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SUB-ELLIPTIC ESTIMATES
FOR THE OBLIQUE DERIVATIVE PROBLEM

BENGT WINZELL

0. Introduction.

The oblique derivative problem is usually posed in the following way: Given
g in Q and fon 0Q, find a function u which satisfies Pu=g in Q and du/dl=f
on 0. Here Q is a domain in R", n=3, & an elliptic partial differential
operator of the second order and | a unit vector field on 0Q.

If 1 is never tangential to 0€ and certain smoothness conditions on [, # and
Q are fulfilled, then the problem is elliptic, which among other things means
that a solution is in C?**(Q) if g e C*(Q) and fe C'**(08). There is a
corresponding formulation in the Sobolev norms.

The degenerating problem, i.e. when ! now and then becomes tangential, has
been examined by many authors during the last ten years. The main steps,
also including regularity investigations were Hormander [4], Egorov and
Kondrat’ev {3], Maz’ja [5], Winzell [8], Melin and Sjostrand [6] and Taira
[7] (with a slightly different boundary condition). From these it was evident
that there must be a loss of regularity such that u in general has one derivative
less than what an elliptic estimate would give. However, Egorov [2] indicated
that a loss of one derivative is too much in certain cases and that in fact the
amount of regularity that the solutions gain depend on the order of contact
between | and 0Q. Egorov’s sub-elliptic estimates were stated in Sobolev space
language. Our aim is to derive the corresponding estimates in Holder classes.

1. Notations and basic assumptions.

We assume that the field / is the sum of the normal component asi and the
tangent vector field X. Here # is the outer normal to the boundary. We also
assume that [ and Q are of class C* and thus it follows that there exist integral
curves to X through every point p € 6Q. Such curves are called X-curves and
we denote the maximal X-curve through p by 7,. It will be convenient to use
the following standard parametrization of y,:
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s — X,(s) where X,(0) = p and Ex,,(s) = XoX,(s).

Extensions of I to 2 will be denoted by L and we always assume that L is of
unit length near 0Q. Integral curves to L will be called L-curves. The maximal
L-curve through p will be denoted by I', and we use a standard
parametrization s — x,(s) analogous to that for y,.

The operator £ has the form q;;D,D;+b,D;+c where D, represents
differentiation with respect to the variable x; and the summation convention is
used. We will assume that the a;;-s belong to C?, that the b;-s belong to C?, that
cisin C! in £, and that & is elliptic.

Define the set of tangency for | by

H={ped: a(p)=0}.

2. Statement of results.

Assume that there is a real number m >0 and two positive constants s, and
o, such that for any pe H:

2.1 (X, = op-sI™  IsISs, -

For example, if H contains a point where y, has contact of order k, with H and
if « has a zero of order k, considered as a function on 0Q then m=k, -k,.
The first result is

THEOREM 1. Assume that o does not change its sign from minus to plus along
any y,. Let u € C'**(Q)N C*(Q) be a solution of Lu=g in Q with du/ol=f on
0Q such that g € C*(Q) and fe C'**(0Q). Then for any ¢ satisfying 0<e<
(m+1)"! and A+e<1 the function u belongs to C*****(Q)N CZ*(Q\ H) and
there is a sub-elliptic estimate

W40 £ Ce,1,2,2) {2+ 11192 ,) .

[
For the case when a has the opposite behavior we have

THEOREM 2. Assume that H is a sub-manifold of 0Q with dimension n—2 and of
class C3, that X makes a strictly positive angle with H and that o changes its sign
from minus to plus on every y, with p € H. Let u € C' **(2) N C*(Q) be a solution
of Pu=g in Q with du/dl=f on 0Q such that g € C*(Q) and fe C'**(0Q).

Then for any & satisfying 0<e<(m+1)"! and A+e<1 the function u belongs
to C1*A*¢(@Q)NCLI*(2\ H) if and only if uly € C*****(H). There is the sub-
elliptic estimate
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Nulfsise S CeL2L)- (gl + 11 19%a+ Nl as} -

RemMaRrks. 1). The two theorems can be combined to give a regularity result
when H=H,UH, where H, N H, is empty and « behaves according to the
hypothesis of Theorem 1 on H, and according to Theorem 2 on H,.

2). At present it is not clear whether or not the inequality e < (m+ 1)~ ! can be
replaced by the corresponding equality. It is worth noticing that Sobolev space
technique gave the result with equality.

3). We have required more regularity of %, | and £ than is necessary. In fact
it is sufficient to impose the strong conditions only in an arbitrarily small
neighbourhood of H.

3. Some lemmas.

The following Schauder type estimates are probably well known. However,
we have not been able to find a direct reference and hence we will sketch the
proofs.

LemMa 1. Let 6>0 and put Q°={x € Q : dist (x,0Q)>5}. Then for every 0
<AZ X <1 there is a constant C which does not depend on 6 such that for all
u e CHQ)NC () there is the estimate

(3.1) ) [u]%,, < C-{|Lul§+8* % [uld, ;}

Proor. Let g=%u and note that the function v defined by v(x)=u(dx) for
x € §~1-Q satisfies the equation

.'?’U = AIJD'J+5BIU,+62CU = 52'g(5x)

where A4;;(x)=a;;(0x), B;(x)=b;(6x) and C(x)=c(dx). Now let &/ be the
intersection of 6 ~'Q with a ball of radius r, and let o’ ={x € o : dist (x, 0.%)
=1}

Fig. 1.
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Subtract from v a linear function such that at a point x, € &, the new function
w satisfies w(x,)=0, grad w(x,)=0, and

L'w = —B; v;(xo) — 62Cv(x) + 6% - g(dx) .

Because of Theorem 9.3 in Agmon—Douglis—Nirenberg [1] we get

Wl £ Clro, 2,2, 4)- {6 llgrad v]|§ + 6% |vl|§ + &2 gl + Iwllg'} .
Since w(x,)=0 and grad w(x,)=0 it follows that
Iwlly = A+ 5 Wy ys -

Fix ro=1 and cover § ~10Q by finitely many sets of the type &/ such that 5~ 1Q°
is covered by the corresponding &’-s. The seminorm [-], ,; does not notice
linear functions and hence we get

[v1322 < C-{lgrad vl +0%[vllo+[v], 41+ 0%lgllo}

where on the right hand side the norms are to be taken over 6~ !Q. This
transforms into

S LUl < C-{8%|ulP+8" A [ulLs + 5211818}
which leads to (3.1).

LEMMA 2. Assume that L is an extension of | to Q of class C? and take 0< A< A
<1. Let ue C***(Q)N C*(Q) be a solution of Lu=0 in Q such that du/ol=f
belongs to C'** on the boundary. Then 0Ou/0L=(L-grad) u belongs to
CHH(@QNC¥(Q) and

ou

s
(3.2 [53]1 ) S C{* NI+ Il a)

where C does not depend on 6.

Proor. First we note that du/0L weakly satisfies the identity

d
z (5%) = Dj(aju;)+bu;+ D;(cu)+c'u

’

where the coefficients a;;, bj, ¢; and ¢’ belong to C'. Hence the lemma follows
from Agmon-Douglis—Nirenberg [1] as in the previous proof.

4. Proof of Theorem 1.

Fix an extension L of I. According to (2.1) there is a positive constant «, such
that
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4.1 dist (x,(s),09Q) = a,|s|"*?

for those s between —s, and s, for which x,(s) € Q.

Since we always can subtract a solution v € C2**(Q) of #v=g from u, we
can assume that Zu=0. Another simplification is to assume that =0 on 0Q.
We return to the general case later.

We will make extensive use of the following identity

0 Ou
4.2) u(p) = u(x,(—-1)+ —aioxp(s)ds
-t
which is true as long as L has unit length along {x,(s) : —t<s=0}.
We will define a sequence {4,}i%, of exponents in Holder estimates. Here
Jo=4 and the subsequent exponent are defined recursively. Let us introduce
the notation

4.3) O(s) = ay-|s|m*t.

Because of the C2-dependence of x,(s) on p, (4.1), and (4.2) we find that if
ue C**(Q) and A1<A, <A <1 then

IDu(p)—Du(g)l < C-lulfys-lp—ql* +
ou||®”

t
Ay — ol
+C-lp—ql I L

0

ds+C- {I|u||1+

ou ¥
lgz”} bl

Here the last term is of smaller order and can be absorbed by the others. From
Lemma 1 and Lemma 2 it follows that

1+ A4

-

t
|Du(p)— Du(q)l £ Cl'Ip—ql"-6(t)‘*'*'+Cz'lp—ql‘*~I O(s)* Mds .
0

We introduce (4.3) and carry out the integration with the result that
|Du(p)—Du(g)l < Cs:|p—gl*'-th=#rm*D ¢
+C, [p—glh- !t~ A Dt D)
if (4,—A)(m+1)<1. With =4+ (m+1)"! and an optimal choice of t we get
(4.4) |Du(p)—Du(g)l = C-|p—ql*
where 4,4, =(4+A+(m+1)"1)/2 and hence the sequence {4,} is given by
A =A+(1=27H-(m+1)"!

which tends to A+ (m+1)"! as k tends to infinity. By (4.4) this proves the
theorem in case «a=0 on 9%2.
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To get the general result we note that with the same technique we can prove
(4.4) for all p and q belonging to the same subset

A, ={pedQ: a(p)>0} or o_ = {pedQ: a(p)<0} of 0.

But if a(p)> 0 and a(g) <0 then there is a p’ € H on a geodesic between p and ¢
in 02 and thus in the decomposition

|Du(p)—Du(g)l = |Du(p)—Du(p)|+|Du(p’)— Du(q)|

we can apply (4.4) to both terms on the right hand side. Here we have used the
fact that a does not change its sign from minus to plus along X-curves.

5. Proof of Theorem 2.

As in section 4 we note that it is sufficient to consider the case when Lu=0
in Q. The first step in the proof of Theorem 2 is to verify that the following
result is true.

ProposITION. Let H<=Q be the closure of an (n—1)-dimensional manifold,
generated by normals from H. If u € C***(Q)N C*(R) is a solution of Lu=0in
Q with 0ou/dle C***(0Q2) and if ulye C'**(H), O0<igA' <1, then
ulg € C**¥ (A).

Proor. There are finitely many n-dimensional balls with center at points in
H such that their union covers H and that in each ball, intersected by Q, a
coordinate system can be introduced in which L is the constant vector field %,
H is given by x, =0 and H is characterized by x, =x,=0. Consider such an
intersection @ and let o =« AN be such that dist (£, 3(H N Q)\ H)>0.

Ang

Fig. 2.

Since the relation Zu=0 can be written

, ou
ru-9o(3)
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where %’ is an elliptic second order opeator in the variables (x,,...,x,) and
2 is a first order expression in du/0x, it follows from Theorem 9.3 of [1] that
ue C'** (o). By choosing the o/-s appropriately, their union covers a
neighbourhood of H in A and since interior regularity is well established the
proposition is proved.

Now let p and g be two points in the closure of a component of dQ\ H.
Since the regularity is questionable only in a neighbourhood of H, we may
assume that p and q are close enough to H in order that I' ;)N HandT 2N H are
non-empty. They consist of one point each, {p'} and {g'} with parameter values
s(p) and s(q) on the L-curves.

Fig. 3.

We assume that |s(p)| <|s(q)| and denote by g” the point x,(s(p)). Let ;=4 and
assume that",,. .., 4, have been found such that u € C'**(Q) and A, KA+e.
Again we use the representation (4.2) to get new estimates. This time we con-
sider two cases. In fact, if

Is()l < Cy-lp—gl*?m*D
(where C, has to be specified later on) then we consider the inequality
|Du(p)—Du(q)l = C,-|gradu(p’)—grad u(g”)l+
+Cyrlp—gl*-|s(p)! "ML
The last term can be estimated by C:|p—g)*” where 1" = (4, + A+ (m+1)"1)/2.
The first term splits up into
|grad u(p) — grad u(q')| +|grad u(¢) — grad u(q")|

where the first difference is estimated by C:|p'—¢|* according to the
proposition and the second difference is represented by an integral of
grad (0u/0L) along a curve of length |s(p) —s(q)| £C-|p—gq|- Hence if " S A +¢it
follows that we can take 4,,,=41", i.e. the exponents 4, are given by

A = A+(1=2"9m+1)"1.
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However, we must also consider the case when |s(p)|> C, -|p—q|*?™* V. In this
case it is enough to reproduce the proof in section 4 since the optimal value of
t, used to get (4.4) is t=C,|p—g|"/*™* V. Hence we can choose C, =2C, and
the proof is complete.
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