ON STABILITY OF C^{∞} MAPPINGS OF MANIFOLDS WITH BOUNDARY

ERIK VON ESSEN

Introduction

In his paper [1], J. N. Mather proves that a proper, infinitesimally stable mapping of one finite dimensional C^{∞} manifold into another is structurally stable. The proof of this theorem requires manifolds with boundary and corners, but the main theorems ([1, § 3]) only deals with manifolds without boundary. The purpose of this paper is to extend Mathers theorem to a theorem which also deals with manifolds with boundary and corners.

The reader is supposed to be familiar with Mathers paper [1]. Concepts like manifold, corner, index, tangent bundle, vector field, infinitesimal and structural stability, etc. will be used without further explanations in the same sense as in this paper.

In section 1 we introduce a new kind of infinitesimal and structural stability. In section 2 we state the main theorem, and in section 4 we prove it using some lemmas proved in section 3. In section 5 we give a few examples.

1. The stratification of a manifold.

Let N be a manifold and TN its tangent bundle. We let $\hat{T}N$ denote the set of tangent vectors $v \in TN$, to which there exists a C^{∞} curve $c: (-\varepsilon; \varepsilon) \to N$ whose tangent vector in 0 is v. We define

$$\hat{T}N_x = \hat{T}N \cap TN_x$$

and

$$\Gamma^k(\hat{T}N) \,=\, \big\{\xi\in\Gamma^k(TN) \,\,\big|\,\,\, \xi(N)\subset\hat{T}N\big\} \ ,$$

 $k = 0, 1, ..., \infty$. Let P be another manifold and $f: N \to P$ a C^{∞} mapping. We shall write

$$\varGamma^k(f^*\hat{T}P) \,=\, \big\{\zeta\in \varGamma^k(f^*TP) \,\,\big|\,\,\, \zeta(N){\subset}\, \hat{T}P\big\} \ ,$$

interpreting $\zeta \in \Gamma^k(f^*TP)$ as a vector field $\zeta \colon N \to TP$ along f.

Note that $\hat{T}N_x = TN_x$ when x is an interior point of N. Especially $\hat{T}N = TN$ when N has no boundary. When N has a boundary and x is a boundary point of N, $\hat{T}N_x$ is the set of tangent vectors $v \in TN_x$ which are not (in local coordinates) pointing out of N or into N "from nowhere". In that case $\hat{T}N$ is not a vector bundle, not even a manifold. However $\Gamma^k(\hat{T}N)$ is a submodule of $\Gamma^k(TN)$ and $\Gamma^k(f*\hat{T}P)$ a submodule of $\Gamma^k(f*TP)$, and as $\Gamma^k(TN)$ and $\Gamma^k(f*\hat{T}P)$ are finitely generated, it is easy to see that $\Gamma^k(\hat{T}N)$ and $\Gamma^k(f*\hat{T}P)$ are finitely generated modules too.

DEFINITION. Let N be a manifold of dimension n. By the stratification of N we will mean the set S of components of $\{x \in N \mid \text{index } (x) = j\}, j = 0, 1, ..., n$. For $x \in N$ we let str (x) denote the stratum which contains x.

Note that any chart on N has nonvoid intersection with only finitely many strata, and the stratification of N is countable since the topology for N has a countable base. A stratum $M \in S$ of index j is a manifold of dimension n-j without boundary. As TM naturally can be considered as a subset of TN we have

$$\widehat{T}N = \bigcup_{M \in S} TM.$$

2. The main result.

Let N and P be manifolds with boundary and corners and $f: N \to P$ a C^{∞} mapping. The mappings

$$tf: \Gamma^{\infty}(TN) \to \Gamma^{\infty}(f^*TP)$$
 and $\omega f: \Gamma^{\infty}(TP) \to \Gamma^{\infty}(f^*TP)$,
 $tf(\xi) = Tf \circ \xi, \quad \omega f(\eta) = \eta \circ f,$

define by restriction the mappings

$$\hat{t}f: \Gamma^{\infty}(\hat{T}N) \to \Gamma^{\infty}(f^*\hat{T}P)$$

and

$$\hat{\omega}f: \Gamma^{\infty}(\hat{T}P) \to \Gamma^{\infty}(f * \hat{T}P)$$
.

Since tf is a $C^{\infty}(N)$ module homomorphism, so is $\hat{t}f$, and since ωf is a module homomorphism over the ring homomorphism $f^*: C^{\infty}(P) \to C^{\infty}(N)$, so is $\hat{\omega}f$. When U is a neighbourhood of f in $C^{\infty}(N, P)$ we let \hat{U} denote the set

$$\hat{U} = \{g \in U \mid \forall x \in N(\operatorname{str}(f(x)) = \operatorname{str}(g(x)))\}.$$

DEFINITION. We will call f structurally stratum stable if there exists a

neighbourhood U of f in $C^{\infty}(N,P)$ such that for any $g \in \hat{U}$ there exists C^{∞} diffeomorphisms $h_1 \colon N \to N$ and $h_2 \colon P \to P$ such that $g = h_2 \circ f \circ h_1$. And we will call f infinitesimally stratum stable if the mapping

$$\hat{t}f + \hat{\omega}f: \Gamma^{\infty}(\hat{T}N) \oplus \Gamma^{\infty}(\hat{T}P) \to \Gamma^{\infty}(f * \hat{T}P)$$

is onto.

Now we can state the main theorems which are analogous to the theorems 1-3 in § 3 of [1].

THEOREM 2.1. If f is proper and infinitesimally stratum stable, then f is also structurally stratum stable.

THEOREM 2.2. If $f: N \to P$ is proper and infinitesimally stratum stable, then there exists a neighbourhood U of f in $C^{\infty}(N,P)$ and continuous mappings $\hat{H}_1: \hat{U} \to \text{Diff}^{\infty} N$ and $\hat{H}_2: \hat{U} \to \text{Diff}^{\infty} P$ such that $\hat{H}_1(f) = 1_N$, $\hat{H}_2(f) = 1_P$ and

$$g = \hat{H}_2(g) \circ f \circ \hat{H}_1(g)$$

for any $g \in \hat{U}$.

Theorem 2.3. Let M be a closed submanifold of N. Suppose $f \mid M$ is proper and infinitesimally stratum stable. Then there exists a neighbourhood U of $f \mid M$ in $C^{\infty}(M,P)$ and continuous mappings $\hat{H}_1 \colon \hat{U} \to \operatorname{Diff}^{\infty} N$ and $\hat{H}_2 \colon U \to \operatorname{Diff}^{\infty} P$ such that $\hat{H}_1(f \mid M) = 1_N$, $\hat{H}_2(f \mid M) = 1_P$ and

$$g = \hat{H}_2(g) \circ f \circ \hat{H}_1(g) | M$$

for any $g \in \hat{U}$.

In section 4 we shall prove Theorem 2.3 which clearly implies the theorems 2.1 and 2.2.

3. Preparations for the proof.

PROPOSITION 3.1. Any manifold P has a family of geodesics (U, γ) with the following property: When $(y_0, y_1) \in U$ and $str(y_0) = str(y_1) = V$ then

$$\gamma((y_0,y_1)\times I)\subset V$$
.

This proposition is an extension of Lemma 3 in § 2 of [1]. It is easily seen that any family of geodesics, constructed as in the proof of this lemma, fulfils the claim of the proposition because they are just "straight lines".

Proposition 3.2. Let N be a manifold and M a closed submanifold of N and let

 $\pi_N \colon N \times I \to N$ and $\pi_M \colon M \times I \to M$ be the projections. There exists a continuous linear extension $E \colon \Gamma^0(\pi_M^*TM) \to \Gamma^0(\pi_N^*TN)$ such that

$$E(\Gamma^0(\pi_M^*\hat{T}M)) \subset \Gamma^0(\pi_N^*\hat{T}N) .$$

PROOF. We can use the construction of E in the proof of the proposition in § 5 of [1]. Note that if f(x,t)=0 for all t>0, then E(f)(x,t)=0 for all $t\in R$. Now we see that the mapping E from Mathers proposition fulfils the claim of Proposition 3.2 if we put the following modest restriction on the choice of family of charts $\{(U_\alpha, \varphi_\alpha)\}_{\alpha \in A}$: φ_α is a diffeomorphism of U_α onto some open subset of a quadrant Q_α for each $\alpha \in A$. We demand that all the quadrants Q_α and Q'_α shall be of the form

$$\{x \in \mathbb{R}^n \mid l_1(x) \ge 0, \dots, l_k(x) \ge 0, l_{k+1}(x) = 0, \dots, l_{k'}(x) = 0\},$$

where $l_1, \ldots, l_k, l_{k+1}, \ldots, l_{k'}$ are not only linearly independent but also of the form

$$l_i(x_1,\ldots,x_n) = x_i$$

for any $i=1,\ldots,k'$.

PROPOSITION 3.3. Let U be a manifold (with boundary and corners) and let $\pi_U \colon U \times I \to U$ be the projection. There exists a neighbourhood \hat{O}_U of 0 in $\Gamma^\infty(\pi_U^*\hat{T}U)$ and a continuous mapping $\hat{\theta} \colon \hat{O}_U \to C^\infty(U \times I, U)$ such that $\hat{\theta}(\xi)_t \colon x \to \hat{\theta}(\xi)(x,t)$ is a diffeomorphism for each $t \in I$ and $\xi \in \hat{O}_U$,

$$\hat{\theta}(\xi)_0 = 1_U$$
 and $\frac{\partial \hat{\theta}(\xi)_t}{\partial t} \circ \hat{\theta}(\xi)_t^{-1} = \xi_t$,

that is

$$\frac{\partial}{\partial t}\hat{\theta}(\xi)(x,t) = \xi(\hat{\theta}(\xi)(x,t),t),$$

for all $\xi \in \hat{O}_U$ and $(x,t) \in U \times I$.

This proposition is an extension of Lemma 2 in § 7 of [1].

PROOF. Let $\{(U_\alpha, \varphi_\alpha) \mid \alpha \in A\}$ be a family of charts for U such that $\{U_\alpha\}$ is a locally finite cover. Choose $K_\alpha \subset L_\alpha \subset U_\alpha$ such that K_α and L_α are compact, $\{K_\alpha\}$ covers U, and L_α is a neighbourhood of K_α . Since $\varphi_\alpha(U_\alpha)$ is an open subset of a quadrant $Q_\alpha \subset \mathbb{R}^n$, where n is the dimension of N, there exist an open set $\hat{U}_\alpha \subset \mathbb{R}^n$ such that $\varphi_\alpha(U_\alpha) = Q_\alpha \cap \hat{U}_\alpha$ and a compact set $\hat{L}_\alpha \subset \hat{U}_\alpha$ such that $\varphi_\alpha(K_\alpha) \subset (\hat{L}_\alpha)^\circ$, where $(\hat{L}_\alpha)^\circ$ is the interior (in \mathbb{R}^n) of \hat{L}_α , and $\varphi_\alpha(L_\alpha) = \hat{L}_\alpha \cap Q_\alpha$. For each

 α , let ε_{α} denote the distance from $\varphi_{\alpha}(K_{\alpha})$ to $\hat{U}_{\alpha} - \hat{L}_{\alpha}$. Then $\varepsilon_{\alpha} > 0$ for each $\alpha \in A$. We define O_U to be the set of all $\xi \in \Gamma^{\infty}(\pi_U^*TU)$ such that $\|\xi_{\alpha}(x,t)\| < \varepsilon_{\alpha}$ for all $x \in \varphi_{\alpha}(L_{\alpha})$ and all $t \in I$. We write $\hat{O}_U = O_U \cap \Gamma^{\infty}(\pi_U^*TU)$. For each $\alpha \in A$, each $x \in K_{\alpha}$ and each $\xi \in O_U$, there exists a unique curve $[0; \varepsilon] \to \hat{L}_{\alpha}$, $t \to \gamma_{\alpha}(\varphi_{\alpha}(x),t)$ such that $\gamma_{\alpha}(\varphi_{\alpha}(x),0) = \varphi_{\alpha}(x)$ and

$$\frac{\partial \gamma_{\alpha}(\varphi_{\alpha}(x),t)}{\partial t} = \xi_{\alpha}(\gamma_{\alpha}(\varphi_{\alpha}(x),t),t).$$

If $\xi \in \hat{O}_U$, we can obviously choose $\varepsilon = 1$, since the curve needs more than unit time to get out of $\varphi_{\alpha}(L_z)$. We can then define

$$\widehat{\theta}(\xi)(x,t) = \varphi_{\alpha}^{-1}(\gamma_{\alpha}(\varphi_{\alpha}(x),t))$$

for $\xi \in \hat{O}_U$, $(x,t) \in K_{\alpha} \times I$. That this definition has the properties stated in the proposition is proved in the same way as Lemma 2 in § 7 of [1].

4. Proof of the main result.

Now we will prove Theorem 2.3. As the procedure of this proof is just the same as that in § 7 of [1], we will restrict ourselves to point out the differences from this proof.

The assumption is that

$$\hat{\mu} = (\hat{\omega}(f|M), \hat{t}(f|M), \Gamma^{\infty}(\hat{T}P), \Gamma^{\infty}(\hat{T}M), \Gamma^{\infty}((f|M) * \hat{T}P))$$

is surjective. From Mather we have an isomorphism of $\Gamma^{\infty}(TP) \otimes C^{\infty}(P \times I)$ with $\Gamma^{\infty}(\pi_F^*TP)$. By restriction we get a bijection of $\Gamma^{\infty}(\hat{T}P) \otimes C^{\infty}(P \times I)$ with $\Gamma^{\infty}(\pi_F^*\hat{T}P)$. As $\hat{T}P$ is the union of the vector bundles TQ over all strata Q of P, it is easy to see that this bijection is also an isomorphism. It follows that $\iota(\hat{\mu})$ is isomorphic to the mixed homomorphism

$$\iota(\hat{\mu})' = (\alpha, \beta, \Gamma^{\infty}(\pi_{P}^{*}\hat{T}P), \Gamma^{\infty}(\pi_{M}^{*}\hat{T}M), \Gamma^{\infty}(((f \mid M) \circ \pi_{M})^{*}\hat{T}P))$$

where

$$\alpha = \omega'(f \circ \pi_M) | \Gamma^{\infty}(\pi_P^* \hat{T} P)$$
 and $\beta = t'(f \circ \pi_M) | \Gamma^{\infty}(\pi_M^* \hat{T} M)$.

Instead of the parameter space X we shall use

$$\hat{X} = \{ g \in X \mid \forall z \in M(g(z \times I) \subset str(f(z))) \},$$

but the base point is still $x_0 = f \circ \pi_M$. We let $\hat{f} \in C^{\hat{X}}(M \times I, P)$ denote the germ of the inclusion of \hat{X} into $C^{\infty}(M \times I, P)$. And we let $\Gamma^{\hat{X}}(\pi_{\mathcal{F}}^{*}\hat{T}P)$ denote the set of germs u at x_0 of mappings $\hat{X} \to C^{\infty}(M \times I, \hat{T}P)$ having the following property: for suitable representatives $\hat{\pi}_P$ of the germ π_P and \tilde{u} of u, we have $\hat{\pi}_P(x) =$

 $\hat{\pi}(P) \circ \tilde{u}(x)$ for all x near x_0 . Here $\hat{\pi}(P)$ denotes the projection $\hat{T}P \to P$. We thus get a mixed homomorphism \hat{v} over $C^{\hat{X}}(\hat{f}, \pi_2)$,

$$\hat{v} = (\omega \hat{\bar{f}}, t \hat{\bar{f}}, \Gamma^{\hat{X}}(\pi_{\bar{f}}^* \hat{T} P), \Gamma^{\hat{X}}(\pi_{M}^* \hat{T} M), \Gamma^{\hat{X}}(\hat{\bar{f}}^* \hat{T} P))$$

and an isomorphism of ev \hat{v} with $\iota(\hat{\mu})'$. Hence kern ev \hat{v} is surjective.

By restriction of $\tilde{\Delta}: X \to C^{\infty}(M \times I, TP)$ we get a continuous mapping

$$\hat{\Delta}: \hat{X} \to C^{\infty}(M \times I, \hat{T}P)$$
.

Let $\hat{\Delta}$ denote the germ of $\hat{\bar{\Delta}}$ at $x_0 \in \hat{X}$. Since $\hat{\Delta} \in \ker \operatorname{ev} \Gamma^{\hat{X}}(\hat{\bar{f}} * \hat{T} P)$ there exists $\xi_0 \in \ker \operatorname{ev} \Gamma^{\hat{X}}(\pi_M^* \hat{T} M)$ and $\eta \in \ker \operatorname{ev} \Gamma^{\hat{X}}(\pi_M^* \hat{T} P)$ such that

$$\hat{\Delta} = t\hat{\bar{f}}(\xi_0) + \omega\hat{\bar{f}}(\eta) .$$

We may choose representatives ξ_0 of ξ_0 and $\hat{\eta}$ of η such that

$$\xi_0: \hat{Y} \to \Gamma^{\infty}(\pi_M^* \hat{T}M)$$
 and $\hat{\eta}: \hat{Y} \to \Gamma^{\infty}(\pi_P^* \hat{T}P)$

are continuous, and such that

$$\tilde{\Delta}(y) = t'y(\tilde{\zeta}_0(y)) + \omega'y(\tilde{\eta}(y)), \quad \text{for all } y \in \hat{Y},$$

where \hat{Y} is a suitable neighbourhood of x_0 in \hat{X} . By Proposition 3.2 we get a continuous mapping $\xi: \hat{Y} \to \Gamma^{\infty}(\pi_N^* \hat{T} N)$ such that $\xi_0(y)$ is the restriction of $\xi(y)$ for all $y \in \hat{Y}$.

By Proposition 3.1 we get a family of geodesics (V, γ) . Let U be a neighbourhood of $f \mid M$ in $C^{\infty}(M, P)$ such that $(f, g)(M) \subset V$ for all $g \in U$. We define $\hat{\gamma}_* \colon \hat{U} \to C^{\infty}(M \times I, P)$ by $\hat{\gamma}_*(g)(z, t) = \gamma(f(z), g(z), t)$. Note that

$$\hat{\gamma}_*(g)(z \times I) \subset \operatorname{str}(f(z))$$

for all $g \in \hat{U}$ and $z \in M$.

Since \hat{Y} is a neighbourhood of x_0 in \hat{X} and consequently in

$$\{h \in C^{\infty}(M \times I, P) \mid \forall z \in M(h(z \times I) \subset \text{str}(f(z)))\}$$
,

we may choose U and \hat{Y} so that $\hat{\gamma}_*(\hat{U}) \subset \hat{Y}$, and $-\hat{\xi}(\hat{\gamma}_*(\hat{U})) \subset \hat{O}_N$ and $\hat{\eta}(\hat{\gamma}_*(\hat{U})) \subset \hat{O}_N$ (cf. Proposition 3.3).

The rest of the proof is not different from Mather's proof.

5. A few examples.

It is obvious that if a mapping $f \in C^{\infty}(N, P)$ is structurally stable, f is structurally stratum stable too. It is also obvious that a structurally stratum stable mapping $f \in C^{\infty}(N, P)$ is not generally structurally stable, e.g. the identity of a closed interval is not structurally stable.

An example of a mapping which is infinitesimally stable but not infinitesimally stratum stable is the following: Let $N = [0; 1] \cup [2; 3]$ and $P = \mathbb{R}$ and let $f: N \to P$ be the mapping

$$f(x) = \begin{cases} x, & x \in [0; 1] \\ x-2, & x \in [2; 3] \end{cases}.$$

Since $tf(\Gamma^{\infty}(TN)) = \Gamma^{\infty}(f^*TP)$, f is infinitesimally stable, but

$$\hat{t}f(\xi)(0) = \hat{t}f(\xi)(2) = 0$$

(i.e. the vector part of the tangent vector is 0) for every $\xi \in \Gamma^{\infty}(\hat{T}N)$ and

$$\hat{\omega}f(\eta)(0) = \hat{\omega}f(\eta)(2) = \eta(0)$$

for every $\eta \in \Gamma^{\infty}(\hat{T}P)$. Thus $\zeta(0) = \zeta(2)$ for every $\zeta \in \hat{t}f(\Gamma^{\infty}(\hat{T}N)) + \hat{\omega}f(\Gamma^{\infty}(\hat{T}P))$, and f is not infinitesimally stratum stable.

Finally let $N = [0; \infty) \times [-1; 1]$ and

$$P = \{ (y_1, y_2) \in \mathbb{R}^2 \mid y_1 \ge 0, -y_1 \le y_2 \le y_1 \}$$

and let $f: N \to P$ be the mapping $f(x_1, x_2) = (x_1, x_1x_2)$ ("collapse of $0 \times [-1; 1]$ "). It is not difficult to check that f is infinitesimally stratum stable but not infinitesimally stable.

ACKNOWLEDGEMENT. I want to thank Hans Tornehave for helpful advice.

REFERENCES

 J. N. Mather, Stability of C^{\infty} mappings II: Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 254-291.

MATEMATISK INSTITUT KØBENHAVNS UNIVERSITET UNIVERSITETSPARKEN 5 2100 KØBENHAVN Ø DENMARK