SIMPLE INJECTIVE MODULES #### FRANK W. ANDERSON Rosenberg and Zelinsky [6] first addressed the question of characterizing for a ring R those simple modules $_RT$ having injective hulls of finite length. In that work they also announced a very special case obtained by Kaplansky: if R is commutative, then every simple R-module is injective iff R is von Neumann regular. A few years later Villamayor (see [4]) characterized those (not necessarily commutative) rings R—now known as V-rings—over which every simple left module is injective by the property that every left ideal is an intersection of maximal left ideals. (Also see [2] and [3] for further treatment of V-rings and their bibliography.) In this note we return to that which is common to both the Rosenberg-Zelinsky and the V-ring studies. That is, we consider the problem of characterizing, for a ring R, those simple modules $_RT$ that are themselves injective. As one application, we prove that if R is a V-ring, then so is the endomorphism ring of every finitely generated projective module P_R . If M is a left R-module, then for each $X \subseteq M$ and $A \subseteq R$, we set $(A:X) = \{r \in R \mid rX \subseteq A\}$. # 1. Characterizations of simple injectives. Let R be a ring (with identity). Then a left R-module $_RT$ is simple iff $$T \cong R/M$$ for some maximal left ideal M of R. Indeed, if $_RT$ is simple, then $$T \cong R/(0:t)$$ for each $0 \neq t \in T$. DEFINITION. Let $_RI \leq _RR$ be a left ideal and let $a \in R$. A left ideal $L \leq _RR$ supports a on I if $$L \cap Ra = Ia$$. Received December 13, 1977. For each left ideal I of R and each $a \in R$ the left ideal Ia is a support for a on I. So since the collection of supports for a on I is clearly inductive, each support for a on I is contained in a maximal support for a on I. 1.1. Lemma. Let M be a maximal left ideal of R and let $a \in R$. Then $$a \in Ma$$ iff R is a (necessarily unique) maximal support for a on M. PROOF. Since $Ra \supseteq Ma$, we have $$a \in Ma$$ iff $Ra = Ma$ iff $R \cap Ra = Ma$. Now our main result is the following characterization of simple injective modules. 1.2. THEOREM. Let $_RM$ be a maximal left ideal of R. Then the simple left R-module R/M is injective iff for each $a \in R$ $$L + Ra = R$$ for every maximal support L of a on M. PROOF. (\Rightarrow) If $a \in Ma$, then by Lemma 1.1, R is the unique maximal support for a on M. So we may assume that $a \notin Ma$. This means that $$R/M \cong Ra/Ma$$ so that Ra/Ma is injective. Let L be a maximal support for a on M. Since $$L \cap Ra = Ma$$, we infer that $$(Ra+L)/Ma \cong Ra/Ma \oplus L/Ma$$. So by the maximality of the support L, we have Ra+L=R. (\Leftarrow) . Let I be a left ideal of R and let $$\varphi: I \to R/M$$ be a non zero homomorphism. Let $a \in I$ with $$\varphi(a) = 1 + M.$$ Then $$\operatorname{Ker} \varphi = Ma \cap I = Ma$$. So $a \notin Ma$. Now let $_RL \leq _RR$ be a left ideal maximal with respect to $$Ma \leq L$$ and $a \notin L$. Then since $I(Ma) \cong R/M$ is simple, since $L \cap Ra \prec Ra \preceq I$ and since $Ma \preceq L$, we have $$L \cap Ra = Ma$$. It is clear, since $a \notin Ma$, that L is a maximal support for a on M. So by hypothesis, $$L+Ra=R$$. Therefore, $$\psi: l+ra \mapsto \varphi(ra) \quad (l+ra \in L+Ra)$$ is a well defined homomorphism $\psi: R \to R/M$ extending φ . So by the Injective Test Lemma ([1, p. 205]) R/M is injective. If R is a V-ring, then every left ideal I of R is fully idempotent (i.e., $I^2 = I$). A local generalization of this fact is the following. 1.3. COROLLARY. Let M be a maximal left ideal of R with R/M injective. Then for each $a \in R$ $$aR \subseteq M \Rightarrow a \in Ma$$. PROOF. Let $aR \subseteq M$ and let L be a maximal support for a on M. Then by Theorem 1.2 $$L+Ra=R$$. Thus, $$a \in RaR \subseteq RaL + RaRa \subseteq L + Ma \subseteq L$$; and so $$a \in L \cap Ra = Ma$$. As we shall show later (Corollary 1.7) if R is commutative, then the converse of this last corollary holds. In general, however, the converse is false. Indeed, if R is von Neumann regular, then $$aR \subseteq M \Rightarrow a \in Ma$$ for all left ideals M of R. But von Neumann regular rings need not be V-rings. (See, e.g., [2], [3], or [1, Exercise 18.4].) Let R be a ring and let P be a two sided ideal of R. Then each simple left R/P module is a simple R-module. The following result characterizes those injective simple R/P modules that are injective as R-modules. 1.4. THEOREM. Let P be an ideal of R and let M be a maximal left ideal of R with $P \subseteq M$. If R/M is R/P injective, then R/M is R injective iff for all $a \in R$ $$a \in P \Rightarrow a \in Ma$$. **PROOF.** (\Rightarrow). If $a \in P$, then $aR \subseteq P \subseteq M$, so $a \in Ma$ by Corollary 1.3. (\Leftarrow) . Let $a \in R$ and let L be a maximal support for a on M. Then by Theorem 1.2 it will suffice to show that L+Ra=R. First suppose $P \subseteq L$. Then $$L \cap (Ra+P) = (L \cap Ra) + P = Ma+P$$, so L/P is a maximal support for a+P on M/P in R/P. Since R/M is R/P injective, it follows from Theorem 1.2 that L+Ra=L+Ra+P=R. On the other hand suppose that $P \not\subseteq L$. Then P + L does not support a on M. So there is an $x \in R$ with $$xa \in P + L$$ and $xa \notin Ma$. But then $Ra/Ma \cong R/M$ is simple, and for some $r \in R$, $$a-rxa \in Ma \prec P+L$$, so $a \in P + L$. Then $a - y \in P$ for some $y \in L$. So by hypothesis $$a-y \in M(a-y) \leq L$$, and $a \in L \cap Ra = Ma$. Therefore, by Lemma 1.1, L = R. Recall that if M is a maximal left ideal of R, then (M:R) is a primitive ideal of R with $(M:R)\subseteq M$. 1.5. COROLLARY. Let M be a maximal left ideal of R. If R/(M:R) is a V-ring, then the simple R-module R/M is injective iff $a \in Ma$ for all $a \in (M:R)$. Let J = J(R) be the Jacobson radical of R. If J = 0, then R is semi-artinian if every primitive factor ring of R is artinian. Every primitive ring with a polynomial identity is artinian; so for example, if R satisfies a polynomial identity, then R/J is semi-artinian. 1.6. COROLLARY. Let M be a maximal left ideal of R. If R/J is semi-artinian, then R/M is injective iff $a \in Ma$ for all $a \in (M:R)$. PROOF. Since R/(M:R) is primitive, it is artinian and simple, and hence it is a V-ring. 1.7. COROLLARY. Let R be commutative. Then a simple module $_RT$ is injective iff $a \in (0:T)a$ for all $a \in (0:T)$. ### 2. Endomorphism rings of projectives. Throughout this section let P_R be a finitely generated projective module with endomorphism ring $$S = \text{End}(P_R)$$. If P_R is a generator, then by Morita equivalence (see [1, Chapter 6]) the categories of left R and left S modules are equivalent. In particular, an R-module $_RT$ is injective (projective) iff the S-module $$P \otimes_{P} T$$ is injective (projective). From this it is immediate, for example, that if P is a generator and R is a quasi Frobenius, then so is S. On the other hand, when P_R is not a generator, the nature of $P \otimes_R T$ cannot always be readily determined from that of T. However, if R is also simple, we can be fairly definitive. 2.1. Theorem. If $_RT$ is a simple injective (projective) R-module, then $P \otimes_R T$ is either zero or a simple injective (projective) S-module. PROOF. Since the result is true when P_R is a generator, we may assume that P = eR for some idempotent $e \in R$ and that $S \cong eRe$. In particular, $$P \otimes_R T \cong eT$$. Suppose then that $_RT$ is simple and that $_RT \ne 0$. Then for each $0 \ne et \in _RT$, $$eRe(et) = e(Ret) = eT$$ and so eT is eRe-simple. Suppose now that T is projective. If $eT \neq 0$, then as R-modules, since T is simple, $$Re \simeq T \oplus V$$ for some $_RV$. Thus, as eRe modules, $$eRe \cong eT \oplus eV$$. and eT is eRe projective. Finally, for the interesting case, assume that $_RT$ is injective. Suppose $eT \neq 0$. Say $0 \neq et \in T$. Set $$M = (0:et).$$ Then M is a maximal left ideal of R with $e \notin M$ and $$Me \subseteq M$$ and $T \cong R/M$. So as an eRe module $$eT \cong eRe/eMe$$. Let $a \in eRe$ and let $L \leq eRe$ be a maximal support for a on eMea. We claim that $RL \cap Ra \subseteq Ma$. For let $x_1, \ldots, x_n \in L$ and suppose $$r_1x_1 + \ldots + r_nx_n = sa \in RL \cap Ra$$. If $se \in M$, then $sa = sea \in Ma$. Otherwise, if $se \notin M$, then since RM is maximal, $1 - yse \in M$ for some $y \in R$, so since a = eae, $$a-eysea \in eMea$$. But then since L = eLe. $$ey(r_1x_1 + \ldots + r_nx_n) = eyr_1ex_1 + \ldots + eyr_nex_n$$ = $eysea \in L \cap eRea$, and so since L supports a on eMe, Thus, $a \in eMea$ whence $sa \in Ma$ as claimed. Now since RLe = RL and $Rae = Ra \supseteq Ma$, we have $$\lceil RL + Ma + R(1-e) \rceil \cap Ra = Ma.$$ Thus there is a left ideal K of R maximal with respect to $$RL+Ma+R(1-e) \prec K$$ and $K \cap Ra = Ma$. So K is a maximal support for a on M. But by hypothesis R/M is injective, so by Theorem 1.2, $$K + Ra = R$$ and $eKe + eRea = eRe$. We claim next that eKe = L. Certainly $L \subseteq eKe$. But since $R(1-e) \subseteq K$, we have $$K = Ke + R(1-e).$$ so $eKe \subseteq K$. Thus $$L \cap eRea \subseteq eKe \cap eRea \subseteq e(K \cap Ra) \subseteq eMa = eMea$$, so since L is a maximal support, L = eKe. But then $$L + eRea = eKe + eRea = eRe$$ and thus, by Theorem 1.2, eT is injective. A ring R is a GV-ring (see [5] for the basic theory of GV-rings) in case each simple left R-module is either projective or injective. 2.2. COROLLARY. If R is a V-ring (GV-ring), then S is a V-ring (GV-ring). PROOF. It will suffice to prove that every simple S-module is isomorphic to $$P \otimes_R T$$ for some simple R-module $_RT$. Again we may assume P = eR and S = eRe. Let L be a maximal left ideal of eRe. Then there is a maximal left ideal M of R with $$RL + R(1-e) \leq M$$ and $e \notin M$. Since eMe = L, we have $$e(R/M) = e(Re/Me) \cong eRe/eMe = eRe/L$$. #### REFERENCES - F. W. Anderson and K. R. Fuller, Rings and categories of modules (Graduate Texts in Mathematics 13), Springer-Verlag, Berlin - Heidelberg - New York, 1974. - J. Cozzens and C. Faith, Simple Noetherian rings, Cambridge University Press, Cambridge, 1975 - 3. J. W. Fisher, von Neumann regular rings versus V-rings, in Ring theory (Proc. Conf., Univ. Oklahoma, Norman, Oklahoma, 1973) 101-119. (Lecture Notes in Pure and Applied Mathematics 7), Marcel Dekker, New York, 1974. - G. Michler and O. Villamayor, On rings whose simple modules are injective, J. Algebra 25 (1973), 185-201. - V. S. Ramamurthi and K. M. Rangaswamy, Generalized V-rings, Math. Scand. 30 (1972), 69– 77. - A. Rosenberg and D. Zelinsky, On the finiteness of the injective hull, Math. Z. 70 (1959), 372–380. UNIVERSITY OF OREGON, U.S.A. AND AARHUS UNIVERSITĖT, DENMARK