SIMPLE INJECTIVE MODULES
FRANK W. ANDERSON

Rosenberg and Zelinsky [6] first addressed the question of characterizing for a ring \(R \) those simple modules \(_RT \) having injective hulls of finite length. In that work they also announced a very special case obtained by Kaplansky: if \(R \) is commutative, then every simple \(R \)-module is injective iff \(R \) is von Neumann regular. A few years later Villamayor (see [4]) characterized those (not necessarily commutative) rings \(R \) — now known as \(V \)-rings — over which every simple left module is injective by the property that every left ideal is an intersection of maximal left ideals. (Also see [2] and [3] for further treatment of \(V \)-rings and their bibliography.)

In this note we return to that which is common to both the Rosenberg–Zelinsky and the \(V \)-ring studies. That is, we consider the problem of characterizing, for a ring \(R \), those simple modules \(_RT \) that are themselves injective. As one application, we prove that if \(R \) is a \(V \)-ring, then so is the endomorphism ring of every finitely generated projective module \(PR \).

If \(M \) is a left \(R \)-module, then for each \(X \subseteq M \) and \(A \subseteq R \), we set
\[
(A : X) = \{ r \in R \mid rX \subseteq A \}.
\]

1. Characterizations of simple injectives.

Let \(R \) be a ring (with identity). Then a left \(R \)-module \(_RT \) is simple iff
\[
T \cong R/M
\]
for some maximal left ideal \(M \) of \(R \). Indeed, if \(_RT \) is simple, then
\[
T \cong R/(0:t)
\]
for each \(0 \neq t \in T \).

Definition. Let \(_RI \preceq _RR \) be a left ideal and let \(a \in R \). A left ideal \(L \preceq _RR \) **supports** \(a \) **on** \(I \) if
\[
L \cap Ra = Ia.
\]

Received December 13, 1977.
For each left ideal \(I \) of \(R \) and each \(a \in R \) the left ideal \(Ia \) is a support for \(a \) on \(I \). So since the collection of supports for \(a \) on \(I \) is clearly inductive, each support for \(a \) on \(I \) is contained in a maximal support for \(a \) on \(I \).

1.1. **Lemma.** Let \(M \) be a maximal left ideal of \(R \) and let \(a \in R \). Then

\[a \in Ma \]

iff \(R \) is a (necessarily unique) maximal support for \(a \) on \(M \).

Proof. Since \(Ra \supseteq Ma \), we have

\[a \in Ma \iff Ra = Ma \iff R \cap Ra = Ma . \]

Now our main result is the following characterization of simple injective modules.

1.2. **Theorem.** Let \(_RM \) be a maximal left ideal of \(R \). Then the simple left \(R \)-module \(R/M \) is injective iff for each \(a \in R \)

\[L + Ra = R \]

for every maximal support \(L \) of \(a \) on \(M \).

Proof. \((\Rightarrow)\) If \(a \in Ma \), then by Lemma 1.1, \(R \) is the unique maximal support for \(a \) on \(M \). So we may assume that \(a \notin Ma \). This means that

\[R/M \cong Ra/Ma \]

so that \(Ra/Ma \) is injective. Let \(L \) be a maximal support for \(a \) on \(M \). Since

\[L \cap Ra = Ma , \]

we infer that

\[(Ra + L)/Ma \cong Ra/Ma \oplus L/Ma . \]

So by the maximality of the support \(L \), we have \(Ra + L = R \).

\((\Leftarrow)\). Let \(I \) be a left ideal of \(R \) and let

\[\varphi: I \to R/M \]

be a non zero homomorphism. Let \(a \in I \) with

\[\varphi(a) = 1 + M . \]

Then

\[\ker \varphi = Ma \cap I = Ma . \]
So $a \notin Ma$. Now let $R_L \leq_R R$ be a left ideal maximal with respect to $Ma \leq L$ and $a \notin L$.

Then since $I(Ma) \cong R/M$ is simple, since $L \cap Ra \leq Ra \leq I$ and since $Ma \leq L$, we have

$$L \cap Ra = Ma.$$

It is clear, since $a \notin Ma$, that L is a maximal support for a on M. So by hypothesis,

$$L + Ra = R.$$

Therefore,

$$\psi : l + ra \mapsto \phi(ra) \quad (l + ra \in L + Ra)$$

is a well defined homomorphism $\psi : R \rightarrow R/M$ extending ϕ. So by the Injective Test Lemma ([1, p. 205]) R/M is injective.

If R is a V-ring, then every left ideal I of R is fully idempotent (i.e., $I^2 = I$). A local generalization of this fact is the following.

1.3. **Corollary.** Let M be a maximal left ideal of R with R/M injective. Then for each $a \in R$

$$aR \subseteq M \Rightarrow a \in Ma.$$

Proof. Let $aR \subseteq M$ and let L be a maximal support for a on M. Then by Theorem 1.2

$$L + Ra = R.$$

Thus,

$$a \in RaR \subseteq RaL + RaRa \subseteq L + Ma \subseteq L;$$

and so

$$a \in L \cap Ra = Ma.$$

As we shall show later (Corollary 1.7) if R is commutative, then the converse of this last corollary holds. In general, however, the converse is false. Indeed, if R is von Neumann regular, then

$$aR \subseteq M \Rightarrow a \in Ma$$

for all left ideals M of R. But von Neumann regular rings need not be V-rings. (See, e.g., [2], [3], or [1, Exercise 18.4].)
Let R be a ring and let P be a two sided ideal of R. Then each simple left R/P module is a simple R-module. The following result characterizes those injective simple R/P modules that are injective as R-modules.

1.4. **Theorem.** Let P be an ideal of R and let M be a maximal left ideal of R with $P \subseteq M$. If R/M is R/P injective, then R/M is R injective iff for all $a \in R$

$$a \in P \Rightarrow a \in Ma.$$

Proof. (\Rightarrow). If $a \in P$, then $aR \subseteq P \subseteq M$, so $a \in Ma$ by Corollary 1.3.

(\Leftarrow). Let $a \in R$ and let L be a maximal support for a on M. Then by Theorem 1.2 it will suffice to show that $L + Ra = R$.

First suppose $P \subseteq L$. Then

$$L \cap (Ra + P) = (L \cap Ra) + P = Ma + P,$$

so L/P is a maximal support for $a + P$ on M/P in R/P. Since R/M is R/P injective, it follows from Theorem 1.2 that $L + Ra = L + Ra + P = R$.

On the other hand suppose that $P \nsubseteq L$. Then $P + L$ does not support a on M. So there is an $x \in R$ with

$$xa \in P + L$$

and $xa \notin Ma$.

But then $Ra/ Ma \cong R/M$ is simple, and for some $r \in R$,

$$a - rx \in Ma < P + L,$$

so $a \in P + L$. Then $a - y \in P$ for some $y \in L$. So by hypothesis

$$a - y \in M(a - y) \leq L,$$

and $a \in L \cap Ra = Ma$. Therefore, by Lemma 1.1, $L = R$.

Recall that if M is a maximal left ideal of R, then $(M:R)$ is a primitive ideal of R with $(M:R) \subseteq M$.

1.5. **Corollary.** Let M be a maximal left ideal of R. If $R/(M:R)$ is a V-ring, then the simple R-module R/M is injective iff $a \in Ma$ for all $a \in (M:R)$.

Let $J = J(R)$ be the Jacobson radical of R. If $J = 0$, then R is semi-artinian if every primitive factor ring of R is artinian. Every primitive ring with a polynomial identity is artinian; so for example, if R satisfies a polynomial identity, then R/J is semi-artinian.

1.6. **Corollary.** Let M be a maximal left ideal of R. If R/J is semi-artinian, then R/M is injective iff $a \in Ma$ for all $a \in (M:R)$.
Proof. Since \(R/(M : R) \) is primitive, it is artinian and simple, and hence it is a V-ring.

1.7. **Corollary.** Let \(R \) be commutative. Then a simple module \(_RT \) is injective iff \(a \in (0: T)a \) for all \(a \in (0: T) \).

2. **Endomorphism rings of projectives.**

Throughout this section let \(P_R \) be a finitely generated projective module with endomorphism ring

\[
S = \text{End} \left(P_R \right).
\]

If \(P_R \) is a generator, then by Morita equivalence (see [1, Chapter 6]) the categories of left \(R \) and left \(S \) modules are equivalent. In particular, an \(R \)-module \(_RT \) is injective (projective) iff the \(S \)-module

\[
P \otimes_R T
\]

is injective (projective). From this it is immediate, for example, that if \(P \) is a generator and \(R \) is a quasi Frobenius, then so is \(S \). On the other hand, when \(P_R \) is not a generator, the nature of \(P \otimes_R T \) cannot always be readily determined from that of \(T \). However, if \(_RT \) is also simple, we can be fairly definitive.

2.1. **Theorem.** If \(_RT \) is a simple injective (projective) \(R \)-module, then \(P \otimes_R T \) is either zero or a simple injective (projective) \(S \)-module.

Proof. Since the result is true when \(P_R \) is a generator, we may assume that \(P = eR \) for some idempotent \(e \in R \) and that \(S \cong eRe \). In particular,

\[
P \otimes_R T \cong eT.
\]

Suppose then that \(_RT \) is simple and that \(eT \neq 0 \). Then for each \(0 \neq et \in eT \),

\[
eRe(et) = e(Ret) = eT,
\]

and so \(eT \) is \(eRe \)-simple.

Suppose now that \(T \) is projective. If \(eT \neq 0 \), then as \(R \)-modules, since \(T \) is simple,

\[
Re \cong T \oplus V
\]

for some \(_RV \). Thus, as \(eRe \) modules,

\[
eRe \cong eT \oplus eV,
\]

and \(eT \) is \(eRe \) projective.
Finally, for the interesting case, assume that \(_R T \) is injective. Suppose \(eT \neq 0 \). Say \(0 \neq et \in T \). Set
\[
M = (0:et) .
\]
Then \(M \) is a maximal left ideal of \(R \) with \(e \notin M \) and
\[
Me \subseteq M \quad \text{and} \quad T \cong R/M .
\]
So as an \(eRe \) module
\[
eT \cong eRe/eMe .
\]
Let \(a \in eRe \) and let \(L \subseteq eRe \) be a maximal support for \(a \) on \(eMea \). We claim that \(RL \cap Ra \subseteq Ma \). For let \(x_1, \ldots, x_n \in L \) and suppose
\[
r_1x_1 + \ldots + r_nx_n = sa \in RL \cap Ra .
\]
If \(se \in M \), then \(sa = sea \in Ma \). Otherwise, if \(se \notin M \), then since \(_RM \) is maximal, \(1 - yse \in M \) for some \(y \in R \), so since \(a = eae \),
\[
a - eysea \in eMea .
\]
But then since \(L = eLe \),
\[
ey(r_1x_1 + \ldots + r_nx_n) = eyr_1ex_1 + \ldots + eyr_nex_n
\]
\[
= eysea \in L \cap eRea ,
\]
and so since \(L \) supports \(a \) on \(eMe \),
\[
eysea \in eMea .
\]
Thus, \(a \in eMea \) whence \(sa \in Ma \) as claimed.

Now since \(RLe = RL \) and \(Rae = Ra \supseteq Ma \), we have
\[
[RL + Ma + R(1-e)] \cap Ra = Ma .
\]

Thus there is a left ideal \(K \) of \(R \) maximal with respect to
\[
RL + Ma + R(1-e) \leq K \quad \text{and} \quad K \cap Ra = Ma .
\]
So \(K \) is a maximal support for \(a \) on \(M \). But by hypothesis \(R/M \) is injective, so by Theorem 1.2,
\[
K + Ra = R \quad \text{and} \quad eKe + eRea = eRe .
\]

We claim next that \(eKe = L \). Certainly \(L \subseteq eKe \). But since \(R(1 - e) \subseteq K \), we have
\[
K = Ke + R(1 - e) ,
\]
so \(eKe \subseteq K \). Thus
\[L \cap eRe \subseteq eKe \cap eRe \subseteq e(K \cap Ra) \subseteq eMa = eMea, \]
so since \(L \) is a maximal support, \(L = eKe \). But then
\[L + eRea = eKe + eRea = eRe \]
and thus, by Theorem 1.2, \(eT \) is injective.

A ring \(R \) is a GV-ring (see [5] for the basic theory of GV-rings) in case each simple left \(R \)-module is either projective or injective.

2.2. Corollary. If \(R \) is a V-ring (GV-ring), then \(S \) is a V-ring (GV-ring).

Proof. It will suffice to prove that every simple \(S \)-module is isomorphic to
\[P \otimes_R T \]
for some simple \(R \)-module \(T \). Again we may assume \(P = eR \) and \(S = eRe \).

Let \(L \) be a maximal left ideal of \(eRe \). Then there is a maximal left ideal \(M \) of \(R \) with
\[RL + R(1 - e) \subseteq M \quad \text{and} \quad e \notin M. \]
Since \(eMe = L \), we have
\[e(R/M) = e(Re/Me) \cong eRe/eMe = eRe/L. \]

REFERENCES

UNIVERSITY OF OREGON, U.S.A.

AND

AARHUS UNIVERSITET, DENMARK