ON THE DUAL WEIGHTS FOR CROSSED PRODUCTS OF VON NEUMANN ALGEBRAS I

Removing separability conditions

UFFE HAAGERUP

Introduction.

Let $M \otimes_{\alpha} G$ be the crossed product of a von Neumann algebra M and a locally compact group G (cf. [12]). By a modification of Digernes' and Sauvageot's methods in [3], [4] and [10] we construct the dual weights on the crossed product, without separability conditions on M or G. Also the commutation theorem for crossed products [4, Theorem 3.14] is valid in the general case. In the last section we prove that when G is abelian, the "dualisation" map: $\varphi \to \tilde{\varphi}$ is a bijection of the set of normal, faithful, semifinite (n.f.s.) weights on M onto the set of n.f.s. weights on $M \otimes_{\alpha} G$, which are invariant under the dual action.

1. Preliminaries.

1.1 Definition of the crossed product. Let M be a von Neumann algebra and let $\alpha: G \to \text{aut } (M)$ be a σ -weakly continuous action of a locally compact group on M. A covariant representation of (M, G, α) is a pair (π, λ) of a normal, nondegenerate representation π of M and a strongly continuous unitary representation λ of G, on a Hilbert space H, such that

$$\pi(\alpha_g(x)) = \lambda(g)\pi(x)\lambda(g)^* \quad x \in M, g \in G.$$

If M acts on a Hilbert space H one can define a covariant representation (π, λ) of (M, G, α) on the Hilbert space $H \otimes L^2(G) = L^2(G, H)$ by [12, definition 3.1]:

$$(\pi(x)\xi)(g) = \alpha_g^{-1}(x)\xi(g) \qquad x \in M, \ \xi \in L^2(G, H)$$
$$(\lambda(g)\xi)(h) = \xi(g^{-1}h) \qquad g \in G, \ \xi \in L^2(G, H).$$

The von Neumann algebra generated by $\pi(M)$ and $\lambda(G)$ is called the crossed product of M and G, and will be denoted $M \otimes_{\alpha} G$.

Received November 15, 1977.

- 1.2 The canonical implementation of an automorphism group. Following [6] we say that a von Neumann algebra M is on standard form if it acts on a Hilbert space H, equipped with a conjugate linear isometric involution J and a selfdual cone P, such that
 - (1) JMJ = M'
 - (2) $JcJ = c^*$, $c \in M \cap M'$
 - (3) $J\xi = \xi$, $\xi \in P$
 - (4) $xJx(P) \subseteq P$, $x \in M$.

When M is on standard form the group aut (M) of all *automorphisms of M has a unique unitary implementation (the *canonical* implementation) $g \to u_g$ on H, such that for any $g \in \text{aut } (M)$

- (a) $g(x) = u_g x u_g^*$, $x \in M$
- (b) $u_g J = J u_g$
- (c) $u_g(P) = P$
- (cf. [6, Theorem 3.2]). If $\alpha: G \to \text{aut } (M)$ is a σ -weakly continuous action of a locally compact group on M, then the canonical implementation $g \to u(g) \to u_{\alpha_g}$ of α is a strongly continuous unitary representation of G on H (cf. [6, corollary 3.6]).
- 1.3 Relative modular theory. (Cf. [2, § 1] and [4, § 2]). Let M be a von Neumann algebra. The set of normal, faithful, semifinite (n.f.s) weights on M is denoted P(M). For $\varphi \in P(M)$ we let $(\pi_{\varphi}, H_{\varphi}, \Lambda_{\varphi})$ be the representation of M induced by φ . For $\varphi, \psi \in P(M)$ the map

$$\Lambda_{\varphi}(x) \to \Lambda_{\psi}(x^*) \quad x \in n_{\varphi} \cap n_{\psi}^*$$

is preclosed from H_{φ} to H_{ψ} and its closure $S_{\psi,\,\varphi}$ has the polar decomposition $S_{\psi,\,\varphi} = J_{\psi,\,\varphi} \Delta_{\psi,\,\varphi}^{\frac{1}{2}}$. Moreover

$$\Delta^{it}_{\psi,\,\varphi} = (D\psi \colon D\varphi)_t \Delta^{it}_{\varphi} .$$

Following [3] we put

$$\sigma_t^{\psi,\,\varphi}(x) \,=\, (D\psi\colon D\varphi)_t\sigma_t^\varphi(x) \,=\, \sigma_t^\psi(x)(D\psi\colon D\varphi)_t, \qquad x\in M, \ \varphi,\psi\in P(M)\;.$$

A simple computation shows that $t \to \sigma_t^{\psi, \varphi}$ is a one parameter group of isometries on M, and that

$$\sigma_t^{\psi,\,\varphi}(xy) \,=\, \sigma_t^{\psi,\,\omega}(x) \sigma_t^{\omega,\,\varphi}(y), \qquad x,y \in M, \ \varphi,\psi,\omega \in P(M) \;.$$

The closure P_{φ} of $\{\pi_{\varphi}(x)J_{\varphi}\Lambda_{\varphi}(x) \mid x \in n_{\varphi}\}$ is a selfdual cone in H_{φ} , such that $\pi_{\varphi}(M)$ is on standard form with respect to $(H_{\varphi}, J_{\varphi}, P_{\varphi})$, (cf. [6] and [4, lemma 2.5]). Assume now that M itself is on standard form with respect to (H, J, P).

By the uniqueness of the standard form [6, Theorem 2.3] we can identify all the Hilbert spaces H_{φ} with H in such a way that π_{φ} is the identity $J_{\varphi} = J$ and $P_{\varphi} = P$ for any $\varphi \in P(M)$. Since the unitary operator

$$v_{\psi,\,\varphi} = J_{\psi}J_{\psi,\,\varphi} = J_{\psi,\,\varphi}J_{\varphi}$$

is the unique coupling operator of π_{φ} and π_{ψ} for which $V_{\psi, \varphi}(P_{\varphi}) = P_{\psi}$ (cf. [4, proposition 2.6]) we have $v_{\psi, \varphi} = 1$ under the above identification. Hence $J_{\psi, \varphi} = J$ for all $\varphi, \psi \in P(M)$.

2. The commutation theorem for crossed products.

THEOREM 2.1 (cf. [4, Theorem 3.14]). Let M be a von Neumann algebra on a Hilbert space H, and $\alpha: G \to \operatorname{aut}(M)$ a σ -weakly continuous action of a locally compact group on M. Let $g \to u(g)$ be a unitary representation of G on H such that

$$\alpha_g(x) = u(g)xu(g)^* \quad x \in M, g \in G$$

and let U be the unitary operator on $L^2(G, H)$ given by

$$(U\xi)(g) = u(g)\xi(g)$$
 $\xi \in L^2(G, H)$.

Then

- (1) $M \otimes_{\alpha} G$ is generated by $U^*(M \otimes 1)U$ and $1 \otimes \mathcal{L}(G)$
- (2) $(M \otimes_{\alpha} G)'$ is generated by $M' \otimes 1$ and $U^*(1 \otimes \mathcal{R}(G))U$ where $\mathcal{L}(G)$ and $\mathcal{R}(G)$ are the von Neumann algebras associated with the left and right regular representations of G on $L^2(G)$.

Throughout the paper we let $\alpha: G \to \operatorname{aut}(M)$ be a fixed σ -weakly continuous action of a locally compact group on a von Neumann algebra M.

LEMMA 2.2. The map $G \times M \to M$ given by $(g, x) \to \alpha_g x$ is σ -strong*-continuous on bounded sets.

PROOF. We may assume that M is on standard form. Let $g \to u(g)$ be the canonical implementation of G on H. We have

$$\alpha_g(x) \,=\, u(g)xu(g)^*, \quad x \in M, \ g \in G \ ,$$

and $g \to u(g)$ is strongly continuous. Since strong and σ -strong*-topology coincide on the unitary group, and since the product is σ -strong*-continuous on bounded sets of B(H) we get the required result.

Let dg be a fixed Haarmeasure on G, and let $\Delta_G(g)$ be the module function on G.

LEMMA 2.3. Let K(G, M) be the space of σ -strong*-continuous functions from G to M with compact support.

(a) K(G, M) is an involutive algebra with product

$$(x*y)(g) = \int_G \alpha_h x(gh)y(h^{-1}) dh, \quad x, y \in K(G, M)$$

and involution

$$x^*(g) = \Delta_G(g)^{-1}\alpha_g^{-1}x(g^{-1})^* \quad x \in K(G, M)$$

- (b) For $x, y \in K(G, M)$: $(x^{\sharp} * y)(e) = \int_G x(g) * y(g) dg$
- (c) K(G, M) is a two sided module over M with the following multiplications:

$$(x \cdot a)(g) = x(g)a,$$
 $x \in K(G, M), a \in M$
 $(a \cdot x)(g) = \alpha_g^{-1}(a)x(g),$ $x \in K(G, M), a \in M$

(d) For $x, y \in K(G, M)$ and $a \in M$

$$a \cdot (x * y) = (a \cdot x) * y$$
, $(x * y) \cdot a = x * (y \cdot a)$ and $(x \cdot a)^{*} = a^{*} \cdot x^{*}$

(e) Let (π, λ) be a covariant representation of (M, G, α) . Then

$$\mu(x) = \int_G \lambda(g)\pi(x(g)) dg$$

defines a *representation of the involutive algebra K(G, M).

Moreover $\mu(x \cdot a) = \mu(x)\pi(a)$ and $\mu(a \cdot x) = \pi(a)\mu(x)$ for $x \in K(G, M)$ and $a \in M$.

(f) The representation μ maps K(G, M) onto a σ -weakly dense subalgebra of the von Neumann algebra generated by $\pi(M)$ and $\lambda(G)$.

PROOF. Let $x \in K(G, M)$. Since x has compact support, it follows from the principle of uniform boundedness that $\sup_{g \in G} ||x(g)|| < \infty$. Let now $x, y \in K(G, M)$. Since the product in M is σ -strong* continuous on bounded sets, we get from lemma 2.2 that the function

$$z(g,h) = \alpha_h x(gh) y(h^{-1})$$

is σ -strong* continuous from $G \times G$ to M. Moreover, it has compact support, because $gh \in \text{supp}(x)$ and $h^{-1} \in \text{supp}(y)$ imply that $g \in \text{supp}(x)$ supp (y) and $h \in \text{supp}(y)^{-1}$. Let $g_0 \in G$ be fixed, and let p be a strong*-seminorm on M. Then

$$p((x*y)(g)-(x*y)(g_0)) \leq \int_G p(z(g,h)-z(g_0,h)) dh.$$

Since $(g, h) \to p(z(g, h) - z(g_0, h))$ is a continuous real function on $G \times G$ with compact support, the integral on the right side is a continuous function of $g \in G$. Hence

$$p((x*y)(g) - (x*y)(g_0)) \to 0$$
 for $g \to g_0$.

This proves that $g \to (x * y)(g)$ is strong* continuous. Since supp $(x * y) \subseteq \text{supp } (x) \text{ supp } (y)$, it follows that $x * y \in K(G, M)$.

The verification of the rest of lemma 2.3 is straight forward, and will be left to the reader (compare with [4, § 3] and [10, p. 942]).

REMARK. The above algebra K(G,M) is analogue of $L^1(G,A)$ used in the crossed product construction for C*-algebras (cf. [5]). However, it is more convenient to define the algebraic structure of K(G,M) such that the map $x \to \int_G \lambda(g)\pi(x(g))dg$ is a *representation instead of $x \to \int_G \pi(x(g))\lambda(g)dg$ as in [5].

In the following we let (π, λ) be the covariant representation of (M, G, α) used in the crossed product construction (cf. § 1.1), and we let μ be the associated representation of K(G, M). We let K(G, H) denote the subset of $L^2(G, H)$ consisting of continuous functions from G to H with compact support. Note that K(G, H) is dense in $L^2(G, H)$.

LEMMA 2.4. Let $x \in K(G, M)$ and $\xi \in K(G, H)$, then $\mu(x)\xi \in K(G, H)$ and

$$(\mu(x)\xi)(g) = \int_G \alpha_h x(gh)\xi(h^{-1}) dh$$

PROOF. It is easily seen that the integral on the right side defines an element of K(G, H). Let $\eta \in K(G, H)$, then

$$(\mu(x)\xi|\eta) = \int_{G} \left(\int_{G} \left((\lambda(k)\pi(x(k))\xi)(g)|\eta(g) \right) dg \right) dk$$

$$= \int_{G} \left(\int_{G} \left((\alpha_{g^{-1}k}x(k))\xi(k^{-1}g)|\eta(g) \right) dk \right) dg$$

$$= \int_{G} \left(\int_{G} \alpha_{h}x(gh)\xi(h^{-1}) dh|\eta(g) \right) dg.$$

Hence $(\mu(x)\xi)(g) = \int_G \alpha_h x(gh)\xi(h^{-1}) dh$.

We will now assume that the von Neumann algebra M is on standard form with respect to (H, J, P). We may identify all the Hilbert spaces H_{φ} , $\varphi \in P(M)$

with H as in § 1.3. Hence π_{φ} = identity, $J_{\psi, \varphi} = J$ for $\varphi, \psi \in P(M)$ and $P_{\varphi} = P$ for $\varphi \in P(M)$.

Moreover we let $g \to u(g)$ be the canonical implementation of G on H. Let φ be a fixed n.f.s. weight on M, and put as usual

$$n_{\varphi} = \{a \in M \mid \varphi(a^*a) < \infty\}$$
 and $m_{\varphi} = n_{\varphi}^* n_{\varphi}$.

We put

$$B_{\alpha} = K(G, M) \cdot n_{\alpha} = \operatorname{span} \{x \cdot a \mid x \in K(G, M), a \in n_{\alpha} \}$$

Note that B_{φ} is a left ideal in K(G, M).

Since for $y \in K(G, M)$ and $a \in n_{\varphi}$ we have $y(g)a \in n_{\varphi}$ and $\Lambda_{\varphi}(y(g) \cdot a) = y(g)\Lambda_{\varphi}(a)$ it follows that $\Lambda_{\varphi}(x(g))$ is defined for any $x \in B_{\varphi}$ and $g \in G$, and that the function

$$g \to \Lambda_{\omega}(x(g))$$

belongs to $K(G, M) \subseteq L^2(G, H)$. Hence one can define a map $\tilde{\Lambda}_{\varphi}: B_{\varphi} \to L^2(G, H)$ by

$$(\tilde{\Lambda}_{\varphi}(x))(g) = \Lambda_{\varphi}(x(g)).$$

Lemma 2.5. (1) For $x \in K(G, M)$ and $y \in B_{\varphi}$, $\tilde{\Lambda}_{\varphi}(x * y) = \mu(x)\tilde{\Lambda}_{\varphi}(y)$

- (2) If $x, y \in B_{\varphi}$ then $(y^{\sharp} * x)(e) \in m_{\varphi}$ and $(\tilde{\Lambda}_{\varphi}(x) | \tilde{\Lambda}_{\varphi}(y)) = \varphi((y^{\sharp} * x)(e))$,
- (3) $\mu(B_{\varphi} \cap B_{\varphi}^{\sharp})$ is σ -weakly dense in $M \otimes_{\alpha} G$
- (4) $\tilde{\Lambda}_{\varphi}(B_{\varphi} \cap B_{\varphi}^{\sharp})$ is dense in $L^{2}(G, H)$.

PROOF. (1) We may assume that $y = z \cdot a$, $z \in K(G, M)$, $a \in n_{\varphi}$. Applying lemma 2.4 we get:

$$(\tilde{\Lambda}_{\varphi}(x*y))(g) = \Lambda_{\varphi}((x*z)(g)a)$$

$$= (x*z)(g)\Lambda_{\varphi}(a)$$

$$= \int_{G} \alpha_{h}x(gh)z(h^{-1})\Lambda_{\varphi}(a) dh$$

$$= (\mu(x)\xi)(g)$$

where

$$\xi(g) = z(g)\Lambda_{\omega}(a) = \Lambda_{\omega}((z \cdot a)(g)) = (\tilde{\Lambda}_{\omega}(y))(g).$$

Hence $\tilde{\Lambda}_{\omega}(x * y) = \mu(x)\tilde{\Lambda}_{\omega}(y)$.

(2) Let $x = x_1 \cdot a$ and $y = y_1 \cdot b$, $x_1, y_1 \in K(G, M)$, $a, b \in n_{\varphi}$. Then

$$(x^{\sharp} * y)(g) = \alpha_{\sigma}^{-1}(b^{*})(x_{1}^{\sharp} * y_{1})(g)a, \quad g \in G.$$

Hence

$$(x^{\sharp} * y)(e) = b^*(x_1^{\sharp} * y_1)(e)a \in n_{\varphi}^* n_{\varphi} = m_{\varphi}.$$

Moreover

$$(\tilde{\Lambda}_{\varphi}(x_1 \cdot a))(g) = \Lambda_{\varphi}(x_1(g)a) = x_1(g)\Lambda_{\varphi}(a)$$
.

Thus

$$\begin{split} \left(\tilde{\Lambda}_{\varphi}(x) \,|\, \tilde{\Lambda}_{\varphi}(y)\right) &= \int_{G} \left(x_{1}(g) \Lambda_{\varphi}(a) \,|\, y_{1}(g) \Lambda_{\varphi}(b)\right) dg \\ &= \int_{G} \varphi(b^{*}y_{1}(g)^{*}x_{1}(g)a) \,dg \;. \end{split}$$

Since $x \to \psi(b^*xa)$ is a σ -weakly continuous functional on M for $a, b \in n_{\varphi}$ we get using lemma 2.3(c):

$$(\tilde{\Lambda}_{\varphi}(x) | \tilde{\Lambda}_{\varphi}(y)) = \varphi \left(b^* \left(\int_G y_1(g)^* x_1(g) dg \right) a \right)$$
$$= \varphi \left(b^* (y_1^{\sharp} * x_1)(e) a \right) = \varphi (y^{\sharp} * x)(e) .$$

(3) Note that $B_{\varphi} \cap B_{\varphi}^{\sharp} \supseteq n_{\varphi}^{*} \cdot K(G, M) \cdot n_{\varphi}$. For $a, b \in n_{\varphi}$ and $x \in K(G, M)$ we have

$$\mu(b^* \cdot x \cdot a) = \pi(b)^* \mu(x) \pi(a) .$$

Since $\mu(K(G, M))$ is σ -weakly dense in $M \otimes_{\alpha} G$ (lemma 2.3(f)), and since n_{φ} is σ -weakly dense in M, it follows that $\mu(B_{\varphi}^{\sharp} \cap B_{\varphi})$ is σ -weakly dense in $M \otimes_{\alpha} G$.

(4) Let $a, b \in n_{\varphi}$ and let f be a continuous function on G, with compact support. Since we may consider f as a function in K(G, M) we have $b^* \cdot f \cdot a \in B_{\varphi} \cap B_{\varphi}^{\sharp}$. Moreover,

$$(\tilde{\Lambda}_{\varphi}(b^*\cdot f\cdot a))(g) = \Lambda_{\varphi}(\alpha_g^{-1}(b)^*f(g)a) = \alpha_g^{-1}(b^*)f(g)\Lambda_{\varphi}(a)$$
$$= (\pi(b)^*(\Lambda_{\varphi}(a)\otimes f))(g),$$

where we have identified $L^2(G, H)$ and $H \otimes L^2(G)$.

By taking a net $(b_i)_{i\in I}$ in n_{φ} , that converges strongly to 1, it is seen that $\Lambda_{\varphi}(a)\otimes f$ is in the closure of $\tilde{\Lambda}_{\varphi}(B_{\varphi}\cap B_{\varphi}^{\sharp})$ for $f\in K(G)$ and $a\in n_{\varphi}$. Since K(G) is dense in $L^2(G)$ and $\Lambda_{\varphi}(n_{\varphi})$ is dense in $H_{\varphi}=H$, the lemma is proved.

LEMMA 2.6. The map $(g,t) \to (D\varphi \circ \alpha_g : D\varphi)_t$ is σ -strong continuous from $G \times R$ into the unitary group in M.

PROOF. By [4, proposition 2.7] the map is separately continuous. (The

separability conditions in [4] are not essential for the proof). The joint continuity follows easily from the proof of [4, proposition 2.7] by using lemma 2.2.

Since the map $g \to (D\varphi \circ \alpha_g : D\varphi)_t$ is continuous for any $t \in \mathbb{R}$, and since

$$\sigma_t^{\varphi \circ \alpha_{\mathbf{z}}, \varphi}(x) = (D\varphi \circ \alpha_{\mathbf{z}}: D\varphi)_t \sigma_t^{\varphi}(x), \quad x \in M, \ g \in G$$

we can for each $t \in \mathbb{R}$ define a map ϱ_t^{φ} on K(G, M) by

$$(\varrho_t^{\varphi}(x))(g) = \Delta_G(g)^{it} \sigma_t^{\varphi \circ \alpha_g, \varphi}(x(g)), \quad x \in K(G, M).$$

LEMMA 2.7. (cf. [4, lemma 3.7]). (1) The family $(\varrho_t^{\varphi})_{t \in \mathbb{R}}$ is a one parameter group of # automorphisms of K(G, M).

(2) For $x \in K(G, M)$ and $a \in M$

$$\varrho_t^{\varphi}(x \cdot a) = \varrho_t^{\varphi}(x) \cdot \sigma_t^{\varphi}(a)$$
 and $\varrho_t^{\varphi}(a \cdot x) = \sigma_t^{\varphi}(a) \cdot \varrho_t^{\varphi}(x)$

(3) B_{φ} and B_{φ}^{*} are invariant under ϱ_{t}^{φ} .

PROOF. (1) can be proved by a direct calculation as in the proof of [4, lemma 3.7]. It is easy to verify (2), and (3) follows from (2) because n_{φ} and n_{φ}^* are σ_t^{φ} -invariant.

Lemma 2.8. There exists an injective selfadjoint operator $\tilde{\Delta}_{\varphi}$ and a conjugate linear isometric involution \tilde{J} on $L^2(G,H)$ such that

$$(\widetilde{\mathcal{J}}_{\varphi}^{it}\xi)(g) = \mathcal{L}_{G}(g)^{it}\mathcal{L}_{\varphi\circ\alpha_{s},\varphi}^{it}\xi(g), \qquad \xi \in L^{2}(G,H) ,$$

$$(\widetilde{\mathcal{J}}\xi)(g) = \mathcal{L}_{G}(g)^{-\frac{1}{2}}u(g)^{-1}\mathcal{J}\xi(g^{-1}), \ \xi \in L^{2}(G,H) ,$$

where $g \rightarrow u(g)$ is the canonical implementation of G.

PROOF. Since $\Delta_{\varphi \circ \alpha_{\mathbf{r}}, \varphi}^{it} = (D\varphi \circ \alpha_{\mathbf{g}} : D\varphi)_t \Delta_{\varphi}^{it}$ it follows that for each $t \in \mathbb{R}$, the formula

$$(u_t^{\varphi}\xi)(g) = \Delta_G(g)^{it}\Delta_{\varphi\circ\alpha_{\mathbf{r}},\varphi}^{it}\xi(g)$$

defines an operator on K(G, H). It is easily seen that u_t^{φ} can be extended to a unitary operator on $L^2(G, H)$ given by the same formula. Moreover $(u_t)_{t \in \mathbb{R}}$ is a one parameter group. For $\xi, \eta \in K(G, H)$ we get:

$$\lim_{t\to 0} \left(u_t^{\varphi}\xi\,|\,\eta\right) = \lim_{t\to 0} \int_G \left(\Delta_G(g)^{it}\Delta_{\varphi\circ\alpha_g,\,\varphi}^{it}\xi(g)\,|\,\eta(g)\right)dg = \int_G \left(\xi(g)\,|\,\eta(g)\right)dg \ .$$

Hence $t \to u_t^{\varphi}$ is weakly, and thus strongly continuous. This proves the existence of $\tilde{\Delta}_{\varphi}$. It is easily seen that \tilde{J} is a conjugate linear isometry on $L^2(G, H)$. Moreover for $\xi \in L^2(G, H)$

$$(\tilde{J}\tilde{J}\xi)(g) = \Delta_G g)^{-\frac{1}{2}}u(g)^{-1}J(\Delta_G(g)^{\frac{1}{2}}u(g)J\xi(g)) = \xi(g)$$

because J and u(g) commutes (cf. section 1.2).

Let $C_c^{\infty}(R)$ denote the space of C^{∞} -functions on R with compact support. For $\varphi \in C_c^{\infty}(R)$ we put

$$\hat{\varphi}(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(x)e^{-izx} dx, \quad z \in \mathbb{C} .$$

Note that $\hat{\varphi}$ is the analytic extension of the Fourier transformed of φ . Since $\varphi \in C_c^{\infty}$ it follows that for any $n \in \mathbb{N}$ and $t \in \mathbb{R}$

$$\hat{\varphi}(s+it)|s|^n \to 0 \quad \text{for } s \to \infty$$
.

In particular $\int_{-\infty}^{\infty} |\hat{\varphi}(s+it)| ds < \infty$ for any $t \in \mathbb{R}$.

LEMMA 2.9. Let K be a injective, positive selfadjoint (non necessarily bounded) operator on a Hilbert space \mathcal{H} . Let $\alpha \in \mathbb{R}$. For $\xi, \eta \in \mathcal{H}$ the following conditions are equivalent:

- (1) $\xi \in D(K^{\alpha})$ and $\eta = K^{\alpha}\xi$
- (2) For any $\varphi \in C_c^{\infty}(\mathbb{R})$

$$\int_{-\infty}^{\infty} \hat{\varphi}(t) K^{it} \eta \, dt = \int_{-\infty}^{\infty} \hat{\varphi}(t+i\alpha) K^{it} \xi \, dt .$$

PROOF. By the inversion formula for Fourier transformation we have

$$\varphi(x) = \int_{-\infty}^{\infty} \hat{\varphi}(t)e^{ixt} dt$$

and

$$e^{\alpha x}\varphi(x) = \int_{-\infty}^{\infty} \hat{\varphi}(t+i\alpha)e^{ixt} dt.$$

Hence

$$\varphi(\log K) = \int_{-\infty}^{\infty} \hat{\varphi}(t) K^{it} dt \qquad \text{(strongly)}$$

$$K^{\alpha} \varphi(\log K) = \int_{-\infty}^{\infty} \hat{\varphi}(t + i\alpha) K^{it} dt \qquad \text{(strongly)}.$$

Thus (2) is equivalent with

(3) For any $\varphi \in C_c^{\infty}(\mathbb{R})$: $K^{\alpha}\varphi(\log K)\xi = \varphi(\log K)\eta$.

- (1) \Rightarrow (3) is trivial because $\varphi(\log K)$ $K^{\alpha} \subseteq K^{\alpha} \varphi(\log K)$.
- (3) \Rightarrow (1). Let $(\varphi_n)_{n \in \mathbb{N}}$ be a sequence of C^{∞} -functions with compact support, such that $\varphi_n(x) \to 1$ uniformly on compact sets. Put

$$\xi_n = \varphi_n(\log K)\xi$$
 and $\eta_n = \varphi_n(\log K)\eta$.

By (3) $\xi_n \in D(K^{\alpha})$ and $\eta_n = K^{\alpha} \xi_n$. Since K^{α} is closed, we get $\xi \in D(K^{\alpha})$ and $\eta = K^{\alpha} \xi$.

LEMMA 2.10. Let $\xi, \eta \in L^2(G, H)$ and $\alpha \in \mathbb{R}$, such that $\xi(g) \in D(\Delta^{\alpha}_{\varphi \circ \alpha_s, \varphi})$ and $\eta(g) = \Delta^{\alpha}_{\varphi \circ \alpha_s, \varphi} \xi(g)$ for almost any $g \in G$. Then

$$\xi \in D(\tilde{\Delta}^{\alpha})$$
 and $\eta = \tilde{\Delta}^{\alpha} \xi$.

PROOF. Let $\varphi \in C_c^{\infty}(\mathbb{R})$ and let $\zeta \in L^2(G, H)$. By lemma 2.9 we have

$$\int_{-\infty}^{\infty} \hat{\varphi}(t) (\Delta_G(g)^{it} \Delta_{\varphi \circ \alpha_s, \varphi}^{it} \eta(g) | \zeta(g)) dt =$$

$$\int_{-\infty}^{\infty} \hat{\Phi}(t + i\alpha) (\Delta_G(g)^{it} \Delta_{\varphi \circ \alpha_s, \varphi}^{it} \xi(g) | \zeta(g)) dt$$

for almost any $g \in G$.

Integrating over G we get

$$\int_{-\infty}^{\infty} \hat{\varphi}(t) (\tilde{\mathcal{A}}_{\varphi}^{it} \eta \mid \zeta) dt = \int_{-\infty}^{\infty} \hat{\varphi}(t + i\alpha) (\tilde{\mathcal{A}}_{\varphi}^{it} \xi \mid \zeta) dt.$$

Hence by lemma 2.9, $\xi \in D(\tilde{\Delta}^{\alpha})$ and $\eta = \tilde{\Delta}^{\alpha} \xi$.

LEMMA 2.11. The canonical implementation $g \rightarrow u(g)$ of G on H satisfies

$$u(g)(\Lambda_{\varphi}(x)) = \Lambda_{\varphi \circ \alpha_{\bullet}^{-1}}(\alpha_{g}x), \quad x \in n_{\varphi}, g \in G.$$

PROOF. Clearly the map $\Lambda_{\varphi}(x) \to \Lambda_{\varphi \circ \alpha_g^{-1}}(\alpha_g x)$, $x \in n_{\varphi}$, can be extended to a unitary operator v_g on H. To show that $u(g) = v_g$, we need only to prove that (cf. § 1.2)

- (a) $\alpha_g x = v_g x v_g^*, \quad x \in M$
- (b) $Jv_g = v_g J$
- (c) $v_g(P) = P$.

For $x \in M$ and $y \in n_{\varphi}$

$$\begin{aligned} (\alpha_{\mathsf{g}} x) v_{\mathsf{g}} \Lambda_{\varphi}(y) &= (\alpha_{\mathsf{g}} x) \Lambda_{\varphi \circ \alpha_{\mathsf{g}}^{-1}}(\alpha_{\mathsf{g}} y) \\ &= \Lambda_{\varphi \circ \alpha_{\mathsf{g}}^{-1}}(\alpha_{\mathsf{g}}(xy)) = v_{\mathsf{g}} \Lambda_{\varphi}(xy) = v_{\mathsf{g}} x \Lambda_{\varphi}(y) . \end{aligned}$$

Hence $(\alpha_g x)v_g = v_g x$, $x \in M$, $g \in G$. This proves (a). For $x \in n_{\varphi} \cap n_{\varphi}^*$

$$\begin{aligned} v_{\mathsf{g}} S_{\varphi} \Lambda_{\varphi}(x) &= v_{\mathsf{g}} \Lambda_{\varphi}(x^*) = \Lambda_{\varphi \circ \alpha_{\mathsf{g}}^{-1}}(\alpha_{\mathsf{g}} x^*) \\ &= S_{\varphi \circ \alpha_{\mathsf{g}}^{-1}} \Lambda_{\varphi \circ \alpha_{\mathsf{g}}^{-1}}(\alpha_{\mathsf{g}} x) = S_{\varphi \circ \alpha_{\mathsf{g}}^{-1}} v_{\mathsf{g}} \Lambda_{\varphi}(x) \; . \end{aligned}$$

Since $\Lambda_{\psi}(n_{\psi} \cap n_{\psi}^*)$ is a core of S_{ψ} for any $\psi \in P(M)$ we get $v_g S_{\varphi} v_g^* = S_{\varphi \circ \alpha_g^{-1}}$.

By polar decompostion it follows that

$$v_{\mathbf{g}} \Delta_{\varphi} v_{\mathbf{g}}^* = \Delta_{\varphi \circ \alpha_{\mathbf{g}}^{-1}}$$
 and $v_{\mathbf{g}} J v_{\mathbf{g}}^* = J$

Hence (b). By section 1.3 we have

$$P = P_{\omega} = \{xJ\Lambda_{\omega}(x) \mid x \in n_{\omega}\}^{-}.$$

Thus

$$v_{g}(P) = \{v_{g}xJ\Lambda_{\varphi}(x) \mid x \in n_{\varphi}\}^{-}$$

$$= \{(\alpha_{g}x)Jv_{g}\Lambda_{\varphi}(x) \mid x \in n_{\varphi}\}^{-}$$

$$= \{(\alpha_{g}x)J\Lambda_{\varphi \circ \alpha_{i}^{-1}}(\alpha_{g}x) \mid x \in n_{\varphi}\}^{-}$$

$$= \{yJ\Lambda_{\varphi \circ \alpha_{i}^{-1}}(y) \mid y \in n_{\varphi \circ \alpha_{i}^{-1}}\}^{-} = P_{\varphi \circ \alpha_{i}^{-1}} = P.$$

This proves (c). Hence $u(g) = v_g$ for any $g \in G$.

LEMMA 2.12. (1) $\mathfrak{A}_{\varphi} = \tilde{\Lambda}_{\varphi}(B_{\varphi} \cap B_{\varphi}^{\sharp})$ is a left Hilbert algebra with product $\tilde{\Lambda}_{\varphi}(x) \cdot \tilde{\Lambda}_{\varphi}(y) = \tilde{\Lambda}_{\varphi}(x * y) \qquad x, y \in B_{\varphi} \cap B_{\varphi}^{\sharp}$

and involution

$$\tilde{\Lambda}_{\varphi}(x)^{\sharp} = \tilde{\Lambda}_{\varphi}(x^{\sharp}) \quad x \in B_{\varphi} \cap B_{\varphi}^{\sharp}$$

(2) The closure of the involution # in $L^2(G,H)$ has the polar decomposition

$$\tilde{S}_{\alpha} = \tilde{J}\tilde{\Delta}_{\alpha}^{\frac{1}{2}}$$

(3) For $x \in B_{\varphi} \cap B_{\varphi}^{\sharp}$ and $t \in \mathbb{R}$

$$\tilde{\mathcal{A}}_{\varphi}(\varrho_{t}^{\varphi}(x)) \, = \, \tilde{\mathcal{A}}_{\varphi}^{it} \tilde{\mathcal{A}}_{\varphi}(x)$$

 $(4) \mathcal{L}(\mathfrak{A}_{\varphi}) = M \otimes_{\alpha} G.$

PROOF. (3) For $x \in B_{\varphi} \cap B_{\varphi}^{\sharp}$ and $t \in \mathbb{R}$

$$\begin{split} \tilde{\Lambda}_{\varphi}(\varrho_{t}^{\varphi}(x))(g) &= \Lambda_{\varphi}(\Lambda_{G}(g)^{it}\sigma_{t}^{\varphi\circ\alpha_{r},\varphi}(x(g))) \\ &= \Lambda_{G}(g)^{it}(D\varphi\circ\alpha_{g}\colon D\varphi)_{t}\Lambda_{\varphi}(\sigma_{t}^{\varphi}x(g)) \\ &= \Lambda_{G}(g)^{it}(D\varphi\circ\alpha_{g}\colon D\varphi)_{t}\Lambda_{\varphi\circ\alpha_{r},\varphi}^{it}\Lambda_{\varphi}(x(g)) \\ &= (\tilde{\Lambda}_{\alpha}^{it}\tilde{\Lambda}_{\alpha}(x))(g) \; . \end{split}$$

(2) For $x \in B_{\varphi} \cap B_{\varphi}^*$ we get using lemma 2.11:

$$\begin{split} (\widetilde{J}\widetilde{\Lambda}_{\varphi}(x^{\sharp}))(g) &= \Delta_{G}(g)^{-\frac{1}{2}}u_{g}^{-1}J\Lambda_{\varphi}(x^{\sharp}(g^{-1})) \\ &= \Delta_{G}(g)^{\frac{1}{2}}Ju_{g}^{-1}\Lambda_{\varphi}(\alpha_{g}x(g)^{*}) \\ &= \Delta_{G}(g)^{\frac{1}{2}}J\Lambda_{\varphi\circ\alpha_{g}}(x(g)^{*}) \\ &= \Delta_{G}(g)^{\frac{1}{2}}JS_{\varphi\circ\alpha_{g},\varphi}\Lambda_{\varphi}(x(g)) \\ &= \Delta_{G}(g)^{\frac{1}{2}}\Delta_{\varphi\circ\alpha_{g},\varphi}^{\frac{1}{2}}(\Lambda_{\varphi}(x))(g) \; . \end{split}$$

Hence by lemma 2.10 $\tilde{\Lambda}_{\omega}(x) \in D(\tilde{\Delta}_{\omega}^{\frac{1}{2}})$ and

$$\tilde{J}\tilde{\Lambda}_{\alpha}(x^{\sharp}) = \tilde{\Lambda}_{\alpha}^{\frac{1}{2}}\tilde{\Lambda}_{\alpha}(x)$$

or equivalently

$$\tilde{\Lambda}_{\omega}(x^{\sharp}) = \tilde{J} \tilde{\Delta}_{\omega}^{\frac{1}{2}} \tilde{\Lambda}_{\omega}(x) .$$

Thus # is preclosed and its closure \tilde{S}_{φ} satisfies $\tilde{S}_{\varphi} \subseteq \tilde{J} \tilde{\Delta}_{\varphi}^{\frac{1}{2}}$.

By (3) and lemma 2.5 (4) it follows that $\mathfrak{A}_{\varphi} = \widetilde{\Lambda}_{\varphi}(B_{\varphi} \cap B_{\varphi}^{\sharp})$ is a $\widetilde{\Delta}_{\varphi}^{i}$ -invariant, dense subset of $L^{2}(G, H)$. Let q be the projection on $((1 + \widetilde{\Delta}_{\varphi})^{\frac{1}{2}}\mathfrak{A}_{\varphi})^{\perp}$.

Since q commutes with $\hat{\mathcal{J}}_{\alpha}^{it}$ for any $t \in \mathbb{R}$, we have

$$q(1+\tilde{\Delta}_{\omega})^{\frac{1}{2}} \subseteq (1+\tilde{\Delta}_{\omega})^{\frac{1}{2}}q.$$

Hence for any $\xi \in \mathfrak{A}_{\sigma}$

$$(1 + \Delta_{\omega})^{\frac{1}{2}}(q\xi) = q(1 + \tilde{\Delta}_{\omega})^{\frac{1}{2}}\xi = 0$$

which proves that $q\xi = 0$ for any $\xi \in \mathfrak{A}_{\varphi}$. Hence q = 0 and thus $(1 + \tilde{\Delta}_{\varphi})^{\frac{1}{2}}\mathfrak{A}_{\varphi}$ is dense in $L^{2}(G, H)$. Therefore \mathfrak{A}_{φ} is a core of $\tilde{\Delta}_{\varphi}^{\frac{1}{2}}$. Hence $\tilde{S}_{\varphi} = \tilde{J}\tilde{\Delta}_{\varphi}^{\frac{1}{2}}$ and by the uniqueness of the polar decomposition we get (2).

(1). We check the four conditions in the definition of a left Hilbert algebra (cf. [11, definition 2.1]). By lemma 2.5 (1) we have

$$\tilde{\Lambda}_{\varphi}(x*y) = \mu(x)\tilde{\Lambda}_{\varphi}(y), \quad x,y \in B_{\varphi} \cap B_{\varphi}^{\sharp}.$$

Hence the map $\eta \to \xi \eta$ is continuous for any $\xi \in \mathfrak{A}_{\varphi}$. Moreover $\pi_l(\tilde{\Lambda}_{\varphi}(x)) = \mu(x)$, $x \in B_{\varphi} \cap B_{\varphi}^{\sharp}$. It follows from the formula $\mu(x^{\sharp}) = \mu(x)^{*}$, $x \in K(G, M)$ that

$$(\xi \eta | \zeta) = (\eta | \xi^{\sharp} \zeta) \quad \forall \xi, \eta, \zeta \in \mathfrak{A}_{\omega}.$$

Since $\tilde{\Lambda}_{\varphi}(x*y) = \mu(x)\tilde{\Lambda}_{\varphi}(y)$, $x, y \in B_{\varphi} \cap B_{\varphi}^{\sharp}$ and since $\mu(B_{\varphi} \cap B_{\varphi}^{\sharp})$ is σ -weakly dense in $M \otimes_{\alpha} G$ by lemma 2.5 (3) it follows that $(\mathfrak{U}_{\varphi})^2$ is dense in $L^2(G, H)$. From (2) we get that \sharp is preclosed. Hence \mathfrak{U}_{φ} is a left Hilbert algebra.

(4) We have $\pi_l(\mathfrak{U}_{\varphi}) = \mu(B_{\varphi} \cap B_{\varphi}^{\sharp})$ is σ -weakly dense in $M \otimes_{\alpha} G$. Hence $\mathscr{L}(\mathfrak{U}_{\varphi}) = M \otimes_{\alpha} G$.

REMARK. The method in the proof of lemma 2.12 (2) can be used to prove that condition VIII in the definition of modular Hilbert algebras (cf. [11, Definition 2.1]):

$$(1 + \Delta(t))\mathfrak{A}$$
 is dense in $\mathfrak{A} \quad \forall t \in \mathbb{R}$

can be deduced from the other seven conditions.

PROOF OF THEOREM 2.1. Let l and r be the left and right regular representations of G on $L^2(G)$:

$$(l(g)f)(h) = f(g^{-1}h),$$
 $f \in L^2(G)$
 $(r(g)f)(h) = \Delta_C^{\dagger}(h)f(hg),$ $f \in L^2(G)$.

Put $(U\xi)(g) = u(g)\xi(g)$, $\xi \in L^2(G, H)$, then U is a unitary operator on $L^2(G, H)$. We get

$$(\pi(x)\xi)(g) = (\alpha_g^{-1}x)\xi(g) = u(g)*xu(g)\xi(g)$$

= $(U*(x\otimes 1)U\xi)(g), \quad \xi \in L^2(G, H).$

Hence $\pi(x) = U^*(x \otimes 1)U$, $x \in M$. Moreover

$$(\lambda(g)\xi)(h) = \xi(g^{-1}h) = ((1 \otimes l(g))\xi)(h).$$

Hence $M \otimes_{\alpha} G = \{\pi(M), \lambda(G)\}^{"}$ is generated by $U^*(M \otimes 1)U$ and $1 \otimes \mathcal{L}(G)$.

(2) As in the proof of [4, Theorem 3.14] one can reduce the general case, to the case where M is on standard form, and u(g) is the canonical implementation of G. Let \mathfrak{A}_{φ} be the Hilbert algebra on $L^2(G,H)$ constructed in lemma 2.12. We have

$$M \otimes_{\sigma} G = \mathscr{L}(\mathfrak{A}_{\sigma}) .$$

Hence by the fundamental theorem of the Tomita-Takesaki theory we have

$$(M \otimes_{\alpha} G)' = \tilde{J}(M \otimes_{\alpha} G)\tilde{J}$$

where

$$(\tilde{J}\xi)(g) = \Delta(g)^{-\frac{1}{2}}u(g)^{-1}J\xi(g^{-1}), \quad \xi \in L^2(G,H).$$

(cf. lemma 2.11 (2)). An elementary calculation shows that (cf. proof of [4,

corollary 3.13]):

$$(\tilde{J}\pi(x)\tilde{J}\xi)(g) = JxJ\xi(g), \quad x \in M, g \in G.$$

and

$$(\tilde{J}\lambda(g)\tilde{J}\xi)(h) = \Delta_G(g)^{+\frac{1}{2}}u(g)\xi(hg), \quad g,h \in G.$$

Hence

$$\tilde{J}\pi(M)\tilde{J} = (JMJ)\otimes 1 = M'\otimes 1$$

and

$$\tilde{J}\lambda(g)\tilde{J} = u(g)\otimes r(g) = U^*(1\otimes r(g))U, \quad g\in G$$

which proves that $(M \otimes_{\alpha} G)'$ is generated by $M' \otimes 1$ and $U^*(1 \otimes \mathcal{R}(G))U$.

3. The dual weights on $M \otimes_{\alpha} G$.

DEFINITION 3.1. Let $\varphi \in P(M)$. The weight $\tilde{\varphi}$ on $M \otimes_{\alpha} G$ associated with the left Hilbert algebra \mathfrak{A}_{φ} in lemma 2.12 is called the dual weight of φ .

THEOREM 3.2. (1) For any $x \in B_{\omega}$

$$\tilde{\varphi}(\mu(x^{\sharp} * x)) = \varphi((x^{\sharp} * x)(e)).$$

(2) The automorphism group $\sigma_i^{\tilde{\varphi}}$ is given by

$$\begin{split} \sigma_t^{\tilde{\varphi}}(\pi(x)) &= \pi(\sigma_t^{\varphi}(x)), \quad x \in M, \ t \in \mathbb{R} \\ \sigma_t^{\tilde{\varphi}}(\lambda(g)) &= \Delta_G(g)^{it} \lambda(g) \pi((D\varphi \circ \alpha_g : D\varphi)_t), \quad g \in G, \ t \in \mathbb{R} \ . \end{split}$$

(3) For $\varphi, \psi \in P(M)$

$$(D\tilde{\psi}: D\tilde{\varphi})_t = \pi((D\psi: D\varphi)_t), \quad t \in \mathbb{R}$$
.

PROOF. (1) By [1, Definition 2.12] we have for $x \in \mathcal{L}(G)_+$:

$$\tilde{\varphi}(x) = \begin{cases} \|\xi\|^2 & \text{if } x = \pi_l(\xi) * \pi_l(\xi), \ \xi \in L^2(G, H), \text{ is left bounded} \\ \infty & \text{otherwise} \end{cases}$$

Let $x \in B_{\varphi}$. We can choose a net $(a_i)_{i \in I}$ of operators in n_{φ}^* , that converges strongly to 1. For any $i \in I$

$$a_i x \in n_{\omega}^* \cdot K(G, M) \cdot n_{\omega} \subseteq B_{\omega} \cap B_{\omega}^{\sharp}$$
.

Moreover $\mu(a_i x) = \pi(a_i)\mu(x) \rightarrow \mu(x)$ strongly and

$$\lambda_{\varphi}(a_i x) = \pi(a_i) \lambda_{\varphi}(x) \to \lambda_{\varphi}(x) \quad \text{in } L^2(G, H).$$

Since $\tilde{\Lambda}_{\varphi}(a_i x) \in \mathfrak{A}_{\varphi}$ it follows that $\tilde{\Lambda}_{\varphi}(a_i x)$ is left bounded, and $\pi_l(\tilde{\Lambda}_{\varphi}(a_i x)) = \mu(a_i x)$ for any $i \in I$. Let $\eta \in \mathfrak{A}'_{\varphi}$ (the associated right Hilbert algebra). Then

$$\pi_r(\eta)\tilde{\Lambda}_{\varphi}(x) = \lim \pi_r(\eta)\tilde{\Lambda}_{\varphi}(a_i x) = \lim \mu(a_i x)\eta = \mu(x)\cdot\eta$$
.

Hence $\tilde{\Lambda}_{\varphi}(x)$ is left bounded and $\pi_{l}(\tilde{\Lambda}_{\varphi}(x)) = \mu(x)$. Hence by lemma 2.5 (2)

$$\tilde{\varphi} \left(\mu(x^{\sharp} * x) \right) \, = \, \tilde{\varphi} \left(\mu(x)^{*} \mu(x) \right) \, = \, \left(\tilde{\lambda}_{\varphi}(x) \, | \, \tilde{\lambda}_{\varphi}(x) \right) \, = \, \varphi \left((x^{\sharp} * x)(e) \right) \, .$$

(2) follows from the equation $\sigma_t^{\tilde{\varphi}}(x) = \tilde{\Delta}^{it} x \tilde{\Delta}^{it}$, $x \in M \otimes_{\alpha} G$. (cf. proof of [4, corollary 3.10] and [10, proposition 1]).

For the proof of (3) we need some lemmas:

LEMMA 3.3. Let ω be a n.f.s. weight on $M \otimes_{\alpha} G$ that satisfies (1) and (2) in theorem 3.2 (with $\tilde{\varphi}$ replaced by ω) then $\omega = \tilde{\varphi}$.

PROOF. Using (2) we get for $x \in K(G, M)$:

$$\begin{split} \sigma_t^{\tilde{\varphi}}(\mu(x)) &= \int_G (\sigma_t^{\tilde{\varphi}} \lambda(g)) (\sigma_t^{\tilde{\varphi}} \pi(x(g))) \, dg \\ &= \int_G \Delta_G(g)^{it} \lambda(g) \pi ((D\varphi \circ \alpha_g \colon D\varphi)_t) \sigma_t^{\varphi}(x) \, dg \, = \, \mu(\varrho_t^{\varphi}(x)) \; . \end{split}$$

Since B_{φ} and B_{φ}^{\sharp} are ϱ_{t}^{φ} -invariant by lemma 2.7 it follows that $\mu(B_{\varphi}^{\sharp}B_{\varphi})$ is a $\sigma_{t}^{\tilde{\varphi}}$ -invariant subalgebra of $n_{\tilde{\varphi}}^{*}n_{\tilde{\varphi}}=m_{\tilde{\varphi}}$. Moreover $\mu(B_{\varphi}^{\sharp}B_{\varphi})$ is σ -weakly dense in $M \otimes_{\alpha} G$. By the assumptions ω and $\tilde{\varphi}$ coincide on

$$\mu(B_{\alpha}^{\sharp}B_{\alpha}) = \operatorname{span} \left\{ \mu(x^{\sharp} * x) \mid x \in B_{\alpha} \right\}.$$

Moreover ω and $\tilde{\varphi}$ has the same modular automorphism group. Hence by [9, proposition 5.9] it follows that $\omega = \tilde{\varphi}$.

Let F_2 be the algebra of 2×2 -matrices, and let $(e_{ij})_{i,j} = 1, 2$ be the natural basis for F_2 .

We consider the crossed product of $M \otimes F_2$ and G with respect to the action $\beta = \alpha \otimes i$ (i=identity on F_2). With obvious identifications we have

$$(M \otimes F_2) \otimes_{\beta} G = (M \otimes_{\alpha} G) \otimes F_2.$$

LEMMA 3.4. Let $\varphi, \psi \in P(M)$ and define a n.f.s. weight θ on $M \otimes F_2$ by

$$\theta(\sum x_{ij} \otimes e_{ij}) = \varphi(x_{11}) + \psi(x_{22})$$
 for $\sum x_{ij} \otimes e_{ij} \in (M \otimes F_2)_+$

then

$$(D\theta \circ \beta_{\mathbf{g}} \colon D\theta)_{t} = (D\varphi \circ \alpha_{\mathbf{g}} \colon D\varphi)_{t} \otimes e_{11} + (D\psi \circ \alpha_{\mathbf{g}} \colon D\psi) \otimes e_{22} .$$

PROOF. For $\sum x_{ij} \otimes e_{ij} \in (M \otimes F_2)_+$ we get:

$$(\theta \circ \beta_{\mathbf{g}})(\sum x_{ij} \otimes e_{ij}) = (\varphi \circ \alpha_{\mathbf{g}})(x_{11}) + (\psi \circ \alpha_{\mathbf{g}})(x_{22}).$$

Hence by [2, lemma 1.2.2] it follows that $1 \otimes e_{ii}$, i = 1, 2, are in the centralizer for $\theta \circ \beta_g$ for any $g \in G$. Using the formula (cf. § 1.3)

$$\sigma_t^{\psi,\,\varphi}(xy) = \sigma_t^{\psi,\,\omega}(x)\sigma_t^{\omega,\,\varphi}(y) \qquad x,y \in M, \ \varphi,\psi,\omega \in P(M)$$

twice we get:

$$\sigma_t^{\theta \circ \beta_{\mathbf{r}} \cdot \theta} (1 \otimes e_{ii}) = \sigma_t^{\theta \circ \beta_{\mathbf{r}}} (1 \otimes e_{ii}) \sigma_t^{\theta \circ \beta_{\mathbf{r}} \cdot \theta} (1 \otimes e_{ii}) \sigma_t^{\theta} (1 \otimes e_{ii}) \\
= (1 \otimes e_{ii}) \sigma_t^{\theta \circ \beta_{\mathbf{r}} \cdot \theta} (1 \otimes e_{ii}) (1 \otimes e_{ii}).$$

Hence

$$\sigma_t^{\theta \circ \beta_{IP}} \theta(1 \otimes e_{ii}) = u_i \otimes e_{ii}$$
 for some $u_i \in M$, $i = 1, 2$.

Using the K.M.S. conditions for $(D\psi: D\varphi)_t$ ([4 proposition 2.2]) one gets easily $u_1 = (D\varphi \circ \alpha_g: D\varphi)_t$. Similarly $u_2 = (D\psi \circ \alpha_g: D\psi)_t$. Hence:

$$(D\theta \circ \beta_{g}: D\theta)_{t} = \sigma_{t}^{\theta \circ \beta_{F}}(1) = \sigma_{t}^{\theta \circ \beta_{F}}(1 \otimes e_{11}) + \sigma_{t}^{\theta \circ \beta_{F}}(1 \otimes e_{22})$$
$$= (D\varphi \circ \alpha_{g}: D\varphi)_{t} \otimes e_{11} + (D\psi \circ \alpha_{g}: D\psi)_{t} \otimes e_{22}.$$

LEMMA 3.5. Let φ , ψ and θ be as in lemma 3.4, and let $\tilde{\varphi}$, $\tilde{\psi}$ and $\tilde{\theta}$ be their dual weights. Then

$$\tilde{\theta}(\sum y_{ij} \otimes e_{ij}) = \tilde{\varphi}(y_{11}) + \tilde{\psi}(y_{22}) \quad \text{for } \sum y_{ij} \otimes e_{ij} \in ((M \otimes_{\alpha} G) \otimes F_2)_+ \ .$$

PROOF. Let $(\bar{\pi}, \bar{\lambda})$ be the covariant representation of $(M \otimes F_2, G, \beta)$ that generates the crossed product $(M \otimes F_2) \otimes_{\beta} G = (M \otimes_{\alpha} G) \otimes F_2$. We have

$$\bar{\pi}(\sum x_{ij} \otimes e_{ij}) = \sum \pi(x_{ij}) \otimes e_{ij}, \quad x_{ij} \in M$$
$$\bar{\lambda}(g) = \lambda(g) \otimes 1, \quad g \in G.$$

The associated representation $\bar{\mu}$ of $K(G, M \otimes F_2) = K(G, M) \otimes F_2$ is given by

$$\bar{\mu}(\sum y_{ij} \otimes e_{ij}) = \sum \mu(y_{ij}) \otimes e_{ij}, \quad y_{ij} \in K(G, M).$$

By Theorem 3.2 (1) we get

$$\sigma_t^{\theta}(1 \otimes e_{ii}) = \bar{\pi}(\sigma_t^{\theta}(1 \otimes e_{ii})) = \bar{\pi}(1 \otimes e_{ii}) = 1 \otimes e_{ii}, \quad i = 1, 2.$$

Hence $1 \otimes e_{11}$ and $1 \otimes e_{22}$ are in the centrilizer of $\tilde{\theta}$. Thus by [9, proposition 4.1]

$$\tilde{\theta}(x) = \sum_{i=1}^{2} \tilde{\theta}((1 \otimes e_{ii})x(1 \otimes e_{ii})), \quad x \in (M \otimes_{\alpha} G) \otimes F_{2},$$

or equivalently

$$\tilde{\theta}(\sum x_{ij} \otimes e_{ij}) = \omega_1(x_{11}) + \omega_2(x_{22}), \ x_{ij} \in M \otimes_{\alpha} G$$

where

$$\omega_i(x) = \tilde{\theta}(x \otimes e_{ii}), \quad i = 1, 2,$$

are n.f.s. weights on $M \otimes_{\alpha} G$. We will prove that $\omega_1 = \varphi$ and $\omega_2 = \psi$ by the use of lemma 3.3. Using Theorem 3.1(2) we get for $x \in M$:

$$\begin{split} \sigma_t^{\omega_1}(\pi(x)) \otimes e_{11} &= \sigma_t^{\bar{\theta}}(\pi(x) \otimes e_{11}) = \sigma_t^{\bar{\theta}}(\bar{\pi}(x \otimes e_{11})) \\ &= \bar{\pi}(\sigma_t^{\theta}(x \otimes e_{11})) = \bar{\pi}(\sigma_t^{\varphi}(x) \otimes e_{11}) = \pi(\sigma_t^{\varphi}(x)) \otimes e_{11} \;. \end{split}$$

Hence $\sigma_t^{\omega_1}(\pi(x)) = \sigma_t^{\tilde{\varphi}}(\pi(x)), \forall x \in M$.

Moreover by lemma 3.4

$$\sigma_{t}^{\omega_{1}}(\hat{\lambda}(g)) \otimes e_{11} = \sigma_{t}^{\bar{\theta}}(\hat{\lambda}(g) \otimes e_{11}) = \sigma_{t}^{\bar{\theta}}(\hat{\lambda}(g) \otimes 1) \sigma_{t}^{\bar{\theta}}(1 \otimes e_{11})
= \sigma_{t}^{\bar{\theta}}(\bar{\lambda}(g)) (1 \otimes e_{11}) = \Delta_{G}(g)^{it} \bar{\lambda}(g) \bar{\pi}((D\theta \circ \beta_{g} : D\theta)_{t}) (1 \otimes e_{11})
= \Delta_{G}(g)^{it} \hat{\lambda}(g) \pi((D\varphi \circ \alpha_{g} : D\theta)_{t}) \otimes e_{11} = \sigma_{t}^{\bar{\theta}}(\hat{\lambda}(g)) \otimes e_{11}.$$

Hence $\sigma_t^{\omega_1}(\lambda(g)) = \sigma_t^{\tilde{\varphi}}(\lambda(g))$.

Let $x \in B_{\omega} = K(G, M) \cdot n_{\omega}$. Then

$$x \otimes e_{11} \in (K(G, M)(1 \otimes e_{11})) \cdot (n_{\theta} \otimes e_{11}) \subseteq K(G, M \otimes F_2) \cdot n_{\theta} = B_{\theta}$$

because $n_{\varphi} \otimes e_{11} \subseteq n_{\theta}$. Put $y = x^{\sharp} * x$. Then

$$y \otimes e_{11} = (x \otimes e_{11})^{\sharp} * (x \otimes e_{11}).$$

Hence by Theorem 3.1(1)

$$\omega_1(\mu(x^{\sharp} * x)) = \tilde{\theta}(\mu(y) \otimes e_{11}) = \tilde{\theta}(\mu(y \otimes e_{11}))$$
$$= \tilde{\theta}((y \otimes e_{11})(e)) = \theta(y(e) \otimes e_{11}) = \varphi((x^{\sharp} * x)(e)).$$

Hence $\omega_1 = \tilde{\varphi}$ by lemma 3.3. Similarly $\omega_2 = \tilde{\psi}$. This completes the proof.

END OF THE PROOF OF THEOREM 3.2. (3). Let $\tilde{\varphi}$, $\tilde{\psi}$ and $\tilde{\theta}$ be as in lemma 3.5. Then by [2, lemma 1.2.2] and theorem 3.2(2) we get

$$(D\tilde{\psi}: D\tilde{\varphi})_{t} \otimes e_{21} = \sigma_{t}^{\tilde{\theta}}(1 \otimes e_{21}) = \sigma_{t}^{\tilde{\theta}}(\bar{\pi}(1 \otimes e_{21}))$$

$$= \bar{\pi}(\sigma_{t}^{\theta}(1 \otimes e_{21})) = \bar{\pi}((D\psi: D\varphi)_{t} \otimes e_{21}) = \pi((D\psi: D\varphi)_{t}) \otimes e_{21}.$$

Hence (3) is proved.

When G is an abelian group, one can define a dual action $\hat{\alpha}$ of the dual

group \hat{G} on $M \otimes_{\alpha} G$ (cf. [12, definition 4.1]). The automorphisms $\hat{\alpha}_p$, $p \in \hat{G}$ can be characterized by their action on the generators

$$\hat{\alpha}_p(\pi(x)) = \pi(x),$$
 $x \in M, \ p \in \hat{G}$
 $\hat{\alpha}_p(\lambda(g)) = \langle \overline{p,g} \rangle \lambda(g),$ $g \in G, \ p \in \hat{G}$

The following lemma is due to Landstad [8, § 2.5 Theorem 2]. For convenience we will give a short proof, using the same ideas.

LEMMA 3.6.

$$\pi(M) = \{x \in M \otimes_{\alpha} G \mid \hat{\alpha}_{p}(x) = x, \forall p \in \hat{G}\}.$$

PROOF. Put

$$N = \{x \in M \otimes_{\alpha} G \mid \hat{\alpha}_{p}(x) = x, \forall p \in \hat{G}\}.$$

Clearly $\pi(M) \subseteq N$. We may assume that M is represented on a Hilbert space H such that $\alpha: G \to \text{aut } (M)$ has a strongly continuous unitary implementation $g \to u(g)$. By [8, equation 2.13] we get

$$\pi(M) = (M' \otimes 1)' \cap (U^*(1 \otimes \mathcal{R}(G))U)' \cap (1 \otimes L^{\infty}(G))'$$

where $(U\xi)(g) = u(g)\xi(g)$, $\xi \in L^2(G, H)$.

By the commutation Theorem (Theorem 2.1) we have

$$N \subseteq M \otimes_{\alpha} G \subseteq (M' \otimes 1)' \cap (U^*(1 \otimes \mathcal{R}(G))U)'$$

(note that this inclusion can be proved by elementary means). Since $\hat{\alpha}_p$ is implemented by the unitary $\mu(p)$ given by

$$(\mu(p)\xi)(g) = \langle \overline{p,g} \rangle \xi(g)$$

and since $\mu(p)$, $p \in \hat{G}$ generates $1 \otimes L^{\infty}(G)$, we have $N \subseteq (1 \otimes L^{\infty}(G))'$. Hence $N \subseteq \pi(M)$. This completes the proof.

THEOREM 3.7. Let $M \otimes_{\alpha} G$ be the crossed product of a von Neumann algebra with an abelian locally compact group G. The map $\phi \to \tilde{\phi}$ is a bijection of P(M) onto the set of n.f.s. weights on $M \otimes_{\alpha} G$, that are invariant under the dual action.

PROOF. Let $\varphi \in P(M)$. Then $\tilde{\varphi}$ is $\hat{\alpha}$ -invariant (same proof as in [4, proposition 4.1]). It follows from Theorem 3.2(3) that the map $\varphi \to \tilde{\varphi}$ is injective.

Let ω be an $\hat{\alpha}$ -invariant weight on $M \otimes_{\alpha} G$, and choose $\varphi \in P(M)$. Since both $\tilde{\varphi}$ and ω are $\hat{\alpha}$ -invariant we get by [4, corollary 2.3] that

$$\hat{\alpha}_{p}((D\omega:D\tilde{\varphi})_{t}) = (D\omega:D\tilde{\varphi})_{t}, \quad p \in \hat{G}.$$

Hence $(D\omega: D\tilde{\varphi})_t \in \pi(M)$ by lemma 3.6. Put $u_t = \pi^{-1}((D\omega: D\tilde{\varphi})_t)$. We have by Theorem 3.2(2) that

$$\pi(u_{s+t}) = (D\omega: D\tilde{\varphi})_{s+t} = (D\omega: D\tilde{\varphi})_s \sigma_s^{\tilde{\varphi}} (D\omega: D\tilde{\varphi})_t$$
$$= \pi(u_s \sigma_s^{\varphi}(u_s)).$$

Hence by [2, Theorem 1.2.4] there exists a n.f.s. weight ψ on M, such that

$$(D\psi:D\varphi)_t=u_t, \quad t\in\mathbb{R}$$
.

By Theorem 3.2(3) it follows that

$$(D\tilde{\psi}:D\tilde{\varphi})_t = \pi(u_t) = (D\omega:D\tilde{\varphi})_t.$$

Hence $\tilde{\varphi} = \omega$. This proves that the map $\varphi \to \tilde{\varphi}$ is surjective.

REMARK. In a subsequent paper we will give an alternative construction of the dual weights, by the use of operator valued weights [7]. It will follow that the map $\varphi \to \tilde{\varphi}$ has a natural extension to all normal weights on M, such that

$$(\varphi + \psi)^{\tilde{}} = \tilde{\varphi} + \tilde{\psi}$$
.

Moreover we obtain a slight extension of Theorem 3.2(1) namely

$$\tilde{\varphi}(\mu(x^{\sharp}*x)) = \varphi((x^{\sharp}*x)(e)), \quad x \in K(G,M).$$

REFERENCES

- F. Combes, Poids associé à une algèbre Hilbertienne à gauche, Compositio Math. 23 (1971), 49-77.
- A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 4 série, 6 (1973), 133-252.
- 3. T. Digernes, Poids dual sur un produit croisé, C.R. Acad. Sci. Paris. Sér. A 278 (1974), 937-940.
- 4. T. Digernes, Duality for weights on covariant systems and its application, Thesis, University of California, Los Angeles, 1975.
- 5. S. Doplicher, D. Kastler and D. W. Robinson, Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys. 3 (1966), 1-28.
- 6. U. Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.
- U. Haagerup, Operator valued weights in von Neumann algebras, to appear in J. Functional Analysis.
- 8. M. Landstad, Duality for covariant systems, preprint, Trondheim, 1974.
- 9. G. K. Pedersen and M. Takesaki, The Radon Nikodym Theorem for von Neumann algebras, Acta Math. 130 (1973), 53-87.

- 10. L. Sauvageot, Sur le type de produit croisé d'une algèbre de von Neumann par une groupe localement compacte automorphisms, C.R. Acad. Sci. Paris, Sér. A 278 (1974), 941-944.
- 11. M. Takesaki, Tomitas theory of modular Hilbert algebras and its applications (Lecture Notes in Mathematics 128), Springer-Verlag, Berlin Heidelberg New York, 1970.
- M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249–308.

ODENSE UNIVERSITY, DENMARK