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DISINTEGRATION AND COMPACT MEASURES

JAN K. PACHL

SUMMARY. A probability space is compact in the sense of Marczewski if and only if it
admits countably additive disintegrations. It follows that the restriction of a compact
measure to a sub-g-algebra is compact.

1. Introduction.

This paper is concerned with countably additive disintegrations of countably
additive measures (or, in another language, with regular conditional
probabilities). Chatterji [2], Hoffmann-Jergensen [5] and Pellaumail [14]
have shown that the lifting theorem permits us to remove the traditional
countability assumptions in existence theorems. Our present task is to find out
what can be done about the other assumption, that the measure which is being
disintegrated is Radon.

In section 3 we prove that a weaker condition, the compactness in the sense
of Marczewski [9], is sufficient for the existence of disintegration as defined
below; moreover, this condition is also necessary (section 2). This
characterization of compact probabilities may be used to prove that the
restriction of a compact probability to a sub-g-algebra is compact (section 4).

A probability space (X, o, P) is a nonempty set X together with a o-algebra
& on X and a probability P on &/ (that is, a nonnegative countably additive
measure with PX =1). When . is a class of subsets of a (fixed) set X, we denote
by a(£) and ¢(£) the algebra and the g-algebra generated by .. When & and
% are g-algebras on X and Y, respectively, the symbol o/ ® # stands for the
system of the sets Ex F, where Ee€ o and F € #. Thus o(o/®%) is the
smallest o-algebra making both the projections ny: X x Y — X and my: X
x Y — Y measurable. If (X, %/, P) and (Y,4%,Q) are two probability spaces
then a probability R on o(o/®%) is called a joint probability when R(E x Y)
=PE for every E € of (denoted ny[R]=P) and R(X x F)=QF for every
F € # (denoted ny[R]=Q). If & is an algebra then % (&) denotes the space of
(real-valued) «/-simple functions.

We will find it convenient to follow Valadier [17] in stating our results for
measures on products (see also [4], [8]).
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1.1. DerFINITION. Let & and # be o-algebras on X and Y, let R be a
probability on o(«/ @%). Put Q=ny[R]; in other words, QF =R(X x F) for
F € #. Suppose that there is, for every y € Y, a g-algebra &/, on X and a
probability P, on o/, and that A

(a) for each E € s/ there exists a set N € # such that QN =0, E € «/ for all
y € YN\ N and the function

y—PE yeY\N,
is (#] Y\ N)-measurable; and

(b) if E€ o/ and F € # then

j P,EdQ(y) = R(ExF)
F

(in view of (a), the integral is well defined).

The family {(«,, P))},.y is then called a Q-disintegration of R.

Two remarks are in order. Firstly, we do not assume that &/, < &/; but this is
only a formal matter — </, can be replaced by </, N /. Secondly, and what is
more important, we do not assume that .o/, >.o/. The reason is that we want
the complete Lebesgue probability to be disintegrable:

1.2. ExaMPLE. Assume the continuum hypothesis. Put X =[0,1]?, Y=[0,1].
Denote by P and Q the ordinary (complete) Lebesgue probabilities in [0, 1]2
and [0,1]; these are defined on the o-algebras o/ and # of Lebesgue
measurable subsets of X and Y, respectively. Define a probability R on
o(A ®B) by

RG = P{(xy,x;) € X | ((x;,x;),x;) € G} for G € o(ARA) .

Then there is no Q-disintegration {(s,, P,)},.y of R satisfying o/ ,> & for all
yel.

In fact, if {(«,, P,)}, is a Q-disintegration of R then for Q-almost all y € Y
the restriction of P, to the g-algebra of Borel subsets of [0, 1]? coincides with
the “natural” disintegration (because the disintegration is essentially unique —
see [13, Ch. V, Th. 8.1]). Hence for some y € Y (in fact for Q-almost all y € Y),
P, extends the one-dimensional Lebesgue probability in [0,1] x {y} = X to &,.
The o-algebra o contains all the subsets of [0,1] x {y}; thus if o/,>, we
obtain an extension of the Lebesgue probability in [0, 1] to the g-algebra of all
subsets of [0, 1]. By Ulam’s theorem [12, 5.6], this contradicts the continuum
hypothesis.
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The image of R in X has not been mentioned in 1.1; yet this probability has
its say in existence results.

1.3. DeFInITION. Let (X,o7, P) and (Y, 4%, Q) be two probability spaces. We
say that P endorses Q-disintegration if every joint probability on o (o ® #) has
a Q-disintegration.

1.4. FURTHER TERMINOLOGY. (a) A lattice on X is a class of subsets of X that
contains & and X and is closed under finite unions and finite intersections.

(b) A lattice ¢ of sets is semicompact if every countable class )", = ¥ with
N o= contains a finite class A o< A, such that N A o= .

(c) Let (X,«,P) be a probability space and X <.o/; we say that X
approximates P if for any E € o/ and ¢>0 there is a K € ) such that K< E
and P(ENK)<e.

(d) A probability space (X, ./, P) (and the probability P) is compact if there
is a semicompact lattice /"< .o/ that approximates P. (Perhaps it would be
more consistent to call such a probability semicompact.) Recall [9] that, in this
definition, #" may be assumed to be closed under countable intersections.

2. Compactness and the Stone space.

Every measurable space can be represented in a subset of its Stone space;
accordingly, every measure space can be represented in a subset of a compact
measure space. It is therefore useful to know when compactness is inherited
from a measure in a large set to the one induced in a subset.

Vinokurov [18] and Musia} [11] investigated this question for ¥X,-generated
measures. For general measures, valuable information can be obtained with the
help of disintegration.

In the following theorem, the symbol (X, o, P)< (Y, %, Q) means that X is a
Q-thick subset of Y (i.e., QF =0 whenever F e £ and FNX=(), 4/ =& | X,
and P(FN X)=QF when F € # and FN X e «. The completion of (X, </, P)
is denoted by (X, o, 13).

2.1. THEOREM. Let (X, o/, P) and (Y, %, Q) be two probability spaces such that
(X, o, P)c (Y, #,Q) and B| X c . Define a joint probability R on o (4 ® %) by
RG = P{xe X | (x,x)e G} for Geoa(ARB).

Suppose that Q is compact and that there exists a Q-disintegration of R.
Then P is compact.

Proor. Take a semicompact lattice ¥ <4 that approximates Q and is
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closed under countable intersections, and a Q-disintegration {(+/, P,)},.yof R.
To define a semicompact class approximating P, put

A = {Ee.m’l thereisan F € £ suchthat FNX=EandEe &, P,E=1
for each y € F} .

Obviously, J is closed under finite intersections.

To check that X" is semicompact, pick a sequence of sets K,,K,,... € o
decreasing to the empty set: K, ~» . For each n find a set L, € & such that
L,NX=K, and

K,es, and PJK,=1 whenever yelL,.

Since Z is a lattice, we may assume that the sequence {L,}, is decreasing:
L, ™ L. It is easy to see that L=¥; if y € L then K, € &/, and P,K,=1 for
every n, hence

Pg = Py(ﬂ K,,) = limPK, = 1,

which holds for no y € Y. As % is semicompact, there is an n such that L,= &,
hence also K,=.

It remains to be proved that )" approximates P. Start with any E € &/ and
£>0; there is an F € # such that FNX=E. Now find an L; € # with L, cF
and Q(F\ L,)<¢/2 and use the assumption o/ c#|X =« to find an H, € #
such that

Hl CLI, HlnXEd and Q(LI\H1)=0'
By the definition of disintegration, H; N X € &/, for Q-almost all y € H, and

L P,(H;NX)dQ(y) = R((H;NX)xH,) = P(H;NX) = QH,;

hence there is an F; € # such that F,cH,, Q(H,\ F;)=0 and
HNXeoA, and P(H, NX)=1 foreveryyeF,.

This F, is in turn approximated by an L, € % with Q(F,\ L,)<¢/2%. Again,
there are H,,F, € # such that

F,cH,cL, H,NXeso, QUL,\F)=0,
and
H,NXeso, and P(H,NX)=1 foreveryyeF,.

Having constructed, in this way, the sets L,, H, and F, for n=1,2,.. ., we put
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L=0N,L, and K=LNX. Then K € o, because K=, (H,NX); obviously
KcE and

P(ENK) = Q(F\L) = Q(F\L)+ Y, Q(L,\L,,,) <¢.
n=1
Finally, to verify that K € ), note that (H,NX) \ K while (H,NX) e &,
and P,(H,N X)=1 for every y € L. Hence K € &/, and P K =1 for every y € L.

Our aim in this section is to show that the probabilities endorsing
disintegration are compact. Thus it would be desirable, in view of the preceding
theorem, to have every probability space embedded into a compact one.
Fortunately, this is not difficult to achieve: When (X, o, P) is a probability

space, we employ the Stone space of & to find a set S(«#) and an algebra #, on
S(«) such that (see [15, § 8.G])

@ XcS(o#) and S ={FNX|FeB);

(b) the algebra %, is semicompact (in fact, &, is even compact, in the sense
that any decreasing net of nonempty sets in %, has nonempty intersection; but
we do not need this stronger property).

Put #=0(%4,) and
QF = P(FNX) for Fe®.

The probébility Q on % is approximately by the semicompact class (%), (the
class of countable intersections of sets in 4,).

If (X, o, P) endorses Q-disintegration (or, at least, if the joint probability R
constructed in 2.1 can be disintegrated), then P is compact, by virtue of 2.1.
However, we are after a condition that is not only sufficient but also necessary
for compactness. As the completeness of Q seems to be indispensable for the
way back, it is advisable to replace (S(d),g Q) by its completlon (S(=), 2, Q);
the assumptions in 2.1 remain valid, because #| X = &. Hence if P endorses Q-
disintegration then P is compact. In particular:

2.2. THEOREM. If a probability P endorses Q-disintegration relative to every
complete probability Q, then P is compact.

This is the first half of our characterization of compactness; the converse will
be proved in the next section. At this time we can already prove the following

permanence property:

2.3. PROPOSITION. Suppose that a probability space (X,o,P) endorses

Math. Scand. 43 — 11
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Q-disintegration relative to every complete probability Q. Then the restriction
of P to any sub-o algebra of o also does so.

Proor. Let & be a sub-c-algebra of &/, and (Y,%,Q) any complete
probability space. The assertion will become evident as soon as we know that
any joint probability on (& ® %) extends to a joint probability on ¢ (o ® B).
Thus let R be a probability on ¢(&®%) such that ny[R]=P|& and ny[R]=0Q.
For any function g € & (¢(£®%)) put

R(g = I gdR .
XxY

For any g € & (a(o#/ ®%)) put

plg) = inf{f hdP | he #(«) and honxgg}.
b ¢
Then R(g)<p(g) for each g € ¥ (x(£®R)), while p is positively homogeneous
and subadditive:
p(Ag) = Ap(g) for any real number A>0 and any g € & (¥ R%)),
p(81+82) < p(g)+p(g2) for any g,,8, € S (A QH)) .

By the Hahn-Banach theorem [3, I1.3.10], the linear map R can be extended to
a linear map R, on & (a(s/ @ B)) satisfying R, <p. The formula R,G=R,(Is)
defines a finitely additive function on a(s/ ® %), which is nonnegative because
for any G € a(&/ ®Z) we have

—R,G = Ri(-Ig) S p(-I) £ 0. .

Now P is compact (this is where 2.2 is used), hence R, is countably additive by
[10, 1.i]. Thus R, extends to a probability on (o ®#), denoted again by R,.
This R ; agrees with R on (& ® %), because R, and R coincide on a(€ ®A) and
both are countably additive.

Finally, R, is a joint probability: for E € &/ we have

Ry(ExY) = pUgxy) £ j. IgdP = PE,
x

—R(ExY) = Ry(—Igxy) S p(=Igxy) S "L{ IgdP = —PE,

whence R,(E x Y)=PE.
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3. Existence of disintegration.

The purpose of this section is to prove that any compact probability
endorses Q-disintegration whenever Q is complete. Since the lifting theorem
automatically produces a “finitely additive disintegration”, the only difficulty is
to pass from the finitely additive function to a countably additive one; this is
where the compactness comes into play.

If the semicompact system in question is separated by the corresponding
class of “open” sets then a suitable countably additive measure can be
described constructively (see (e.g. 3.1 in [7], or section 5 in [16]). No such
separation property is assumed in the sequel; we find a countably additive
disintegration by means of the axiom of choice (disguised as the Hahn—Banach
theorem and Zorn’s lemma). The price for the generality is that any trace of
uniqueness or naturalness is hopelessly lost.

Recall that a nonnegative (finite) real-valued function f on a lattice is called

(a) submodular when =0 and
B(K,UK,)+B(K,NK,) £ BK,+BK,
for all K{,K, e X;
(b) supermodular when B =0 and
B(K,UK,)+B(K,NK;) = BK, + K,

for all K{,K, e X

(c) modular when it is both submodular and supermodular;

(d) monotone when K, <pK, for K|,K, € X', K, cK,.

Our interest in these properties comes from the fact that any monotone
modular function on a lattice )" extends to a nonnegative additive function on
() (see e.g. [16, section §]).

If & is a lattice on X and B is a real-valued function on X then the “inner
measure” f, is defined by

B.E = sup{pK | K e A and KcE}

for every Ec X.
The following result is proved, though not stated exactly in this form, in
section 8 of [16].

3.1. LEMMA. Suppose that X is a lattice on X, while p is a monotone submodular
function on X. Then there is a monotone modular function y on X" such that
y<p and yX =pX.
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It will be more convenient for us to work with the dual statement:

3.2. LEMMA. Suppose that X" is a lattice on X, while 6 is a monotone
supermodular function on X . Then there is a monotone modular function y on A
such that y2 4 and yX =6X.

Proor. Apply 3.1 to the function SC=0X —5(X \ C) on the dual lattice

He={CcX| X\CeX}.
The next result says that maximal elements in the set of normalized

monotone modular functions are tight (in the sense of [16]). The reader may
compare this result with [1, 3.4].

3.3. LEMMA. Suppose that X is a lattice on X and B is a monotone modular
Junction on X with fX =1. Fix a set K, € A". Then there is a monotone
modular function y on X such that

y2ph X =1 and yKo+7,(X\NKp =1.

Proor. First put
7K = sup{B(KNL)| L e ¥ and LNK,=}
for K € #. Then f—v, is monotone and modular. Now put
6K = sup{BL—y,L| Le X and LNK,=K}

for K € X'. It is easy to see that  is monotone and supermodular. By 3.2, there
is a monotone modular function y, on X" such that y, =4 and

1, X =60X = X -y X =1-y,X.
Set y=y,+7y,. For each K € & we have
K =y, K+9,K 2 y,K+6K 2 pK.
Further,
Ko Z 0Ko = BX -9, X = 1-B,(X\Ko) 2 1-7,(X\K),

3.4. PrROPOSITION. Suppose that X is a lattice on X, while f is a monotone
modular function on X" with X = 1. Then there is a monotone modular function y
on X" such that y= B, yX=1 and

7Ko+7,(X\Kq) =1 for every Ko X .
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Proor. The set of monotone modular functions é on J satisfying 6X =1
and B<6 is partially ordered by <, and every totally ordered subset has an
upper bound. By Zorn’s Lemma [ 3, 1.2.7], this set contains a maximal element
y, and 3.3 implies that yKq+7, (X \ Ky)=1 for every K, € X'.

Now we are ready for the main result.

3.5. THEOREM. Let (X, o, P) and (Y, &, Q) be two probability spaces and let R
be a joint probability on o(sf ®%B). Suppose that Q is complete and P is
approximated by a semicompact lattice A" < o which is closed under countable
intersections.

Then there is a Q-disintegration {(«, P,)},.y of R such that o/ ,> X and K
approximates P, for each y € Y.

Proor. Choose a lifting ¢ on (Y, %, Q) (see [6, IV-Th. 3]). By the Radon-
Nikodym theorem, for each E € & there exists a #-measurable function hg
such that

J hgdQ = R(E x F)
F

for every F € 8. For each y € Y define a function f, on %" by
. B,K = ohx(y), KeX .

From the properties of lifting it follows that §, is monotone and modular and
B,X =1. Apply 3.4 to obtain a monotone modular function y, on " such that
%26, 7,X=1 and

7,Ko+ (7)) (XN Ko) =1 for every Kge A .

Let P, defined on a o-algebra &/, be the maximal additive extension of y, that
is approximated by ). In other words, extend y, to the countably additive
measure on (X" ([16, 4-Th. 1(ii)]) and complete this measure to get P, on
A,
To say the same still differently, a set E< X belongs to &, if and only if

(1) «E+ (7)) (X \NE) = 1

and P, is the restriction of (y,), to «,.

For a fixed E € &, choose an increasing sequence of sets K;,K,,... € A
such that K,<E and sup,PK,=PE, and an increasing sequence of sets
L,L,... € X such that L,c X\ E and sup, PL,=P(X\ E). Then

supB,K, £ (3)4E = 1-(7),(X\E) = l—sgpﬂyL,.
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for every y € Y. At the same time, for every F € # we have

j (SupﬁyKn) do(y) = SUPJ B,K,dQ(y) = supR(K,xF) = R(ExF),
F n n F n

and similarly

f (1—sup ﬂ,L,,)dQ(y) = R(ExF).
F n

It follows that

V)E = 1=(2) (X \E)
for Q-almost all y € Y and

L (1)«EdQ(y) = R(ExF)

for every F € #; in other words, E € &/, for Q-almost all y € Y and

j P,EdQ(y) = R(ExF)
F
for every F € #. The theorem is proved.

3.6. CoroLLARY. Every compact probability endorses Q-disintegration for every
complete probability Q.

4. Concluding remarks.
From 2.2, 2.3 and 3.6 we obtain immediately:

4.1. ProrosITION. The restriction of a compact probability to a sub-c-algebra
is compact.

As a matter of fact, this result can be proved without going through the
extension procedure in the proof of 2.3: In view of 2.1, it is not necessary to
extend every joint probability on 6(£®%) (where & — &) to a joint probability
on o( @A). It is enough to extend the measure induced by the canonical map
from (X,&,P|&) onto the “diagonal” in X x §(&); and this measure can be
extended in the obvious way, without invoking the Hahn-Banach theorem.
Nevertheless, the axiom of choice is still hidden in the proof of both 2.1 and 3.5,
and it is doubtful whether anything like 4.1 can be proved constructively.

4.2. Existence of decent disintegration. When considering, perhaps more
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sensibly, only the disintegrations {(#,, P,)},.y such that o/ ,> . for all y, the
property of endorsing Q-disintegration for every complete Q is no longer
necessary for compactness. The complete Lebesgue probability in [0,1]2 is a
counterexample (see 1.2 above). On the other hand, 2.3 remains true (with the
same proof). Moreover, from 3.5 we infer that a probability P endorses Q-
disintegration in this sense (i.c. with o/, >« for all y) for every complete Q,
whenever P is approximated by a semicompact lattice #” such that o/ < (X).
(Here ¢(X") denotes the “ -universal completion” of 6 (%), i.e. the g-algebra
of those sets which are measurable relative to every X -approximated
probability on ¢(X").) For example, if X is an arbitrary topological space (no
separation axioms are assumed) and X" is the class of closed compact subsets
(together with X, to make X a lattice), then X" is semicompact and every
closed subset of X belongs to ¢("). Thus our result contains a disintegration
theorem for Radon Borel measures in arbitrary topological spaces.
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