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ON THE DUAL WEIGHTS FOR
CROSSED PRODUCTS
OF VON NEUMANN ALGEBRAS II
Application of operator valued weights

UFFE HAAGERUP

Introduction.

Let M®,G be the crossed product of a von Neumann algebra and a locally
compact group G, acting on M. The von Neumann algebra M®,G is
generated by n(M) and A(G) for a certain covariant representation (r,4) of
(M, G,a). We prove that there is a unique normal faithful semifinite (n.(f.s.)
operator valued weight T from M®,G to (M), such that for any nfs. weight
@ on M, the dual weight $ on M®,G is given by ¢ = (pon ™) T. When G is
abelian, T is given by the formula

Tx = J“ d,(x)dp, xe (M®,G),
G

where 4 is the dual action on M ®,G. When G is discrete, T is the positive part
of the normal conditional expectation ¢ from M®,G to n(M) given by

8(% 2(s)1r(x(s)> = n(x(e))

for any M-valued function x from G to M with finite support.

Let us recall the main results on operator valued weights (cf. [7]). Let M and
N be von Neumann algebras, N < M. An operator valued weight T from M to
N is a map of M, into the extended positive part N, of N (ie. the set of
homogeneous, additive and lower semi-continuous functions on N with
values in [0, 00]) with the properties:

(1) Tx+y)=Tx)+TQy), x,yeM,
(@) T(ix)=AiT(x), xeM,, A20,
(3) T(a*xa)=a*T(x)a,  xeM,, aeN.

T is normal if x, 7 x = T(x) 7 T(x). Tis faithful if T(x*x)=0 = x=0 and
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semifinite if the set of x € M for which || T(x*x)| < oo is o-strongly dense in M.
We let P(R) denote the set of n.f.s. weights on a von Neumann algebra R, and
P(M, N) denotes the set of n.fs. operator valued weights from M to N. Any
normal weight ¢ on N, has a unique normal extension (also denoted ¢) to
N,.If ¢ € P(N) and T € P(M,N) then ¢oT € P(M). Moreover

a? T(x) = o?(x) xeN, g eP(N).
(DyoT:De-T), = (DY:Dg), ¢,¥ € P(N).

(cf. [7, proposition 1.11 and Theorem 4.7]).
Conversely if ¢ — ¢ is a map of P(N) into P(M) that satisfies:

o?(x) = af(x), xe N, ¢ € P(N)
(DY:D@), = (DY:Dg), @,y € P(N)
then there is a unique T € P(M, N), such that ¢ =¢-T for any ¢ € P(N), (cf.
[7, corollary 5.4]).
In [8] we gave a general construction of the dual weights on the crossed

product M®,G of a von Neumann algebra M and a locally compact group G.
(cf. [4], [11] and [14]). Moreover we proved [8, Theorem 3.2] that

o (n(x)) = n(o?(x)) xeM, ¢ € P(M)
(DY:D@), = n((Dy:Dg)) ¢,y € P(M)

where @ and § denote the dual weights of ¢ and y. An easy combination of the
above results gives:

There is a unique n.fs. operator valued weight T from M®,G to n(M), such
that for any ¢ € P(M), the dual weight § on M®,G is given by ¢=(pon™!)oT.

The main purpose of this paper is to obtain a concrete formula for this
operator valued weight T. In the case, G abelian, we prove in section 1 that

Tx = f _4,(0dp,  x€ (M®,6),
G

where 4 is the dual action of G on (M®,G)., and dp is the dual Haar measure.
Let now M ®,G be a crossed product with an arbitrary locally compact group,
and let P(G) denote the set of continuous, positive, definite functions on G.

For ¢ € P(G) we write ¢ < if ¢ is less than the Dirac measure in e (unit
element) with respect to the ordering of positive definite measures on G. In
section 3 we will prove:
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(1) For any ¢ € P(G) there is a unique completely positive, normal linear map
E, on M®,G such that

E,(axb) = aE,(x)b, xe M®,G, a,b € n(M)
E (i) = ¢(9)ils), s€G
(2) The formula
Tx = supE,x, xe(M®,G),

P<Kd
defines a nfs. operator valued weight from M®,G to n(M), such that ¢=
(pon™Y)o T for any @ € P(M).

The hard part of the proof is to show that the range of T is contained in the
extended positive part of m(M). The above construction of the operator valued
weight T is inspired by Landstads paper [9]. In fact it is not hard to verify that
T is an extension of the “generalized conditional expectation” P-4 in [9, lemma
2.87. For the proof of (2) we need detailed information about the canonical
weight Q on the von Neumann algebra & (G) associated with the left regular
representation of G (see for instance [10, § 1]). We believe that these results
about Q are more or less known, but as we have been unable to find them in
the literature, we will derive (in section 2) the results needed for our
applications.

1. Crossed products with abelian groups.

Let M be a von Neumann algebra on a Hilbert space H, and let a:
G — aut (M) be a o-weakly continuous action of a locally compact group
on M. Put

(&)1 = a7 ' (x)6() xe M, e L*(GH)
(A(S)E)() = E(s™ ) seG, ¢eL*(G,H).
(m,2) is a covariant representation of (M, G,a) i.e.
n(ax) = AS)n(X)A(s)*, xeM, seG.

The von Neumann algebra on L2(G, H) generated by n(M) and A(G) is called
the crossed product of M and G, and is denoted M®,G. (cf. [14, definition
3.1]). We let K(G, M) denote the set of o-strong* continuous functions from G
to M with compact support. K(G, M) is an involutive algebra with product

(x*y)(s) = J ax(st)y(t)dt, x,y€ K(G,M)
G

and involution
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xH(s) = 46(9) 7oy 'x(s™)*,  xe K(G,M)
where 46(s) is the module function on G (cf. [8, lemma 2.3]). Let (n, /) be the
above covariant representation of (M, G,a). The formula

ulx) = J}.(s)n(x(s))ds, x € K(G,M)

defines a *representation u of the involutive algebra K(G,M) on L%*(G, H).
Moreover u maps K (G, M) onto a o-weakly dense subset of M®,G ([8, lemma
2.3]).

Assume now that G is abelian, and let & be the dual action of G on M®,G
[12, definition 4.1]. The automorphisms &, p € G, satisfy

d,(n(a) = n(a), aeM,

a,(A(5) = {p,sDils), seGC.
Moreover n(M) is exactly the fixpoint algebra of M®,G under 4, p € G by
[9, § 2.5, Theorem 2], (see also [8, lemma 3.6]).

THEOREM 1.1 Let M®,G be the crossed product of a von Neumann algebra
and a locally, compact abelian group G.
(a) The formula

Tx = J’}_ &p(x)dp, X € (M®1G)+
G

defines a n.fs. operator valued weight from M®,G to n(M).
(b) T satisfies
T(u(x*xx)) = n((x* *x)(e)), x € K(G,M)
T(A(s)xi(s)*) = A(5)T(x)A(s)*, xe (M®,G),, seC.
(c) Fo:‘ any @ € P(M), the dual weight ¢ on M®,G is given by the formula ¢
=(pon V)T

LeMMa 1.2. Let f € K(G), and assume that f'(p)=jc {p,s>f(s)ds=0 for any
pe G. Then

J f(p)dp = fle).
G

Proor. By Bochner’s theorem [10, p. 19] it follows that

j f(s)p(s)ds = 0 for any ¢ € P(G).
G
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In particular

L f$)(g**g)(s)ds 2 0, ge K(G).

Hence f is positive definite. Thus by [10, p. 22] it follows that f € L!(G), and
that

fle) = J fp)dp .
G

Lemma 1.3. Let ¢ be a n.fs. weight on a von Neumann algebra R, and put

Y(x) = co(uxu*), xeR,

where u is a unitary operator in R and c¢>0.
Then

(DY: Do), = c'u*a?(u) .

Proor. Put w=¢(u-u*). Then by [3, lemma 1.2.3] we get
(DY:Dg), = (Dy:Dw),(Dw: Do), = c"u*af (u) .

Proor oF THEOREM 1.1. (a) Put
(o, Tx) = J (g, d,(x)>dp, x€(M®,G),, p € (M®,G); .
G

Then Tx belongs to the extended positive part of M®,G. Moreover Tx is
invariant under the extension of &, to (M ®,G),. Hence as in the proof of [7,
lemma 5.2] we conclude that Tx belongs to the extended positive part of the
fixpoint algebra for 4, i.e., Tx € n(M),. It is easy to check that T is a normal,
faithful operator valued weight from M ®,G to n(M). The semifiniteness of T
will follow, when (b) is proved.

(b) Let x € K(G, M), and let w be a positive, normal functional on M®,G.
Then

0 < (wd,(u(x**xx)> = J (p, syw, As)m((x* % x)(5)) ds .
G

Thus the function
s = {w, A(s)m((x* *x)(5)))

satisfies the conditions of lemma 1.2. Hence
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(o, T(u(x*xx))> = L (o,d,(u(x* xx))>dp = {o,n((x**x)(e))>

or equivalently T(u(x**x))=n((x**x)(e)). From this formula it follows that
I T(u(x)*u(x))| <oo for any x € K(G,M). Hence T is semifinite. The second
formula in (b) follows easily, using that for x e M®,G, s€ G and pe G we
have

4, (A()xA(s)*) = A(s)d,(x)A(s)* .

(c) For ¢ € P(M) we put ¢=(pon')oT. We will prove that ¢=¢ by the
characterisation of the dual weight given in [8, lemma 3.3]. Clearly ¢ is a n.fs.
weight on M®,G and by [7, Theorem 4.7] we get

* o?(n(x) = of"" (n(x) = n(6?(x), xeM, ¢ eP(M).
(**) (DJ:D@), = (Dyon~':Dyon™ "), = n((DY:Dg)), @Y € P(M).
By (b) it follows that
?°%,(x) = poayon”!(Tx)
= pon ™! (Als) TxA(5)*)
(@om ™o T(A(s)xA(s)*) = B(A(s)xA(5)*) .

Hence by lemma 1.3 and the above formulas (*) and (**) we have:

n((Dgoa,: Dp)) = (Dgoa,:D@), = A(s)*a? (A(s))

or equivalently
(***)  a?(A(s) = A)n((Dgeo,: D),).
By (b) we get for x € K(G, M)
Pu(x*#x)) = (@on™ Mo T(u(x* *xx) = o((x*+x)(e)) .
Thus by [8, lemma 3.3] it follows that ¢ =¢.

2, The canonical weight on Z(G).

Let G be a locally compact group with a fixed Haar measure ds, and let 45(s)
be the module function on G. We let | (respectively r) denote the left
(respectively the right) regular representation of G on L?(G).

(N = f(s™1o), fe L*(G)
&N = 48 fs),  fe LXG).
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Moreover £ (G) and #(G) denote the von Neumann algebras generated by
I(G) and r(G). In this situation Z(GY=2(G) (cf. [5, § 13]). As usual K(G)
denotes the set of continuous functions on G with compact support.

DeFINITION 2.1, (1) fe L2(G) is left bounded if there exists a bounded
operator m,(f) on L*(G) such that m,(f)g=f*g, Vg € K(G).

(2) g € L*(G) is right bounded if there exists a bounded operator =,(g) on
L*(G) such that m,(g)f=f*g, V f € K(G).

For any complex function f on G we put

i) = 467 (™Y f*) = 4T S =67

¥ * and ® are involutions of the convolution algebra K(G). Moreover * is an
isometry on L?(G).

The algebra K(G) is a left Hilbert algebra with involution * and the usual
inner product from L?(G). Note that our definition of * differs from [5, § 13].
We have chosen ¥, *,?, such that they correspond to the Tomita algebra structure
of K(G) (cf. [12, § 2]). It is not hard to verify that the left (respectively right)
bounded elements relative to the left Hilbert algebra K(G) (cf. [2, definition
2.17) coincide with the left (respectively right) bounded elements in the sense of

the above definition 2.1.

DerFINITION 2.2. ‘The canonical weight @ on £(G), is the nfs. weight
associated with the left Hilbert algebra K(G). Hence by [2. Definition 2.12]

IF13  if x=m(f)*n(f), f left bounded
Q(x) = .
o0 otherwise .

The closure of the involution f — f*, fe K(G), in the completion L2(G) of
K(G) has the polar decomposition J4* where 4 is the densely defined
multiplication operator on L*(G) given by

1)) = 46(0)f (), fe L*(G), dgf € L*(G),

and Jf=f*, f € L*(G). Hence the modular automorphism group 0% associated
with Q is

o?(x) = A'x47", xe Z(G).
In particular
o?(I(s) = 4g(s)"l(s), seG.

Note that © is a trace if and only if G is unimodular.
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LeMMA 2.3. Let f,g € L*(G) such that f is left bounded and g is right bounded.
Then

n(f) g = n(8)f.

Proor. Let (u));.; be an approximating unit for G in the sense of [5, § 13].
Then n;(u;) — 1 strongly and =,(u;) — 1 strongly. Hence

n(f)g = imm(f)m(u)g = limn,(f)m,(g)y;
= limr, (@), (f)u; = lim=,(g)m,(u)f = =,(g)f .
Let P(G) be the set of continuous positive definite functions on G. For
@, ¥ € P(G) we write
o xy if Yy—peP(G)
and

p <o if L @) (f**f)s)ds < (f*xf)(e) ¥ fe K(G)

(6 =Dirac measure in e).
Let A(G) be the Fourier algebra on G (cf. [6]). It is well known that the
following conditions are equivalent:
() ¢ € P(G)NAG)
(i) o=f+f", feL*G)
(iii) There exists a positive normal functional w, on £ (G) such that w,(/(s))
=¢@(s) VseG.

Moreover ¢ — w,, is a bijection of P(G)N A(G) onto the positive part of the
predual of £(G).

ProrosiTiON 2.4. Let @ € P(G). The following conditions are equivalent

(1) o<
(2) ¢ € A(G) and w,(x)=Q(x) Vx e £(G),.

ProoFr. (2) = (1). Assume that ¢ satisfies (2). Then V f e K(G):

L PE)(f*2f)()ds = w,(I(N)*I(f)

A

QUM = 115 = (f*+Ne) .

(1) = (2). The first part of the proof is analogue to the proof of [1,
proposition 2.4]. Let ¢ < d and let (n,, H,, {,) be the cyclic representation of G
induced by ¢ (cf. [S, § 13]). For f € K(G)
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Im,(N)el? = <o, f2xf> = (fFxf)e) = If12.

Hence there is a bounded operator T: L*(G) — H,, such that Tf=m,(f)¢,
Vfe K(G). |T||£1 and T has dense range, because &, is cyclic. A simple
calculation shows that T is a coupling operator for m, and the left regular
representation I:

TI(f) = n, ()T, VfeK(G).

Let T=U|T| be the polar decomposition of T. Then UU*=1 and Uli(f)
=m,(f)U*. Therefore ,, is equivalent to a subrepresentation of the left regular
representation. If we put E=U*¢ € L*(G) and g=_¢ (complex conjugate) then
forse G

@(s) = (m,(5)¢,18,) = (1(s)E1Q)
= L E(sTIN(n)dt = (g*g")(s) .

Hence ¢ =g *g’, which proves that ¢ € A(G). Moreover
wo(x) = (x¢18), Vxe Z(G).
For fe K(G)
[+ = m(f)E = U*n, ()¢, = U*Tf = TIf.

Hence ¢ is right bounded, and =,(¢)=|T|. In particular |=,(¢)|<1. For
f € L*(G), f left bounded we get by lemma 2.3 that

o, )*m(f) = Im(NE} = ImQ)f13
1113 = Qm()*m(f) -

IIA

Hence w,(x)£Q(x), Vx € Z(G),.

COROLLARY 2.5.
(1) Q(x)=sup, «s0,(x), x€ ZL(G),.
(2) The set

F = {p e P(G)| 3e>0:p<(1-¢)d}
is directed with respect to the ordering <<, (i.e. for any ¢, ¢, € F there exists
¢ € # which dominates ¢, and @,).
Proor. (1). By propositoon 2.4 the map ¢ — o, is a bijection of
{9 € P(G) | o<} onto {w e £(G); | @< Q}. Since Q is normal

Q(x) = supw(x), xeZ(0),.

ws
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Hence (1).
(2). The map ¢ — w, is a bijective order isomorphism of

{p e P(G)| 3e>0: p<<(1—¢)0} onto {we L(G)} | 3e>0: w=(1-e)Q} .
According to [13, Theorem 13.8] the latter is directed. Hence (2) is proved.

COROLLARY 2.6. For x € £(G), and s€ G
QI(s)xl(s)*) = 4g(9)R(x) .

Proor. Since for s,t € G and ¢ € P(G)N A(G) we have
@, (IOI)*) = @(sts™!) = Wp.s1(1(2))

it follows that

W, (A()XA(8)*) = Wy(s.5-1)(X), x€ L(G), s€C.
An easy computation shows that

O<é <> (s s < 4g(s)d .

Hence by corollary 2.5(1) we get

Q(AS)xA(8)*) = 46(9Q(x), xe L(G),, seq.

CorOLLARY 2.7. For fe L'(G)

sup f @) (f**f)(s)ds = J |f () ds .
oK JG G
(The integral on the right side may be infinite).

Proor. By corollary 2.5 the above formula is equivalent to

QUM = L If6)I*ds, feLY(G).

If fe L*(G)NL*(G) the above formula is trivial, since in this case f is left
bounded and I(f)=m,(f). Let now fe L'(G)\ L?*(G). We shall prove that
QU(f)*I(f))=00. Assume that Q(I(f)*I(f)) < 00, then I(f)=mn,(g) for some left
bounded function g € L*(G).

Hence for any h € K(G) we have fxh=gxh. However, this implies that g=h
a.e., which contradicts that g ¢ L?(G). This completes the proof.

LemMma 28. If f,g € L*(G) are left bounded, then g*+f is a continuous, left
bounded L*-function, and

\ [
t
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3
(g +f) = m(g)*n(f) .

PRroOF. Since f,g € L*(G), g* «fis well defined and continuous. The formula
m,(g* * f) =m(g)*n,(f) is trivial if £, g € K(G). In the general case we can choose
sequences (f,),en and (g,),en in K(G) such that | f,—fll, — 0 and |g,—gl,
— 0. Since {m,(f) | f left bounded} is a left ideal in #(G), there exists a left
bounded L2-function a such that m,(a)=n,(g)*n,(f). Hence for h,k € K(G):

lim (g*f,xh|k) = lim (f,*h|g,*k)

n-oo n=o00o

= (fxh|gxk)
= (m@*m (k) = (axhlk) .

However g*+f, — g'*f uniformly on compact sets. Hence
f (@ *N*h)()k(s)ds = (axh|k) = J (axh)(s)k(s)ds .
G G

This implies that
(8 *f)*h = axh ae. for any he K(G).
Hence g**f=a a.e. Thus g**fis a left bounded L?-function and
m(g*+f) = m@) = m(g)*m(f) .
As usual we put
' ng = {x € Z(G)| Q(x*x)<oo}
and

mq = ning = span{z*y [ Y,Z € hg} .

ProPOSITION 2.9.

1) ng={m(f) | fleft bounded}

2) mg={m(f) | f continuous, left bounded and m,(f)=0}.

3) If m,(f) € mg, then f is almost everywhere equal to a unique continfious

function f, and Q(m,(f))=1,(e).

Proor. (1) follows from the definition of Q.  (2). Let x € mg, then x
=m,(f)*m,(f) for some left bounded L3-function f. By lemma 2.8, g=f*+fis a
continuous left bounded L3-function, and x =m,(g) =0.

Conversely let f be a continuous left bounded L?-function such that x,(f)20.
Since the isometric involution J: f — f* in L?(G) maps the set of left bounded
elements onto the set of right bounded elements and since =, (f *)=Jm,(f)J (cf.

Math. Scand. 43 — 9
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[2]), it follows that for some K>0, we have 0<=,(f*)<K. Since for any
g€ K(G)

L F*EE ) ds = (f*Im(@*8) = @+f*18) = (n(/"E]2)
we get
0= L S*6)(g *8)(s)ds = K|gl3 = K(g**g)(e) .

This proves that f* € P(G) and that f* < K-4.
Hence by the proof of proposition 2.4 we get
f* = hxh’
for some right bounded L?-function H. Thus
f=(/%* = B)*«h* = K xk
where k=h* is left bounded. Hence by lemma 2.8
m(f) = mk)*m (k)

which proves that n,(f) € mg.

(3) Assume that =,(f) € m3. Then n,(f)=mn,(g)*n,(g) for a left bounded L2-
function g. By lemma 2.8 we get fxh=(g*+g)h for any h € K(G). Hence f
=g*+g a.e. However, g**g is continuous and

Qm(f) = (mg)*m(g) = lgl3 = (8" *g)(e) .

Since the support of the Haar measure is the whole group G, it follows that if f
=f, a.. and f; is continuous, then f, =g**g.

CoroLLARY 2.10. If f € K(G) and [g f(s)p(s)ds20 for any ¢ € P(G) then

' sup f f$)o(s)ds = f(e).
PKd JG
Proor. Since f e K(G), f is left bounded and

m(f) = 1(f) = L S($)(s)ds .

Hence

w,(m(f) = L S)p(s)ds 2 0 for any ¢ € P(G)NA(G)
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which proves that m,(f)20. Hence by proposition 2.9 we have

m(f)emg and  Q(m(f) = f(o).

By corollary 2.5

sup L f©)(s)ds = Q(m(f)) = fle) -

3. Crossed products with arbitrary groups.

THEOREM 3.1. Let M®,G be the crossed product of a von Neumann algebra M
with a locally compact group G.

(a) For each continuous, positive definite function ¢ on G there is a unique o-
weakly continuous linear map E, on M®,G, such that

E,(axb) = aE (x)}b, xe M®,G, a,be n(M),
and
E,(A(s)). = @(9)A(s),- s€G.

Each E, is completely positive, and E, ., =E,+E, for ¢,y € P(G).
(b) The formula

Ix = supE,x, xe(M®,G),

@Ko
defines a n.fs. operator valued weight T from M®,G to n(M).
(c) T satisfies
T(u(x* o)) = n((x* #)(e)) xeK(G,M).
T(A(S)xA(8)*) = Ag()AS)T(X)A()*, xe M®,G),, seG.

(d) For any ¢ € P(M) the dual weight § on M®,G is given by ¢=
(pom™")T.

LemMa 3.2. Let @ € P(G). There exists a family (a;);; of bounded, continuous
Sfunctions on G, such that

o(st™) = Y a(s)a; (), steG

iel

where the series converges absolutely, and uniformly on compact subsets of G x G.

ProoF. Let (n,, H,, £,) be the representation of G induced by ¢ (cf. [5, § 13]),
and let (e));c; be a basis for H,. Put a,(s)=(n,(s)e;|£,), i € I, then
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ost™) = (m, (™), | m,(s7YE,)
= Z (7‘¢(t_1)f¢|ei)(eiln¢(s-l)f¢)

iel
= Z a;(s)ay(t)
iel
where the series converges absolutely for any s,t € G. For s=t we get
3 ..11a;(s)> = @ (e). Hence by Dini’s theorem this series converges uniformly om
compact subsets of G. By Cauchy-Schwartz inequality it follows that for any
finite subset J of I we have:

2

> a(s)a)

iel\J

é( > |a;(S)l2)( > lai(t)|2>'
iel\J iel\J

Therefore Y, a;(s)a;(t) converges uniformly to ¢ (st ~!) on compact subsets of
G xG.

lp(st™) =Y. a(e)a@) =

iel

Lemma 3.3. For any g € L1(G)

sup .U @(st™Hg()g(t)dsdt = J lg(s)*4G(s)ds .
GxG G

Pp<Ko

ProOF. It is easily seen that

ﬂ @(st™ Mg (s)g () dsdt =J @(s)(g*gh(s)ds .
GxG G

Put f=g* Then

J lg(s)*dg(s)ds = I If(s)Pds .
G G
Hence the lemma follows from corollary 2.7.

It is no loss of generality to assume that the von Neumann algebra M in
Theorem 3.1 acts on a Hilbert space H, such that there exists a strongly
continuous unitary representation s — u(s) of G on H, satisfying

oax = u(s)xu(s)*, xeM,seG.

(see for instance [8, § 1.2]). We let (n,4) be the covariant representation of
(M, G,«) on L?(G, H) that generates the crossed product.
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LEMMA 3.4. Under the above assumptions

(M) = (M®,G) N (B(H)QL*(G)) .

Proor. Let U be the unitary operator on L?(G, H) defined by
(UO(s) = u(s)é(s), ¢el*GH).
Then, as in the proof of [8, lemma 3.6] we get
(M) = (M'®1) N (U*(1®Z(G)U) N (1QL*(G)Y
= (M®,6) N (BEH)®L(G)) .
LeMMA 3.5. (1) For each ¢ € P(G) there exsists a unique a-weakly continuous
map F, on B(L*(G, H)), such that
F,(axb) = aF ,(x)b, x e B(L*(G,H)), a,b € BH)®L™(G)
F,(A(5) = @(39)A(s), seGC.

F, is completely positive, and F,,,=F ,+F, for ¢,y € P(G).
(2) The formula

Sx = sup F,(x), x € (B(L*(G, H))),
K

defines a normal, faithful operator valued weight from B(L*(G,H)) to
B(H)®L™(G).

Proor. (1). For convenience we put K=L?(G, H). Let ¢ € P(G). We have
e(st™) = ¥ ai(s)a;(t)

iel
where (a;);.; is chosen as in lemma 3.2. In particular
ele) = ) la)?, seG,
iel
where the series converges uniformly on compact sets, and therefore also in the
a(L*(G), L' (G)) topology. We will not separate between a; € L*(G) and the

corresponding multiplication operator on L2(G).
Thus

Y aar = o)l  (o-weakly).
iel
Put
Fo(x) = ) (1Qa)x(1®a}), x e B(K).

iel
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Clearly F, is a strictly positive, normal map on B(K), and F, satisfies
F,(axb) = aF ,(x)b, x € B(K), a,b e BIH)®L>*(G) .
For &,n € K we get

(FAGEIN = T (A1 ®@a¥E| (1@ak)n)

iel

]

) Gci(s”‘t)ai(t)(é(s"t)|n(z))dt

iel
[ (5 @000 )50 o)
iel
= @A) |n) .
The above permutation of sum and integration is permitted also if I is

uncountable, because the series Y;; a;(s)a;(t) converges uniformly on compact
sets of G x G. Thus

F (A(s) = @(5)A(s), se€G.

Let i be the identity on B(H) and let y(s) be the left translations with s € G on
L*(G), then for any a € B(H)®L*(G) we have

As)ai(s)* = (i®y()(a) .

Therefore the set
& = span {(1®I(s))a | a € BH)®L>(G), s € G}
is a *subalgebra of B(K), and the commutant &' is Cg, because
R(G) N L*(G)=Cpz(g -

Hence &/ is o-weakly dense in B(K), and thus the uniqueness of F, follows.
Clearly F,,,=F,+F, by the uniqueness of F,,.
(2) It follows from (1) that for ¢,y € P(G):

o<y = Fx £ F,x, VxeB(K),.
Put
F = {peP(G)| 3e>0: px<(1—¢)d} .

By corollary 2.5 (2) it follows that (F, x),.# is an increasing net of positive
operators. Hence for each x € B(K), the formula

{w,8x) = sup (F x,w) = sup(Fx, w), we B(K)}
' 3] oeF
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defines an element Sx in the extended positive part of B(K). Moreover the map
x — Sx is homogeneous, additive, normal, and

S(a*xa) = a*(Sx)a, ae B(H)®L*(G).
We shall prove that Sx belongs to the extended positive part of B(H)®@L>*(G).
For & € K we let A(£) denote the positive operator of rank one given by

An = s nek.
For é,n € K (=L*(G, H)) we get

(Fod () = ZI (41 ®@am| (1®at)m)

= E’; ((1®a¥n| oI

2

-z

iel

L a,(s)(£(s)In(s)) ds

iel

= ﬁ GxG a,(5)a:() (€ () (s (E W) | () dsde

= J]G . (ZI a,-(s)tTi(t)) (6 ) ﬂ(s))m dsdt

= J]; G<P(st")(C(S)Irl(s))(é(t)ln(t))dsdt-
Hence by lemma 3.3.
(w, S(AQ)> = sup (FoAmln) = J‘G I(¢) In(s)PAg(s)ds .

For any unitary u € L*(G) (Ju(s)| =1 locally a.e.) and any € L?(G, H) we have
<wm (1 ®u*)S(A (é))(l ®u)> = <w(l®u):p S(A (é))>

= L I(E(s) | u(sIn(s))24g(s) ds

= j . 1€ ) Ag(s)ds = oy, S(A()) -

Hence S(A(&) is affiliated with (1®QL*(G))=BH)®L*(G) for any
¢ e L2(G, H) (cf. [7, § 1]).

Since the set of positive, finite rank operators in B(K) is the positive part of a
o-weakly dense ideal, any x € B(K), has the form
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X = ZA(éj), {;ekK.
jeJ
Thus, since S is normal, it follows that

Sx € (B(H)®L*(G)), for any x € B(K), .

This proves that S is a normal operator valued weight from B(K) to
B(H)Y®L>*(G). For £ € K, £+0, we have

{wy, S(A)) = L I€@)l*4g(s)ds > 0.
Since any x € B(K), has the form };.; A(¢;) we conclude that S is faithful.

ProOF OF THEOREM 3.1. (a) Let F,,, ¢ € P(G) and S be as in lemma 3.6, and
let E, ¢ € P(G), and T be their restrictions to M®,G and (M®,G).,
respectively. Clearly E, satisfies the conditions in (a). Since the operators of the
form A(s)n(a), se€ G, ae M span a o-weakly dense subset of M®,G the
uniqueness of E, follows.

(b) For xe (M®,G), we get

Tx = sup E,x = Sx.

PKd

Hence T is a positive, normal, homogeneous, additive map of (M®,G). into
M®,06),.
Moreover
T(a*xa) = a*T(x)a, xe (M®,G);, ae (M) = M®1.
By lemma 3.6 (b) it follows that Tx is affiliated with B(H)®L*(G). Let
Tx = J Ade,+p- 00
(V]
be the spectral resolution of Tx (cf. [7, § 1]), then using lemma 3.4 ¢; and p
belong to
M®,G) N (BH)®L*(G)) = n(M) .

Thus Tx € n(M),. Therefore T is a normal operator valued weight from
M®,G to n(M). Clearly T is faithful, since § is faithful. The semifiniteness of
T will follow, when (c) is proved.

(c) For x € K(G, M) we put

H(x) = J . A(s)m(x(s)) ds
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as in section 1. By (a) we get for ¢ € P(G)

£ ) = [ owaomtxiods.

Hence for any x € K(G,M) and w € (M®,G); we have

0 = <o, E,p(p(x*+x)> = JG @ (K, As)r((x* *«x)(s))> ds .

Therefore the function

s — (o, AS)r((x* *x)(s))>

satisfies the conditions of corollary 2.10.
Hence

(o, T(u(x*+x))) = sup (0, E,(u(x*+x))> = <o, n((x*+x)(e))>

or equivalently T(u(x* +x))=mn((x* *x)(e)).
Since u(K (G, M)) is o-weakly dense in M®,G it follows that T is semifinite.
To prove the second equation in (c) we will first verify the formula

*) E,(A(SxA9)*) = A)E (.51 (X)2(5)*

for x e M®,G and s € G. It is enough to consider elements x of the form x
=A()n(a),t€ G, ae M:

E,(A(A(OT(a)A(s)*)

E,(A(sts™ )m(a,a))

o (sts " YHA(sts ™ Hn(asq)
@(sts~HAB)A(Dm(@)A(s)*
AS)E (5.5~ (A(OT(@)A(s)* .

il

I

I

Hence (*) follows. Using that
QP K6 e @(ss™Y) <« A4g(s)6
we get as in the proof of corollary 2.6 that
T(A(5)xA(5)*) = 4gE)AETX)A(S)*, xe M®,G)y, seC.

Thus (c) is proved.
(d) follows from (c) as in the abelian case, except for changes, due to the
modular function 4¢(s). Put = (pon~!)oT, ¢ € P(G) we get

9o0(x) = 4()T'P(A()xA(5)*), x € (M®,G)+, s€G,

and thus formula (***) in the proof of Theorem 1.1 must be changed to
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o?(A(5) = 46(s)*2()n((D@po0,: Dg),) .

This follows from lemma 1.3 (with ¢ = 44(s) ). However, the conclusion ¢ = ¢
follows as in the abelian case.

REMARK. Let M®,G be a crossed product with an abelian locally compact
group G. Since there is only one operator valued weight T from M®,G to
n(M) such that ¢ = (pon~1)o T for any ¢ € P(M) (cf. [7, corollary 5.4]) we get
by Theorem 1.1 and Theorem 3.1 that

sup E,(x) = J‘ a,(x)dp, xe (M®,G). .
23] G

This can also be proved directly: Let ¢ € P(G). By Bochner’s theorem there is a
unique Radon measure v, on G, such that

o(s) = fG'Zp,szq,(p) .

It is easy to check that

E,(x) = L’ {p,5>8,(x)dv,(p)
satisfies the conditions of Theorem 3.1 (a). Moreover it is not hard to prove
that
p<dv,Zdp.

Hence
sup E,(x) = sup J“ a,(x)dv(p) = J d,(x)dp .
PKS vSdp JG G

CoRrOLLARY 3.6. The dualisation map ¢ — @ has a natural extension to all
normal weights on M, given by the formula

¢ = (pon™1)eT.
Moreover

1) (o) =ig, 120,
and (@+y) =¢+.
(2) For xe K(G,M)

P(u(x*xx) = @((x**x)(e)) .

Proor. (1) is trivial. (2) follows from Theorem 3.1 (c).
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It is well known that when M ®,G is the crossed product of a von Neumann
algebra M with a discrete group G of automorphisms, then there exists a
normal conditional expectation ¢ from M®,G to n(M), given by

e(Z A(s)n(x(s») = n(x(e))

seG

for any M-valued function x on G, with finite support.

COROLLARY 3.7. Let M ®,G be the crossed product of a von Neumann algebra
by a discrete group of automorphisms. For any ¢ € P(M), the dual weight ¢ on
M®,G is given by

(ﬁ = (pog
where ¢ is the above normal, conditional expectation from M®,G to n(M).

Proor. Since G is discrete, the set of positive, definite functions majorized

by 6 has a largest element, namely

1 s=e

‘bo(s) = {0 ste.

Hence

) Tx = sup E,(x) = E, (x), xe (M®,G), .
Ko

By Theorem 3.1(a) it follows that E,,_is a conditional expectation from M ®,G
to n(M), and that

n(a) s=e
0 s¥e

E, (A(s)n(a) = {
for s € G and a € M. This completes the proof.

REMARK. Let T be the operator valued weight in Theorem 3.1, and assume
that G is not discrete. Then for any a € n(M), we have

T(a) = (sup @(e))-a = 00-a
QXK

Hence the restriction of T to n(M), is completely infinite.



140 UFFE HAAGERUP

REFERENCES

1. F. Combes, Poids sur une C*-algébre, J. Math. Pures Appl. 47 (1968), 57-100.
2. F. Combes, Poids associé a une algébre Hilbertienne a gauche, Compositio Math. 23 (1971),
49-77.
3. A. Connes, Une classification de facteurs de type 111, Ann. Sci. Ecole Norm. Sup. 4 série, 6
(1973), 133-252.
4. T. Digernes, Duality for weights on covariant systems and its applications, (Thesis), University of
California, Los Angeles, 1975.
5. J. Diximier, Les C*-algébres et leurs représentations (Cahier Scientifique 24), Gauthier—
Villars, Paris, 1964.
6. P. Eymard, L’algébre de Fourier d’une groupe localement compacte, Bull. Soc. Math. France 92
(1964), 181-236.
7. U. Haagerup, Operator valued weights in von Neumann algebras, To appear in J. Functional
Analysis.
8. U. Haagerup, On the dual weights for crossed products of von Neumann algebras 1, Math.
Scand. 43 (1978), 99-118.
9. M. Landstad, Duality for covariant systems, preprint, Trondheim, 1974.
10. W. Rudin, Fourier analysis on groups (Interscience Tracts in Pure and Applied Mathematics
12), Interscience Publishers, New York - London, 1960.
11. J. Sauvageot, Sur le type de produit croisé d'une algébre de von Neumann par une groupe
localement compacte d’automorphisms, C.R. Acad. Sci. Paris, Sér. A 278 (1974), 941-944.
12. M. Takesaki, Tomitas Theory of modular Hilbert algebras and its applications, Lecture Notes in
Mathematics 128), Springer-Verlag, Berlin - Heidelberg - New York, 1970.
13. M. Takesaki, The theory of operator algebras, Lecture notes, University of California, Los
Angeles, 1969.
14. M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type 111,
Acta Math. 131 (1973), 249-310.

UNIVERSITY OF ODENSE, DENMARK



