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IMBEDDINGS, IMMERSIONS AND INTEGRABILITY
OF CHARACTERISTIC CLASSES

STAVROS PAPASTAVRIDIS

Introduction.

Let f,: X, — BO (r) be a sequence of fibrations with maps g.: X, —» X,
such that the usual diagram commutes. For such a situation Lashof defines the
concept of an X-structure on manifolds in [8] and proves a Thom
isomorphism type theorem for bordism groupes of such manifolds. Many of
the usual classes of manifolds mat be described in terms of X-structures, e.g. U,
SO, Spin etc., as well as some more esoteric classes of manifolds. For example
Hirsch’s theorem reduces the study of manifolds which immerse in
codimension k to an appropriate X-structure, (Hirsch ([7], Wells [16]).

In this paper we study X-characteristic classes with rational coefficients i.e.
the group H*(X; Q)=lim H*(X,; Q). In particular we are interested in those
rational X-characteristic classes which go to integral cohomology classes by
the normal map of all n-manifolds with an X-structure, (by normal map I
mean the lifting M — X,, of the Gauss map M — BO (r)).

Let Ii be the set of all rational X-characteristic classes which are integral
cohomology on all n-manifolds with an X-structure, (a cohomology class is
called integral if it is the reduction of an integral cohomology class). The set I},
has been computed by Hattori and Stong, for certain X-structures, (see [6]
and [12], [13]). I""%, and I"~? have been computed by the author for U-
structures (see [11]). The rest of these sets is unknown.

Let us restrict ourselves to n-manifolds which immerse in codimension k, (k
is a positive integer), and they have an X-structure on the normal bundle of the
immersion. Let us consider the set I}, < H'(X; Q) of those rational X-classes
which are integral on all such manifolds. Clearly I} ,21I:. Furthermore it is
clear that I, contains the kernel of the map : H'(X; Q) — H'(X,; Q)
defined in the obvious way. The question is what else does it contain. We are
going to prove, under certain assumptions on X, that in the range i £ (n+ k)/2,
essentially it does not contain anything else, (see Theorem 1 below). The same
considerations are applicable to case of imbeddings too, and Theorem 2 below
covers some cases.
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In the same spirit we can consider the mod-m X-characteristic classes,
H'(X; Z,)=lim H'(X,;Z,), (m is a positive integer), and let I:(m)
be the subset of H'(X; Z,) which consist of those classes which are zero
on all n-dimensional X-manifolds. Also let I) ,(m) be the set of the i-
dimensional mod-m X-characteristic classes, which are zero on all n-manifolds
which immerse in R"*¥ with an X-structure on the normal bundle of the
immersion. Finally we keep the same notation for the obvious map
I, H*(X; Z,) —» H*(X,; Z,).

Next we describe the assumptions that we will need.

From now on m will be a non-negative integer. For all r’s X, contains a finite
number of cells in each dimension, and the torsion of its cohomology is prime
to m, (if m is O this assumption will be interpreted that there is no torsion). We
assume that y,, the pull-back over X, of the universal r-linear bundle is
orientable. We assume that the map H*(X,,,; Z,) —» H*(X,; Z)) is an iso
up to dimension r, for all primes dividing m, (if m is 0, this will include all
primes). Finally we assume that the map H*(X,.,; Z,) — H*(X,; Z,) is onto
in all dimensions when p is a prime dividing m.

These assumption are satisfied by U, SU-structures for all m’s, and by SO,
Spin, Pin-structures when m is an odd positive integer.

Under the above assumptions we have.

TueoreM 1. If i< (n+k)/2, then I, ,(m)=1I}(m)+ (ker )"
RemARK. If m is zero I}, ,(0) and I;(0) are respectively I’ , and I’

THEOREM 2. If a mod-m (respectively rational) X-characteristic class, is zero
(respectively integral) on all n-manifolds which imbed in R"** with an X-structure
on the normal map of the imbedding, and if this X-characteristic class is of
dimension less than k, then it is zero (respectively integral) on all n-dimensional n-
manifolds.

It would be interesting to know what happens in the higher dimensions.

I was motivated to look at these questions by M. Bendersky’s results in [1].
The above Theorems hold true for the case of Z, coefficients without the
assumptions on the torsion of X,, and without assuming that H*(X,,,; Z))
— H*(X,; Z,) is onto. So for Z, coefficients O, SO, Spin, Pin-structures are
included.

1. Homological Algebra.
In this section we will state a few facts from Homological Algebra, which
although I am sure they are well-known, I could not find explicit references.
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DerINITION 1.1. A commutative ring R is called self-injective if it is injective
as an R-module.

For details about injectivity and related staff see MacLane’s book [9].
Let Z,, be the ring of integers mod-m, (m is a positive integer).

ProposITION 1.2. The ring Z,, is self-injective.

Proor. We will apply Theorem 7.2 of [9]. An ideal of Z,, is of the form Z,,
where a is a positive integer which divides m. We will compute Extz_(Z,, Z,).
For that we consider a free Z,-resolution of Z

.oz, e 7 22, 72,50

where its map is the multiplication by the indicated integer. Let f: Z,, — Z,, be
a map such that (m/a)f=0. Let us assume that fis given by multiplication by
an integer b, then a must divide b. Consider the map g: Z,, — Z,, which is
multiplication by b/a, then f=ag, which implies by the very definition that
Ext; (Z,,Z,)=0.

Next we consider the rational numbers Q, and the rational numbers modulo
the integers Q/Z.

ProposITION 1.3. As abelian groups, (namely as Z-modules), Q and Q/Z are
infective.

Proor. It follows from the obvious fact that both of them are divisible (see
Corollary 7.3 of [9]).

ProposITiON 1.4. Let R be a commutative ring.

(i) If A, X, Y, are R-modules, Y is injective, and there is a mono A — X. Then
the dual map Hom (X,Y) — Hom (4, Y) is onto.

(ii) If A — B — C is a sequence of abelian groups, and assume that Cisa Z,,-
module, (m is positive), then the dual sequence Hom (C,Z,) - Hom (B,Z,)
—» Hom (A4, Z,) is exact.

iii) Let C be a chain complex over a self-injective ring R. Then the usual map
H*(C) » Hom (H,(C),R) is an iso.

iv) Let A — B — C be an exact sequence of R-modules and X be an injective
R-module. Then the dual sequence Hom (C, X) — Hom (B, X) — Hom (4, X) is
exact.

Proor. Part i) is the definition of injective. The rest is a not difficult exercise.
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Caution. Part iii) of the previous Proposition is not included in the usual
treatment of the Universal coefficient Theorem if R is not a principal ideal
domain. We want to apply the statement for the ring Z,, which is principal
ideal but not a domain always.

2. The case of immersed manifolds.

In this section we will prove Theorem 1.

From now on we adopt the following notational conventions. We will use
the symbol Z, to denote the integers Z.

Let K(m) be the Eilenberg-MacLane space K(Z,,n—i), where m is any
positive integer or zero. We put K(m), =K(m)U {point}, and let ¢ be the
fundamental class of K(m). If G is an abelian group, we put G*(m)
=Hom (G, Z,,) when m is positive, and G*(0)=Hom (G, Q/Z). We select Thom
classes U,(m) € H'(Ty,; Z,), (7, is the pull-back over X, of the universal r-
linear bundle) such that if Tg,: T(y,+¢€) — T¥,,,, is the Thomification of the
map g,: X,,, —» X,, we have Tg*(U,,,)=SU,, (the letter S denotes the
suspension). N will be a natural number which will be taken vary big with
respect to n,k. We put

A = SNy, A Km),, A= STy, A K(m),
B = Tyy A K(m),, B = Tyy A K(m).

From now on, usually, we will drop m from the symbols K(m), G*(m), etc.
and all cohomology and homology groups will have Z,-coefficients. Every
Proposition below refers to one non-negative integer m.

LEMMA 2.1. The maps n}(A) — =nf(A) and =} (B) — =n}(B'), induced by the
obvious projections A’ — A and B' — B, respectively, are monomorphisms in the
stable range.

Proors. We will prove the second case only, the other one being similar. We
observe that the spaces B, B’ are highly connected. Let us consider the obvious
projections B — B; and B' — Tyy. They induce a map B' — B x Tyy which is
an isomorphism in Z, cohomology in the stable range, (this follows easily from
the Kiinneth formula and Thom isomorphism) for all primes p, so it induces an
iso among the homotopy groups in the same range. Furthermore the
projection B x Tyy — B, induces an onto map among homotopy groups, so
the composite projection B’ — B induces an onto map among homotopy
groups, so the dual map n}(B) — =} (B’) is mono in the stable range.

LEMMA 2.2. Let s be a positive integer and Y a simply connected complex



IMBEDDINGS, IMMERSIONS AND INTEGRABILITY ... 181

having a finite number of cells in each dimension, such that H'(Y; Z,)=0 for j<s
whenever p is a prime number dividing m, (in the case where m is 0, that will
include all primes). Furthermore we assume that all torsion elements of H*(Y; Z),
have order prime to m, (in the case where m is 0 this means that there is no
torsion). Under those condition, there is a map from Y A K(Z,,,n—i) to a product
of K(Z,,)’s which is an iso in mod-p cohomology for all prime numbers, up to
dimension s+1+2(n—i).

Proor. Let S be a minimal set generating H*(Y; Z,,) as a Z,,-module. Every
element x of S determines a map f,: YAK(Z,; n—i) - K(Z,,n—i+dimx)
which pulls-back the fundamental class to x A ¢, (recall ¢ is the fundamental
class of K(Z,,n—i). Next we consider the product of all those maps, this
provides the required iso.

Consider the cofibration S¥ ~*Ty, — Tyy — L, where L is the cofibre of the
map SY *Ty, — Tyy, which is the Thomification of the obvious map X,
— Xy. By smashing it with K we get the cofibration A — B — L A K, which is
a fibration too since we are in.the stable range.

LemMMA 2.3. The homotopy groups of L A K in dimensions non-greater than N
+k+2(n—1i), are free Z,-modules.

Proor. The map X, — Xy’ gives an iso in mod-p cohomology up to
dimension k, for all primes dividing m. By the Thom isomorphism, SN ~*Ty,
— Ty gives an iso up to dimension N +k, for the same primes. So by the long
exact cohomology sequence of the cofibration, H/(L; Z,)=0 for j<N +k. By
the same long exact sequence and because of the assumptions on X,’s we
deduce that all the torsion of Lis prime to m. So we can apply the previous
Lemma and the result follows free of charge.

We introduce the map F:H'(X,; Z,) — nf..(4) when m is positive and
F: H(X,; Q) — n%,,(4) when m is zero, defined by the following formula,
Fx)([a]) = a, (xS *U, A ([SV*"D) .

In exactly the analogous way we introduce the map G: H'(Xy; Z,)
— &, ,(B) for m positive and G: H'(Xy; Q) — n¥,,(B) for m being zero,
defined by the formula

G(x)([a)) = a,(xUy A c)([S¥*"D) .

ProposITION 2.4. 1!, ,(m) and I},(m) are respectively the kernel of Fl, and G.
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Proor. It follows easily from (2) and (3), because of the Lemma below.

LEmMMA 2.5. Let M be an orientable compact closed smooth manifold of
dimension n.

i) Let m be positive and x an element of H'(M; Z,,) which has zero cup product
with all elements of H" '(M; Z,). Then x is zero.
ii) Let x be an elemefit of H'(M; Q) which has integral cup product with all
elements of H""'(M; Z). Then x is integral.
ProoF. i) Via the cup product, x induces the zero homomorphism in the map
H'M;Z,) > Hom (H""'(M; Z,),Z,) = Hom (H,(M; Z,),Z,,) .

But this is an iso because of Proposition 1.4. And the result follows.
ii) Let us consider the commutative diagram

H'(M; Q) » Hom (H,(M; Z),Q)
{ !
H'(M; Q/Z) - Hom (M; Z),Q/Z)
where both the horizontal map are iso since Q and Q/Z are injective. By
assumption x goes to zero under the top map, and the result follows,

And now we are ready to prove:

Proor oF THEOREM 1. Consider the following commutative diagram

1t (L AK) A HN*(L A K)

| !
i on(B) A= HN*"(B) UM Hi(Xy)
l i A

T on(A) A HV () S0 gy

Which is defined as follows. If m is positive the cohomology groups have Z,,
coefficients and if m is zero the coefficient group is Q. The H*’s are the dual of
the Hurewicz homomorphism. The two horizontal maps on the right are
defined multiplying with the indicated element. The two vertical sequences
come from the homotopy and cohomology sequences of the fibration. They are
both exact by Proposition 1.2, 1.3, 1.4. The top H* map is onto by Lemma 2.3.
Finally the composite of the two horizontal sequences are G and F. And the
result follows by chasing the diagram.
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3. The case of imbedded manifolds.

The proof of Theorem 2, follows the same line as Theorem 1.
Analogously with 4’, A, B', B we define

C=TprK,, C=TyrK, D =", AK,,
D=Q"V *Tyy A K.

Analogously with Lemma 2.1, we have.

LemMA 3.1. The maps n}*(C) — n}(C’) and n}(D) — n}(D’), induced by the
obvious projections C' — C and D' — D respectively, are mono in dimensions
less than 2k + (n—i).

Proor. Like Lemma 2.1.

ProoF oF THEOREM 2. Analogously with F,G we define maps R: H (X y)
— n* (D) and P: H'(X,) — =¥, ,(C), defined by the formulas

R(x)([a]) = a, (@Y *(xUpy) A )([S"*4]),
and
P(x)([a]) = a,(xU, A o)([S"*]).

Again, if i is'less than k, I (m) is the kernel of R, and the kernel of P is the set of
those X-characteristic classes in Z,,-cohomology (respectively Q-cohomology)
which are zero (respectively integral) on all n-manifolds which imbed in R"**
with an X-structure on the normal bundle of the imbedding. On the other
hand the obvious map C — D, induces iso in cohomology up to dimension 2k
+n—i—1, so we get a monomorphism in the map n*(D) — n*(C) in this
range of dimensions, and the Theorem follows.
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