, € II(V)).
Thus we have now proved that x=[e] x x,, for some x, € II(V,).

(¢) In a one-dimensional subspace of 4 of direction U, let I denote a segment
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representing [e]. We can use the freedom we have in defining volume (the
proportionality factor which is at our disposal) in such a way in 4 und 4 that,
when Vol,, denotes volume in i-dimensional subspaces of 4,, we have

Vol;, (@) = Vol,,, (I xQ)

for every polytope Q in an i-dimensional subspace of A4,. Then, when Hy :
11(V,) — L denotes the Hadwiger function for a flag ®,=(V,, V47 %,.. ., V)
in V,, we have for every x, € I1(V,)

H‘P.(x*) = H(b([e] xx*) s
where @ is the corresponding flag in V determined by
¢ = VUaVy:... . UaVy,

where U@V, means the halfspace of U@V.'! bounded by U@V, which
intersects V, in Vi,

Since our x=[e] x x, satisfies the conditions of 2,, we see that x, must
satisfy the conditions of 2,_,. Consequently, x, =0, and hence x=0.

7. Additional results.

It was proved in section 5 (j) that the Hadwiger function Hy: I — L for an
i-flag & is a linear function on the vector space IT, which vanishes on = ; for
j=*i. It therefore follows from 2, that each subspace =; must consist of those
x € II for which Hg(x)=0 for all j-flags ¢ with j+i. Hence Z,=Z,® ... ®E,
must consists of those x € IT for which Hg(x)=0 for all j-flags @ with j <i. This
gives us:

THEOREM 4. An element X of the polytope group B belongs to 3; if and only if
H4(X)=0 for all j-flags & with j<i.

For i=2, and all k=2, this was proved by H. Hadwiger [6].
Since for every x € IT we have Hy(x)=0 for all but a finite number of flags,
we find, using a well-known theorem on vector spaces:

THEOREM 5. All linear functions H from the vector space Il into L are
determined by the formula H=7Y coH g, where @ > cy is any function from the
set of all flags into L, and the summation is over all flags.

Al linear functions H; from the vector space II into L which vanish on Z; for
j#i are determined by the formula H, =3 ;coHg, where @ — cg is any function
from the set of all i-flags into L, and the summation is over all i-flags.
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The functions H=3 c4H, are the general Hadwiger functions, and the
functions H;=3;coHy are the general Hadwiger functions of degree i. The
functions H; are also characterized as those additive functions from IT into L
which are homogeneous of degree i with respect to the dilation operator.

The only functions H, are the functions ¢ Vol,. Thus the space Z, = Z, is one-
dimensional.

Let G be any group of automorphisms of 4 which contains the group of
translations. Let € denote the subgroup of B generated by all elements P— P,
—P,, where P is composed of P, and P,, and all elements P—Q, where Q is
obtained from P by a transformatnon in G. Two elements X and Y of P are
called G-equivalent and we write x< Y,if X —Y e €. The group I15=P/E; is
called the polytope group in 4 modulo G.

One easily shows that the group I =CEg/€ is a linear subspace of I1. Hence
Il is simply the quotient space I1/I;, and we have

g = E16®...®

where E,;=(Z;+1¢)/I;. The dilation operator d(4) may be considered as an
endomorphism of IT; and has a spectral decomposition similar to the one
described in Theorem 3. An element x of IT lies in I if and only if H(x)=0 for
all general Hadwiger functions H which vanish on I If we consider the
general Hadwiger functions as functions from B into L, we therefore obtain the
following criterion for G-equivalence: An element X of the polytope group B is
G-equivalent to 0, if and only if H(X)=0 for all general Hadwiger functions
whose restriction to the class of polytopes is G-invariant, i.e., for which H(P)
=H(Q), when Q is obtained from P by a transformation in G.

The groups G of automorphisms of A which contain the group of
translations correspond uniquely to the groups of automorphisms of V. The
following cases are of particular interest.

(i) G is the group corresponding to {1,(—1)}. In this case I is the sum of
those spaces Z; for which k—i is odd. From this we conclude that X £0 for an
element X € P if and only if Hy(X)=0 for all i-flags for which k—i is even.
Cf. H. Hadwiger [3].

(i) G is the group corresponding to { 3(4") | n € Z}, where A € L\{0,1, —1}.
In this case we have I;=1II. Hence X £0forall X e P. Cf. V. B. Zylev [21],
H. E. Debrunner [2], Ch. Meier [13], H. Hadwiger [9].

[83]
3]

kG >

REMAI};K. Two polytopes P and Q are called “G-zerlegungsgleich”, and we
write PxQ, if there are decompositions P=P,U...UP, and g=0Q, U
UQ, such that Q, is obtained from P, by a transformatxon in G for every
ie{l,...,n}. Obviously, if PEQ then P2 ~ Q. But conversely, from pL ~Q it
follows only that P and Q are “G-erginzungsgleich”, ie., that there exist
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polytopes RS and RS, such that R is composed of P and R and § is
composed of Q and S. However, “G-ergdnzungsgleich” implies “G-
zerlegungsgleich”, if the ordered field L is archimedean, cf. J.-P. Sydler [19],
H. Hadwiger [4], V. B. Zylev [20], V. G. Boltjanskii [1], and Ch. Meier [13].
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