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ON THE DUAL WEIGHTS FOR
CROSSED PRODUCTS
OF VON NEUMANN ALGEBRAS I
Removing separability conditions

UFFE HAAGERUP

Introduction.

Let M®,G be the crossed product of a von Neumann algebra M and a lo-
cally compact group G (cf. [12]). By a modification of Digernes’ and Sauvageot’s
methods in [3], [4] and [10] we construct the dual weights on the crossed
product, without separability conditions on M or G. Also the commutation
theorem for crossed products [4, Theorem 3.14] is valid in the general case. In
the last section we prove that when G is abelian, the “dualisation” map: ¢ — @
is a bijection of the set of normal, faithful, semifinite (n.f.s.) weights on M onto
the set of nfs. weights on M®, G, which are invariant under the dual action.

1. Preliminaries.

1.1 Definition of the crossed product. Let M be a von Neumann algebra and
let a: G — aut (M) be a -weakly continuous action of a locally compact group
on M. A covariant representation of (M,G,qa) is a pair (n,4) of a normal,
nondegenerate representation m of M and a strongly continuous unitary
representation A of G, on a Hilbert space H, such that

n(x,(x)) = A@n(x)A(g)* xeM, geGC.

If M acts on a Hilbert space H one can define a covariant representation (r, 4)
of (M, G,a) on the Hilbert space H®L?(G)=L?*(G, H) by [12, definition 3.1]:

(r(x)0)(g) = o, ' (0)E(e) x €M, {e LG, H)
((®Q%)Mh) = ¢&™'h geG, {eLl)(GH).

The von Neumann algebra generated by n(M) and A(G) is called the crossed
product of M and G, and will be denoted M®,G.
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1.2 The canonical implementation of an automorphism group. Following [6]
we say that a von Neumann algebra M is on standard form if it acts of a
Hilbert space H, equipped with a conjugate linear isometric involution J and a
selfdual cone P, such that

(1) IMI=M'
2) JeJ=c*, ceMNM
() J¢=¢, CeP

@) xJx(P)<P, xeM.

When M is on standard form the group aut (M) of all *automorphisms of M
has a unique unitary implementation (the canonical implementation) g — u,
on H, such that for any g € aut (M)

(@) g(x)=uxuy, xeM
(b) uJ=Ju,
(c) u(P)=P

(cf. [6, Theorem 3.2]). If a: G — aut (M) is a g-weakly continuous action of a
locally compact group on M, then the canonical implementation g — u(g)

— u, of a is a strongly continuous unitary representation of G on H (cf. [6,
corollary 3.6]).

1.3 Relative modular theory. (Cf. [2, § 1] and [4, § 2]). Let M be a von
Neumann algebra. The set of normal, faithful, semifinite (n.f.s) weights on M is
denoted P(M). For ¢ € P(M) we let (n,, H, A,) be the representation of M
induced by ¢. For ¢,¢ € P(M) the map

Ay(x) > A,(x*) xen,Nnd

is preclosed from H, to H, and its closure S, , has the polar decomposition
Sy.0=Jy. 04}, ,- Moreover

v.o = (DY: Do) 4% .
Following [3] we put
a¥'®(x) = (DY: Dp)o?(x) = o!(x)(DY: Dg), xe€M, ¢,y € P(M).

A simple computation shows that ¢t — ¢¥'? is a one parameter ‘group of
isometries on M, and that

ol ?(xy) = o' “(X)o7"*()), X,y €M, @,y,0 € P(M).

The closure P, of {n,(x)J,4,(x) | x € n,} is a selfdual cone in H,, such that
n,(M) is on standard form with respect to (H,,J,, P,), (cf. [6] and [4, lemma
2.5]). Assume now that M itself is on standard form with respect to (H,J, P).
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By the uniqueness of the standard form [6, Theorem 2.3] we can identify all the
Hilbert spaces H, with H in such a way that n, is the identity J,=J and P,
=P for any ¢ € P(M). Since the unitary operator

Vo = Jydyo = Jy 00

is the unique coupling operator of n, and =, for which V, ,(P,)=P, (cf. [4,
proposition 2.6]) we have v, ,=1 under the above identification. Hence J,, ,
=J for all ¢,y € P(M).

2. The commutation theorem for crossed products.

THEOREM 2.1 (cf. [4, Theorem 3.14]). Let M be a von Neumann algebra on a
Hilbert space H, and a: G — aut (M) a a-weakly continuous action of a locally
compact group on M. Let g — u(g) be a unitary representation of G on H such that

a(x) = u(@xu(@)* xeM, geG
and let U be the unitary operator on L?(G, H) given by

(U&)(g) = u(g)é(r) ¢eL*(G,H).
Then

(1) M®,G is generated by U*(M®1)U and 1®.%(G)

2) (M®,G) is generated by M'®1 and U*(1®@R(G)U where £ (G) and
R(G) are the von Neumann algebras associated with the left and right regular
representations of G on L*(G).

Throughout the paper we let a: G — aut (M) be a fixed o-weakly continuous~
action of a locally compact group on a von Neumann algebra M.

Lemma 2.2. The map GxM — M given by (g,x) — a,x is o-strong*-
continuous on bounded sets.

Proor. We may assume that M is on standard form. Let g — u(g) be the
canonical implementation of G on H. We have

a(x) = u(g)xu@)*, xeM,geG,

and g — u(g) is strongly continuous. Since strong and o-strong*-topology
coincide on the unitary group, and since the product is g-strong*-continuous
on bounded sets of B(H) we get the required result.

Let dg be a fixed Haarmeasure on G, and let 45(g) be the module function
on G.
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Lemma 2.3. Let K(G, M) be the space of o-strong*-continuous functions from
G to M with compact support.

(a) K(G,M) is an involutive algebra with product
(x=*y)(g) = L wx(gh)y(h™")dh, x,y € K(G,M)

and involution
x*(g) = 46(g) "oy, 'x(g™")* x € K(G,M)

(b) For x,y € K(G, M): (x*sy)(e)= [ x(g)*y(g) dg
(¢) K(G,M) is a two sided module over M with the following multiplications:

(x-a)(g) = x(g)a, xeK(G,M),ae M
(a-x)(@) = a; '(a)x(g), xeK(GM),aeM

(d) For x,ye K(G,M) and ae M
a-(xxy) = (@' x)*y, (x*y)-a = x*(y-a) and (x-a)f = a*-x*

(e) Let (m, A) be a covariant representation of (M, G,a). Then
px) = L Ag)n(x(g)) dg

defines a *representation of the involutive algebra K (G, M).

Moreover u(x-a)=u(x)n(a) and p(a-x)=n(@u(x) for x e K(G,M) and
ae M.

(f) The representation u maps K(G, M) onto a o-weakly dense subalgebra of
the von Neumann algebra generated by n(M) and A(G).

Proor. Let x € K(G, M). Since x has compact support, it follows from the
principle of uniform boundedness that sup,.¢|x(g)|<oo. Let now
x,y € K(G, M). Since the product in M is o-strong* continuous on bounded
sets, we get from lemma 2.2 that the function

z(g,h) = o,x(gh)y(h™?)

is a-strong* continuous from G x G to M. Moreover, it has compact support,
because gh € supp (x) and h™! € supp (y) imply that g € supp (x) supp (y) and
h e supp (y)~1. Let g, € G be fixed, and let p be a strong*-seminorm on M.
Then

p((x*y)(g)— (x*y)(go) = J . p(z(g, h)—z(go, b)) dh .
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Since (g, h) — p(z(g, h)—z(g,, h)) is a continuous real function on G x G with
compact support, the integral on the right side is a continuous function of
g € G. Hence

P((x*y)(8)— (x*y)(go)) > 0 for g — g, .

This proves that g— (xxy)(g) is strong* continuous. Since
supp (x *y) Ssupp (x) supp (), it follows that x+y € K(G, M).

The verification of the rest of lemma 2.3 is straight forward, and will be left
to the reader (compare with [4, § 3] and [10, p. 942]).

ReMark. The above algebra K(G, M) is analogue of L'(G, A) used in the
crossed product construction for C*-algebras (cf. [5]). However, it is more
convenient to define the algebraic structure of K(G, M) such that the map
x = [gA(g)n(x(g))dg is a *representation instead of x — [gn(x(g)A(g)dg as
in [5].

In the following we let (=, ) be the covariant representation of (M, G, o) used
in the crossed product construction (cf. § 1.1), and we let u be the associated
representation of K(G,M). We let K(G,H) denote the subset of L?(G,H)
consisting of continuous functions from G to H with compact support. Note
that K(G, H) is dense in L*(G, H).

LEmMMA 2.4. Let x € K(G,M) and ¢ € K(G, H), then u(x)é € K(G, H) and

(u(x)¢)(g) = L ax(gh)s(h™ ") dh

Proor. It is easily seen that the integral on the right side defines an element
of K(G,H). Let n € K(G, H), then

(e ()1 n) ( ((Am(x(K)E)(g) 1 n(8)) dg) dk

JG G

= . ( . ((“g"kx(k))f(k—lg)l'I(g))dk) dg

= ( oapx(gh)é(h™ ") dh| n(g)) dg .

JG G
Hence (u(x)¢)(g)=Jc aux(gh)E(h™") dh.

We will now assume that the von Neumann algebra M is on standard form
with respect to (H,J, P). We may identify all the Hilbert spaces H,, ¢ € P(M)
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with H as in § 1.3. Hence n,=identity, J, ,=J for ¢,§ € P(M) and P,=P for
¢ € P(M).

Moreover we let g — u(g) be the canonical implementation of G on H. Let ¢
be a fixed nfs. weight on M, and put as usual

n,=f{aeM| pla*a)<oo} and m, = n¥n,.
We put
B, = K(G,M)'n, = span{x-a| x € K(G,M), aen,}.

Note that B, is a left ideal in K(G, M).

Since for y € K(G,M) and aen, we have y(glaen, and A,(y(g) a)
=y(g)4,(a) it follows that A,(x(g)) is defined for any x € B, and g € G, and
that the function

g — A,(x(g)

belongs to K (G, M) < L(G, H). Hence one can define a map A,,: B, — L*(G, H)
by

(A,(x)(8) = 4,(x(g)) -
Lemma 2.5. (1) For x € K(G,M) and y € B,,, A,(x*y)=p(x)4,()
(2) If x,y € B, then (* xx)(e) € m, and (A,(x)| 4,(») =@ ((* *x)(e)),

(3) u(B,N BY) is o-weakly dense in M®, G
4) 4,(B,N BY) is dense in L*(G, H).

Proor. (1) We may assume that y=z-a, z € K(G,M), a € n,. Applying
lemma 2.4 we get:

(A, (x*y)(g) = A,((x*2)(g)a)
= (x*z)(g)4,(a)

= J ayx(gh)z(h™1)A,(a) dh
G

= (u(x)¢)(g)
where
E(g) = z(g)4,(a) = A,((z a)(®) = (A,()(®) -

Hence A, (x*y)=pu(x)4,(y).
(2) Let x=x,-a and y=y,b, x;,y, € K(G,M), a,b € n,. Then

(Fxy)(g) = oy ' (b¥)(x}*y,)(g)a, g€G.
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Hence

(x*+y)(e) = b*(x¥ xy,)(e)a € nin, = m,.
Moreover

(Ap(x-a))() = A,(x1(g)a) = x,(g)4,(a) .
Thus

(4,001 4,) = L (x1(8)4,(a)] y1(8)4, (b)) dg

= j . o(b*y,(g)*x,(g)a)dg .

Since x — Y (b*xa) is a g-weakly continuous functional on M for a,b € n, we

get using lemma 2.3(c):
® (b*qc y1(8)*x,(g) dg)d)

= ¢(b*0i*x1)(@)a) = @(F *x)(e) .

(3) Note that B, N B:,2n* K(G,M)n,,
For a,b € n, and x € K(G, M) we have

p(b*-x-a) = n(b)*u(x)n(a) .

(A, ()1 A,7))

Since u(K (G, M)) is o-weakly dense in M®, G (lemma 2.3(f)), and since n,, is o-
weakly dense in M, it follows that ;{(BZﬂB,,) is o-weakly dense in M®, G.

(4) Let a,b e n, and let f be a continuous function on G, with compact
support. Since we may consider f as a function in K(G,M) we have
b*-f-a € B,N B. Moreover,

(A, (b*-f-a)(g) = A,(e; ' (B)*f (8)a) = o7 ' (B*)f (g)A4,(a)

(rB)*(A,()®))(8)
where we have identified L2(G, H) and H®L?*(G).
By taking a net (b)), in n,, that converges strongly to 1, it is seen that

A,(a)®fis in the closure of 71¢(B¢ n Bﬁ,) for f € K(G) and a € n,,. Since K(G) is
dense in L*(G) and A,(n,) is dense in H,=H, the lemma is proved.

LEMMA 2.6. The map (g,t) — (Dg-a,: D), is o-strong continuous from G x R
into the unitary group in M.

Proor. By [4, proposition 2.7] the map is separately continuous. (The
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separability conditions in [4] are not essential for the proof). The joint

continuity follows easily from the proof of [4, proposition 2.7] by using lemma
22.
Since the map g — (D@-oa,: Do), is continuous for any ¢ € R, and since

ol % (x) = (D@oay: De)of(x), xe€ M, geG
we can for each t € R define a map ¢f on K(G, M) by
(@?(X)(8) = 46(®)"a***(x(g)), x e K(G,M).

Lemma 2.7. (cf. [4, lemma 3.7]). (1) The family (¢f),.r is a one parameter
group af # automorphisms of K(G, M).
(2) For xe K(G,M)and ae M

of(x-a) = ¢f(x)-0f(a) and ¢f(a-x) = o{(a) ¢f(x)
(3) B, and B are invariant under of.
ProoF. (1) can be proved by a direct calculation as in the proof of [4, lemma

3.7]. It is easy to verify (2), and (3) follows from (2) because n, and n} are o-
invariant.

LemMma 2.8. There exists an injective selfadjoint operator Z¢ and a conjugate
linear isometric involution J on L*(G, H) such that
(d50)(@) = 4g(g)*4h., ,E(g), &€ L*(G,H),
JO@) = 45(e) fu(®) " J¢@™), ¢ e L*(G,H),
where g — u(g) is the canonical implementation of G.

Proor. Since 4%

voapp=(D@ooy: Dg),4% it follows that for each ¢ € R, the
formula

P2)(g) = Ag(g)'Alun, oE(@)

defines an operator on K(G, H). It is easily seen that u? can be extended to a
unitary operator on L?(G, H) given by the same formula. Moreover (u,),g is a
one parameter group. For &1 € K(G, H) we get:

}gg Wféin) = }gwg L (46()" 45, 55 (8) I n(g)) dg = L (&(g)In(g)dg .

Hence t — uf is weakly, and thus strongly continuous. This proves the
existence of 4,. It is easily seen that J is a conjugate linear isometry on
L*(G, H). Moreover for ¢ € L*(G,H)
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JI(@) = 468) *ulg) ™I (4g(g)*u(glE(R) = &(p)

because J and u(g) commutes (cf. section 1.2).

Let CZ(R) denote the space of C*-functions on R with compact support.
For ¢ € CZ(R) we put

I3 1 —izx
o(2) = P .[ o(x)e dx, zeC.

Note that ¢ is the analytic extension of the Fourier transformed of ¢. Since
¢ € C2 it follows that for any ne N and t € R

@(s+it)s|" — 0 for s - 00.
In particular [® |¢(s+if)|ds<oo for any t € R.
LemMa 2.9. Let K be a injective, positive selfadjoint (non necessarily bounded)

operator on a Hilbert space #. Let o. € R. For £,n1 € S the following conditions
are equivalent:

(1) £ e D(K*) and n=K?*¢
(2) For any ¢ € CX(R)

J GMK*ndt = j G(t+im)K"Edr .

-0 - 00

Proor. By the inversion formula for Fourier transformation we have

() = j " pedr

and
exp(x) = J o(t+io)e™dt .
Hence
o(logK) = J G(HK" dt (strongly)
K*p(logK) = f G(t+iw)K*dt  (strongly) .

Thus (2) is equivalent with
(3) For any ¢ € C®(R): K*p(log K)¢ =@ (log K)n.
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(1) = (3) is trivial because ¢(log K) K*< K*p(log K).
(3) = (1). Let (@,),en be a sequence of C®-functions with compact support,
such that ¢,(x) — 1 uniformly on compact sets. Put

¢ = ¢,(logK)l and 5, = ¢,(logK)n.
By (3) ¢, € D(K®) and n,=K%,. Since K* is closed, we get ¢ € D(K®) and 7
=K*¢.
LemMA 2.10. Let &, € L2(G,H) and « € R, such that £(g) € D(4,.,, ,) and
n(g)=4y.,, 5 (8) for almost any g € G. Then
teD(A% and n = A%¢.

Proor. Let ¢ € C®(R) and let { € L*(G, H). By lemma 2.9 we have

f P46 (g)* 4., (8) L (g)dt =

- 00

j B (¢ +i0) (A6 (8) 45.., E(2) | L (2)) dt

-0

for almost any g € G.
Integrating over G we get

00

J @(t)(ZzHIC)dt=J Gle+ia)(dig|)dt .

Hence by lemma 2.9, ¢ € D(J% and n= 4%

LemMA 2.11. The canonical implementation g — u(g) of G on H satisfies

u(g)(4,(x) = Apoar(@gx), x€nYy g€G.

Proor. Clearly the map 4,(x) — A(,,oa‘-x(agx), X € n,, can be extended to a
unitary operator v, on H. To show that u(g)=v,, we need only to prove that
(cf. § 1.2)

(@) ax=vxvf, xeM
(b) Joy,=v,J
(c) v, (P)=P.

For xe M and y € n,
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(@X)0gA,0) = (g0) Agugi ()
= Ageo1 (4 (x9)) = DA, (xY) = BxAL0) .
Hence (a,x)v,=0,x, x € M, g € G. This proves (a). For x € n,\n}
S Ag(X) = 0, A4,(x*) = Agoq-1(0px*)
= Spea; Ao (4X) = S, 10, 4,(X)
Since A,(n, Nny) is a core of S, for any Y € P(M) we get v,S,05=S,.4;1.
By polar decompostion it follows that
vedoVf = dyqr  and v Jof = J
Hence (b). By section 1.3 we have
P=P,={xJA,x)| xen,) .
Thus
v(P) = {vxJA4,(x)| xen,}
= {(ax)Jv,4,(x) ] xen,}
= {(0gx)J gy (2gX) | xen,)
= (W Agea; O) | ¥ € ngesi}” = Ppugit = P
This proves (c). Hence u(g)=vg for any g € G.

Lemma 2.12. (1) A, =A,(B, N B) is a left Hilbert algebra with product
1,00°A,0) = A,(x+)  xyeB,NB}
and involution
A,x)f = A,(x xeB,N B
(2) The closure of the involution % in L*(G, H) has the polar decomposition
3, =73
(3) For x € B,NB} and t € R
Aglof(x)) = 35A,(x)
4 2U,)=M®,G.

ProoF. (3) For x € B,NB} and t € R
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A,(ef(x)(®)

I

A, (46(g)"a? % (x(g))
46(8)" (Dgoa,: Do), A, (0?x(g))
4 G (g)it (D(P o0t,: D‘P):Ago oy (pAq)(x (g))

(A54,())(®) -
(2) For x € B,,,ﬂBz we get using lemma 2.11:

A, (@) = 4c(e) g T4, (x*(g7")
= Ag(@)*Jug ' A,(ax(8)*)
= 4@ 4.4 (x(8)*)
= A6(8)4 S, pAo(x(8))
= A6(@)* 4.4, 0(A,(0)(g) -
Hence by lemma 2.10 4,(x) € D(42) and
JA,(x*) = 434,(x)

I

]

I

or equivalently
A,(x* = JAEA, (%) .

Thus # is preclosed and its closure §, satisfies §,<J 4%

By (3) and lemma 2.5 (4) it follows that A, =A,(B, N BE) is a A-invariant,
dense subset of L2(G, H). Let g be the projection on ((1+4,)*%,)*".

Since g commutes with 4% for any t € R, we have

g+t € (1+4,)q.
Hence for any £ € U, ‘
(1+4,)4(qé) = q1+4,)%¢ =0,

which proves that g§ =0 for any ¢ € U,. Hence ¢=0 and thus (1 +Z¢)*QI¢ is
dense in L*(G, H). Therefore U, is a core of 4%. Hence S,=J4% and by the
uniqueness of the polar decomposition we get (2).

(1). We check the four conditions in the definition of a left Hilbert algebra
(cf. [11, definition 2.1]). By lemma 2.5 (1) we have

Ag(xxy) = u(0 4,00, xyeB,NB}.

Hence the map n — &n is continuous for any ¢ € A, Moreover n,(ﬂe,(x))
=u(x), x € B,N B}, It follows from the formula u(x*)=pu(x)*, x € K(G, M)
that

Gl = mlg) Vénled,.
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Since A,(x*y)=p(x)4,(), x,y € B,NBY and since u(B,NBY) is g-weakly
dense in M®, G by lemma 2.5 (3) it follows that (¥,)? is dense in L*(G, H).
From (2) we get that # is preclosed. Hence %, is a left Hilbert algebra.

(4) We have m,(¥U,)=pu(B,N Bf) is g-weakly dense in M®,G. Hence £ (U,
-M®,G.

Remark. The method in the proof of lemma 2.12 (2) can be used to prove
that condition VIII in the definition of modular Hilbert algebras (cf. [11,
Definition 2.17):

(1+4@®))Ais dense in A VteR
can be deduced from the other seven conditions.

ProoF oF THEOREM 2.1. Let ! and r be the left and right regular
representations of G on L*(G):

(@ f)(h) = f(g™'h), fe L*(G)

(r(@)f)h) = At f(hg),  fe L*(G).

Put (U)(g)=u(g)é(g), & € L*(G, H), then U is a unitary operator on L*(G, H).
We get

(r(x)E)(g) = (o7 'x)E(g)

u(g)*xu(g)l(g)
(U*x®DU¢)(g), ¢ e L*(GH).
Hence n(xj=U*(x®1)U, x € M. Moreover

(@8 h) = £~ 'h) = (1®E)K)(H) -

Hence M®, G = {n(M),A(G)}" is generated by U*(M®1)U and 1® Z(G).

(2) As in the proof of [4, Theorem 3.14] one can reduce the general case, to
the case where M is on standard form, and u(g) is the canonical
implementation of G. Let U, be the Hilbert algebra on L?(G, H) constructed in
lemma 2.12. We have

M®,G = Z(HU,).
Hence by the fundamental theorem of the Tomita-Takesaki theory we have
M®,G) = J(M®,6)]
where
JO(@) = 4@ *u(@® '™, ¢el’(GH).

(cf. lemma 2.11 (2)). An elementary calculation shows that (cf. proof of [4,
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corollary 3.13]):
In(x)JE)(g) = JxJE(®), xeM,geG.

and
(J2@JO (M) = Ac(e)* *u(g)é(hg), gheG.
Hence
Jn(M)] = JMJ)®1 = M'®1
and

JA(g)] = u(@®r(g) = U*(1®r(e)U, geG,
which proves that (M®, G)' is generated by M'®1 and U*(1Q%(G))U.

3. The dual weights on M®,G.
DEeFINITION 3.1. Let ¢ € P(M). The weight $ on M®, G associated with the

left Hilbert algebra 2, in lemma 2.12 is called the dual weight of ¢.
THEOREM 3.2. (1) For any x € B,
P(u(x**x) = ((x**x)(e)) -

(2) The automorphism group o? is given by

o?(n(x)) = n(6?(x)), xeM, teR

a?(A(®)) = 46()"A(@n((Dp-o,: Dg)), geG, teR.
(3) For ¢,y € P(M)

(DY: D), = n((Dy: Dy)), teR.

Proor. (1) By [1, Definition 2.12] we have for x € £(G),:

NEN?  if x=m(&)*n, (&), & € L2(G, H), is left bounded
00 otherwise .

¢(x) = {
Let x € B,. We can choose a net (a;),.; of operators in n}, that converges
strongly to 1. For any i € ]
ax en* K(G,M)-n, = B, N B,
Moreover u(a;x)=mn(a)u(x) — u(x) strongly and
A (@) = n(a)ld,(x) > A,(x) in L*(G,H).
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Since A,(a;x) € A, it follows that A,(a;x) is left bounded, and (A, (a;x))
=p(a;x) for any i € I. Let n € A, (the associated right Hilbert algebra). Then

nr(r’)/‘i(p(x) = hm nr(r’)ﬁ(p(aix) = hm#(a:x)ﬂ = H(x).r' .
Hence Z,,,(x) is left bounded and n,(fl,,,(x))=p(x). Hence by lemma 2.5 (2)
(pF*x) = @) *uX) = (A,x)]1,x) = o((x*xx)(e)) .

(2) follows from the equation ¢?(x)=A4"x4", x € M®,G. (cf. proof of [4,
corollary 3.10] and [10, proposition 1]).
For the proof of (3) we need some lemmas:

LemmA 3.3. Let w be a nfs. weight on M®,G that satisfies (1) and (2) in
theorem 3.2 (with @ replaced by w) then w={.

Proor. Using (2) we get for x € K(G, M):

o (u(x) = f (ePHe)ofr(xe))de

= L A46(g)' A(@n((Dpoay: D))ot (x)dg = pu(ef(x)) .

Since B, and B, are gf-invariant by lemma 2.7 it follows that u(B%B,) is a o?-
invariant subalgebra of nfng;=m; Moreover p(BiB,,) is og-weakly dense in
M®,G. By the assumptions w and @ coincide on

u(BtB,) = span {u(x*+x)| xeB,}.
Moreover w and ¢ has the same modular automorphism group. Hence by [9,

proposition 5.9] it follows that w=¢.

Let F, be the algebra of 2 x 2-matrices, and let (¢;5); ;=1,2 be the natural
basis for F,.

We consider the crossed product of M®F, and G with respect to the action
B=a®i (i=identity on F,). With obvious identifications we have

(MQF,)®;G = (MQ,G)®F, .

LemMa 3.4. Let @,y € P(M) and define a nfs. weight 6 on M®F, by
!
9(2 x;®e;) = @(x1,)+Y(xyy) for z x;®e;j € (MRF,),
then

(DOB,: DO), = (Dpoa,: Do) ®eys + (Dyoay: DY)®e; -

Math. Scand. 43 — 8
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Proor. For 3 x;;®e; € (MQF,), we get:

(9°ﬂg)(z X;;®e;) = (@oay)(xyq)+ (Yoay)(x,,) -

Hence by [2, lemma 1.2.2] it follows that 1®e;;, i=1,2, are in the centralizer
for 0B, for any g € G. Using the formula (cf. § 1.3)

of'?(xy) = a¥'*(0e*?()  x,y €M, ¢,y,w € P(M)
twice we get:
0?“"'(1®eu)0?°”"’(1 @eii)o'?(l ®ey)
(1®e)o!"P’(1®e)(1®e;) .

of Pl (1®ey)

Hence
o Pr9(1®e;) = u;®e; for some ;e M, i=1,2.

Using the K.M.S. conditions for (Dy: De), ([4 proposition 2.2]) one gets easily
u, = (D@oo,: Do), Similarly u,= (Dyoa,: Dy),. Hence:

(D82B,:DB), = a}*Pef(1) = o} Pel(1®eyy) + 070 (1®e,))
= (Dgoa,: Do), Qe;, + (DY oay: DY), ®e,, .

I

LEMMA 3.5. Let ¢, Y and 0 be as in lemma 3.4, and let ¢, § and § be their dual
weights. Then

G(Z Vi ®e;) = A1) +¥ ()  for Y yii®e; € (M®,G)QF,), .

Proor. Let (,4) be the covariant representation of (M®F,,G,p) that

generates the crossed product (M®F,)®,G=(M®,G)®F,. We have
7Y x;®e;) = ) n(x;)@e;, x;€M
g = A(e®1, geGC.
The associated representation i of K(G,M®F,)=K(G, M)®F, is given by
EQ y;®ey) = Y n(i)®e;; v € K(GM).
By Theorem 3.2 (1) we get
d(1®e;) = 7(?(1®ey) = A(1®e;) = 1®e;, i=1,2.

Hence 1®e,, and 1®e,, are in the centrilizer of 0. Thus by [9, proposition

4.1]

2
) = Y 0((1®e)x(1®ey), xe€ (M®,G)®F,,

i=1
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or equivalently
9(2 xij®eij) = W1(xy1)+@;,(x;,), X; EM®,G
where
w;(x) = 0(x®e;), i=1,2,

are n.fs. weights on M®,G. We will prove that w, = ¢ and w, =y by the use of
lemma 3.3. Using Theorem 3.1(2) we get for x € M:

af"(n(x))@e“ = G?(n(x)@e“) = a?(ﬁ(x@e“))
= #(o? (x®e,,)) = 7(o?(X)®e;,) = n(0?(X) e, .

Hence 62! (n(x))=0?(n(x)), ¥V x € M.
Moreover by lemma 3.4

o2 (1(@)®e;;, = ol(ig)®e,) = (@)@ 1)ol(1®e))
S (A(@)(1®e,) = 46(g)*(g)7((DO<B,: DO))(1Re,,)
A6(@)"4(g)n((D@oay: DO))®ey, = of (1(g)®ey, -

Hence o7 (A(g))=0? (4(2))
Let x € B,=K(G,M)-n,. Then

x®ey; € (K(GaM)U@en))'(n.p@en) € K(G, M®F,)'ny = B,

because n,®e;, =n,. Put y=x*xx. Then
’ y®ey; = (x®e, )t (x®ey,) .
Hence by Theorem 3.1(1)
o, (u(x* +x)) = A(u()®e;;) = H(n(y®eyy)
= J((y®e;y)(e) = 0(y()®e1;) = p((x*+x)() -

Hence w, =@ by lemma 3.3. Similarly w,=1. This completes the proof.

END OF THE PROOF OF THEOREM 3.2. (3). Let @, ¥ and 8 be as in lemma 3.5.
Then by [2, lemma 1.2.2] and theorem 3.2(2) we get

(DY:D$),®e;; = ol(1®ey) = o) (7(1®e,y))
= 7—‘(‘7?(1®ez1)) = ﬁ((D'/“D‘P):®921) = n((D‘l/:D‘p)r)®eZI .

Hence (3) is proved.

When G is an abelian group, one can define a dual action & of the dual
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group G on M®,G (cf. [12, definition 4.1]). The automorphisms d,pe G can
be characterized by their action on the generators

d,(n(x)) = n(x), xeM,peG

8,(4(®) = <p.g>A(g), g€G, peC.

The following lemma is due to Landstad [8, § 2.5 Theorem 2]. For convenience
we will give a short proof, using the same ideas.

LemMmaA 3.6.

(M) = {x e M®,G | d,(x) = x, Vpe G}.

Proor. Put
N={xeM®,G| d,(x) =x, Vpe G}.

Clearly n(M)< N. We may assume that M is represented on a Hilbert space H
such that a: G — aut (M) has a strongly continuous unitary implementation
g — u(g). By [8, equation 2.13] we get

(M) = M'®1) N (U*(1®2Z(G)U) N (1QL®(G)Y

where (U¢)(g)=u(g)¢(g), ¢ € L*(G, H).
By the commutation Theorem (Theorem 2.1) we have

N € M®,G < (M'®1y N (U*(1QR(G)UY

(note that this inclusion can be proved by elementary means).
Since &, is implemented by the unitary u(p) given by

(#(P)E)(©) = <{p,8>¢(g)

and since u(p), p € G generates 1QL*(G), we have N ¢ (1®L>(G)). Hence
N g n(M). This completes the proof.

THEOREM 3.7. Let M®,G be the crossed product of a von Neumann algebra
with an abelian locally compact group G. The map ¢ — & is a bijection of P(M)
onto the set of nfs. weights on M®,G, that are invariant under the dual action.

Proor. Let ¢ € P(M). Then $ is d-invariant (same proof as in [4,
proposition 4.1]). It follows from Theorem 3.2(3) that the map ¢ — ¢ is
injective.

Let w be an d-invariant weight on M®, G, and choose ¢ € P(M). Since both
¢ and w are d-invariant we get by [4, corollary 2.3] that
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4,((Dw:D@)) = (Dw:DP), peG.

Hence (Dw:D@), € n(M) by lemma 3.6. Put u,=n"'((Dw: D@),). We have by
Theorem 3.2(2) that

n(usr) = (Do:D@),,, = (Dw:D§)o?(Dw:DP),
= n(u,0?(u,)) .
Hence by [2, Theorem 1.2.4] there exists a n.f.s. weight  on M, such that
(Dy:De), = u, teR.
By Theorem 3.2(3) it follows that
(DY:D§), = n(u) = (Dw:D@), .

Hence ¢ =w. This proves that the map ¢ — @ is surjective.

ReEMARK. In a subsequent paper we will give an alternative construction of
the dual weights, by the use of operator valued weights [7]. It will follow that
the map ¢ — ¢ has a natural extension to all normal weights on M, such that

(p+y) = ¢+y .

Moreover we obtain a slight extension of Theorem 3.2(1) namely

P(u(x**x)) = o((**xx)(e), x e K(GM).
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