A STABILITY THEOREM FOR THE CHOQUET-ORDERING IN $C_c(X)$

WALTER ROTH

1. Abstract.

Let X be a compact Hausdorff space, N a linear subspace of $C_{\mathbb{C}}(X)$, the Banach space of all continuous complex valued functions on X, R a sup-stable convex cone of continuous real valued functions on X, which contains the real parts of all functions in N. Assume N contains the constants and separates the points of X. Then for every complex valued Radon measure μ on X the Bishop-de Leeuw-Choquet theorem (cf. [1]) guarantees the existence of a boundary measure $\bar{\mu}$ such that $\bar{\mu}(f) = \mu(f)$ whenever $f \in N$. Hustad [5] showed that $\bar{\mu}$ can be chosen such that $\|\bar{\mu}\| \leq \|\mu\|$. This paper generalizes his result to a certain type of 0-neighborhoods U in $C_{\mathbb{C}}(X)$: $\bar{\mu}$ may be chosen in U° , whenever $\mu \in U^{\circ}$, the (real) polar of U.

2. Introduction.

Let M(X) be the dual of $C_{\mathbb{C}}(X)$, i.e. the space of all Radon measures on X, $M_{\mathbb{R}}$ its real subspace, M^+ the positive cone in $M_{\mathbb{R}}$. Denote by M_1 the unit ball in M(X), $M_1^+ = M_1 \cap M^+$.

For $\mu, \nu \in M^+$ we say $\mu <_R \nu$ iff $\mu(f) \leq \nu(f)$ for all $f \in R$. For $x \in X$ set

$$M_x^+ = \{ \mu \in M^+ \mid \mu \geq \varepsilon_x \},$$

where ε_x denotes the Dirac measure at x. $\mu \in M(X)$ is said to be a boundary measure if $|\mu|$ is maximal in the ordering $<_R$ on M^+ . For every real valued continuous function f on X define

$$\hat{f} = \inf\{g \in -R \mid g \ge f\}$$
 and $\check{f} = \sup\{g \in R \mid g \le f\}$.

It is known that μ is a boundary measure if and only if $|\mu|(f) = |\mu|(\hat{f})$ for every $f \in C_R(X)$ (cf. [1]).

The polar U° of a subset U of C(X) (respectively M(X)) is the set of all elements $\mu \in M(X)$ (respectively $f \in C(X)$) such that $\operatorname{Re} \mu(f) \leq 1$ for every $f \in U$ (respectively $\mu \in U$).

Received November 1, 1976; in revised form January 1, 1978.

DEFINITION 1. A subset U of C(X) is said to be R-stable if for every measure $\mu \in U^{\circ}$ there is a boundary measure $\bar{\mu} \in U^{\circ}$ such that $\mu - \bar{\mu} \in N^{\circ}$.

DEFINITION 2. A function $\varphi: X \to \mathbb{R} \cup \{\infty\}$ is said to be R-superharmonic if it is lower semicontinuous and if $\varphi(x) \ge \mu(\varphi)$ for all $\mu \in M_x^+$.

3. Statement and proof of the stability theorem.

THEOREM. Let X be a compact Hausdorff space, N a linear subspace of C(X) which contains the constant functions and separates the points of X, R a supstable convex cone $C_R(X)$ such that $Re N \subset R$.

Suppose that $\varrho: X \times \gamma \to \mathbb{R} \cup \{\infty\}$, where $\gamma = \{z \in \mathbb{C} \mid |z| = 1\}$, is a strictly positive l.s.c. function such that for every $z \in \gamma$ the function $\varrho_z: X \to \mathbb{R} \cup \{\infty\}$, $x \to \varrho(x, z)$, is R-superharmonic.

Then

$$U = \{ f \in C(X) \mid \text{Re}(zf(x)) \leq \varrho(x, z) \text{ for all } z \in \gamma, x \in X \}$$

is an R-stable 0-neighborhood in C(X).

The proof of this theorem follows the ideas of Hustad [5] and Hirsberg [4]:

(1) Set

$$S \,=\, \left\{ \frac{z}{\varrho(x,z)} \varepsilon_x \, \left| \ \ z \in \gamma, \ \, x \in X \right. \right\} \,.$$

Then $U^{\circ} = \overline{\text{conv}} S$, i.e. the $\sigma(M(X), C(X))$ -closed convex hull of S, since $U = S^{\circ}$. (Note that the bipolar of a set S coincides with the σ -closed convex hull of $S \cup \{0\}$). Obviously U° is σ -compact.

(2) Let K be the σ -closure of $S \cup \{0\}$. Then K contains all extreme points of U° and

$$K \subset \left\{ z \varepsilon_x \mid x \in X, z \in C \text{ such that } |z| \leq \frac{1}{\varrho\left(x, \frac{z}{|z|}\right)} \right\}.$$

To prove this let $\{(z_\alpha/\varrho(x_\alpha,z_\alpha))\varepsilon_{x_\alpha}\}_{\alpha\in A}$ be a net in S converging to $\mu\in M(X)$. Because both γ and $\{\varepsilon_x\mid x\in X\}$ are compact there is a subnet $\{(z_\beta/\varrho(x_\beta,z_\beta))\varepsilon_{x_\beta}\}_{\beta\in B}$ such that $\varepsilon_{x_\beta}\to\varepsilon_{x_0},\ z_\beta\to z_0$, and $\varrho(x_\beta,z_\beta)\to\varrho_0,\ x_0\in X,\ z_0\in\gamma$. Then

$$\varrho_0 = \lim \varrho(x_{\theta}, z_{\theta}) \ge \varrho(x_0, z_0) > 0$$

since ϱ is l.s.c., $\mu = (z_0/\varrho_0)\varepsilon_{x_0}$, and

$$\left|\frac{z_0}{\varrho_0}\right| = \frac{1}{\varrho_0} \le \frac{1}{\varrho(x_0, z_0)}.$$

- (3) Let N' be the dual of N and $\varphi \colon M(X) \to N'$ the restriction map. Then $\varphi(U^{\circ})$ and $\varphi(K)$ both are $\sigma(N', N)$ -compact, $\varphi \colon K \to \varphi(K)$ is a homeomorphism because N separates the points of K and clearly $\varphi(K)$ contains the extreme points of $\varphi(U^{\circ})$.
 - (4) Let $\varphi: C(X) \to C(\varphi(K))$ be the canonical map

$$f \to \overline{f}$$
 such that $\overline{f}(\varphi(z\varepsilon_x)) = zf(x)$.

Then $f \in U$ implies $\text{Re } \overline{f} \leq 1$ on $\varphi(K)$.

(5) Now suppose $\mu \in U^{\circ}$. We define the real linear functional μ_1 on $\varphi(C(X)) \subset C(\varphi(K))$ (regarded as real-linear spaces) by $\mu_1(\overline{f}) = \operatorname{Re} \mu(f)$ for every $f \in C(X)$. Let p be the seminorm on $C(\varphi(K))$

$$p(g) = \sup_{\varphi(K)} \operatorname{Re}(g)$$
 for every $g \in C(\varphi(K))$.

Then

$$\mu_1(\vec{f}) = \operatorname{Re} \mu(f) \le \sup_{v \in U^\circ} \operatorname{Re} v(f) = \sup_{\varphi(K)} \operatorname{Re} \vec{f} = p(\vec{f}) \quad \text{ for all } f \in C(X) .$$

By Hahn-Banach there is a real-linear extension μ_2 on $C(\varphi(K))$ of μ_1 such that

$$\mu_2(g) \leq p(g)$$
 for all $g \in C(\varphi(K))$.

Define the complex linear functional μ' on $C(\varphi(K))$ by

$$\mu'(g) = \mu_2(g) - i\mu_2(ig)$$
.

Then μ' is a measure on $\varphi(K)$ and for every $f \in C(X)$ we have

$$\mu'(\overline{f}) = \operatorname{Re} \mu(f) - i \operatorname{Re} \mu(if) = \operatorname{Re} \mu(f) + i \operatorname{Im} \mu(f) = \mu(f).$$

Furthermore μ' is a real measure because for every real-valued continuous function g on $\varphi(K)$, p(ig) = 0, hence $\mu_2(ig) = 0$. μ' is positive because $g \le 0$ implies $p(g) \le 0$, hence $\mu'(g) = \mu_2(g) \le 0$.

(6) $\varphi(U^{\circ})$ is convex and compact, so by Choquet's theorem there is a positive measure μ'' on $\varphi(K)$ such that μ'' coincides with μ' on $A(\varphi(U^{\circ}))$, i.e. on every affine continuous function on $\varphi(U^{\circ})$, hence particularly on $\varphi(N)$,

$$\|\mu''\| \leq \|\mu'\| \leq 1$$
,

and μ'' is maximal with respect to the cone of continuous convex functions on $\varphi(U^{\circ})$. μ'' finally defines a continuous linear functional $\bar{\mu}$ on C(X), i.e. a measure on X by

$$\bar{\mu}(f) = \mu''(\bar{f}), \quad f \in C(X)$$
.

What remains to show now is $\bar{\mu} \in U^{\circ}$ and $\bar{\mu}$ is a boundary measure on X.

(7) Let $f \in U$. Then

$$\operatorname{Re} \bar{\mu}(f) = \operatorname{Re} \mu''(\bar{f}) = \mu''(\operatorname{Re} \bar{f}) \leq 1$$

because $\|\mu''\| \le 1$ and Re $\bar{f} \le 1$ on $\varphi(K)$, hence $\bar{\mu} \in U^{\circ}$.

(8) For $f \in C_{\mathbb{R}}(X)$, $f \ge 0$, we have

$$|\bar{\mu}|(f) = \sup\{|\bar{\mu}(g)| \mid g \in C(X), |g| \le f\}$$

= $\sup\{|\mu''(\bar{g})| \mid g \in C(X), |g| \le f\} \le \mu''(|\bar{f}|)$

because $|g| \le f$ on X implies $|\bar{g}| \le |\bar{f}|$ on $\varphi(K)$.

(9) To prove $|\bar{\mu}|$ is R-maximal it suffices to verify

$$|\bar{\mu}|(\hat{f}-f) = 0$$
 for every $f \in C_{\mathbb{R}}(X)$, $f \ge 0$.

We have

$$\begin{aligned} & |\bar{\mu}|(\hat{f}-f) = \inf\{|\bar{\mu}|(g-f) \mid g \in -R, g \ge f\} \\ & \le \inf\{\mu''(|\bar{g}-\bar{f}|) \mid g \in -R, g \ge f\} = \mu''(\inf\{|\bar{g}-\bar{f}|\} \mid g \in -R, g \ge f\} \end{aligned}$$

(note that the set $\{|\bar{g} - \bar{f}| \mid g \in -R, g \geq f\}$ is directed downward on $\varphi(K)$, as -R is infimum-stable on X). Because μ'' is maximal with respect to the convex functions on $\varphi(U^{\circ})$ it suffices to show that pointwise on $\varphi(K)$:

(10)
$$\inf\{|\bar{g}-\bar{f}|\mid g\in -R, g\geq f\} \leq |\hat{f}|-|\bar{f}|$$

where $|\hat{f}|$ denotes the upper (concave) envelope of $|\bar{f}|$ on $\varphi(K)$

$$|\hat{f}| = \inf\{h \in A(\varphi(U^\circ)) \mid h \ge |f| \text{ on } \varphi(K)\}.$$

To prove (10) consider that the real parts of the evaluations of the elements of N plus real constants form a dense subset of $A(\varphi(U^\circ))$ which coincides on $\varphi(K)$ with $R + \varphi(N)$, because for elements of N φ means nothing but the evaluation map. So we have

$$|\hat{f}| = \inf \{ \alpha_0 + \operatorname{Re} \bar{j} \mid \alpha_0 \in \mathbb{R}, j \in N \text{ and } \alpha_0 + \operatorname{Re} \bar{j} \ge |\bar{f}| \text{ on } \varphi(K) \}.$$

Now let $h = \alpha_0 + \text{Re } \bar{j}$, such that $h \ge |\bar{f}|$ on $\varphi(K)$. Clearly $\alpha_0 \ge 0$ since h is positive on $\varphi(U^\circ)$, and for every $x \in X$ and $z_0 \in \gamma$

$$(\alpha_0 + \operatorname{Re} \bar{j}) \left(\varphi \left(\frac{z_0}{\varrho(x, z_0)} \varepsilon_x \right) \right) \ge \left| \bar{f} \left(\varphi \left(\frac{z_0}{\varrho(x, z_0)} \varepsilon_x \right) \right) \right|,$$

that is,

$$\alpha_0 + \frac{1}{\varrho(x, z_0)} \operatorname{Re} \left(z_0 j(x) \right) \ge \frac{1}{\varrho(x, z_0)} f(x)$$

that is,

$$f(x) \leq \alpha_0 \rho(x, z_0) + \text{Re}(z_0 j(x))$$

for fixed z_0 then z_0j is an element of N as well, hence $\text{Re }(z_0j) \in -R$, and because $\varrho(x, z_0)$ is R-superharmonic we conclude (cf. [1], ccr. I.3.6).

(11)
$$\widehat{f}(x) = \sup \{ v(f) \mid v \in M_x^+ \} \le \alpha_0 \varrho(x, z_0) + \operatorname{Re} (z_0 j(x))$$
 for all $x \in X$, $z_0 \in \gamma$.

Now let $z\varepsilon_x \in K$, $\delta > 0$. (11) guarantees the existence of $g \in -R$ such that $g \ge f$ and

$$g(x) \le \alpha_0 \varrho\left(x, \frac{z}{|z|}\right) + \operatorname{Re}\left(\frac{z}{|z|}j(x)\right) + \delta$$
,

hence by (2) if $z \neq 0$ (the case z = 0 is trivial)

$$|z||g(x)| \leq |z| \cdot \alpha_0 \varrho\left(x, \frac{z}{|z|}\right) + |z| \cdot \operatorname{Re}\left(\frac{z}{|z|}j(x)\right) + |z|\delta$$

$$\leq \frac{1}{\varrho\left(x, \frac{z}{|z|}\right)} \cdot \alpha_0 \varrho\left(x, \frac{z}{|z|}\right) + \operatorname{Re}\left(zj(x)\right) + |z|\delta$$

$$\leq \alpha_0 + \operatorname{Re}\left(zj(x)\right) + |z|\delta = h(\varphi(z\varepsilon_x)) + |z|\delta.$$

Finally we conclude

$$|\bar{g} - \bar{f}|(\varphi(z\varepsilon_x)) = |z|(g(x) - f(x)) \le h(\varphi(z\varepsilon_x)) - |\bar{f}|(\varphi(z\varepsilon_x)) + |z|\delta$$

$$\le (h - |\bar{f}|)(\varphi(z\varepsilon_x)) + |z|\delta.$$

Since δ was arbitrary (10) is verified, $\bar{\mu}$ is a boundary measure in U° such that $\mu - \bar{\mu} \in N^{\circ}$.

4. Applications.

4.1. Let K be a closed subset of the compact Hausdorff space X, N a linear subspace of C(X) which contains the constant functions and separates the points of X, R a sup-stable convex cone in $C_R(X)$ such that $Re N \subset R$. Define $\varrho(x,z)=1$ if $x \in K$ and $\varrho(x,z)=\infty$ elsewhere. Clearly ϱ is lower semicontinuous

and R-superharmonic for fixed $z \in \gamma$ if $v >_R \varepsilon_x$ for all $x \in K$ implies μ is supported by K. In this case the above theorem guarantees that for every measure μ supported by K there is a boundary measure $\bar{\mu}$ supported by K such that $\mu - \bar{\mu} \in N^{\circ}$ and $\|\bar{\mu}\| \leq \|\mu\|$.

4.2. Let μ be a complex measure on the compact Hausdorff space X, N and R as above, and write $\mu = h|\mu|$, where h is a Borel function of modulus one. Let γ_0 be a closed subset of γ such that range $h \subset \gamma_0$ and define $\varrho(x,z) = 1/\|\mu\|$ if $z \in \gamma_0$ and $\varrho(x,z) = \infty$ elsewhere. Clearly ϱ is lower semicontinuous and R-superharmonic and therefore defines an R-stable 0-neighborhood U in C(X). $\mu \in U^\circ$, because for every $f \in U$, $x \in X$ we have $\text{Re } (h(x)f(x)) \leq 1/\|\mu\|$ since $h(x) \in \gamma_0$, hence

$$\operatorname{Re} \mu(f) = \operatorname{Re} |\mu|(hf) = |\mu|(\operatorname{Re} (hf)) \le ||\mu|| \cdot \frac{1}{||\mu||} = 1$$
.

Then by the above theorem there is a boundary measure $\bar{\mu} = \bar{h}|\bar{\mu}|$ such that $\mu - \bar{\mu} \in N^{\circ}$ and $\bar{\mu} \in U^{\circ}$. Clearly $\|\bar{\mu}\| \le \|\mu\|$, since U contains the ball with radius $1/\|\mu\|$ in C(X).

If γ_0 is the intersection of a finite number of closed half circles in γ the unimodular function \bar{h} can be chosen such that range $\bar{h} \subset \gamma_0$ as well. To prove this take any \bar{h} such that $\bar{\mu} = \bar{h}|\bar{\mu}|$, denote

$$X_0 = \{ x \in X \mid \bar{h}(x) \notin \gamma_0 \}$$

and suppose $|\bar{\mu}|(X_0) > 0$. By assumption now there is at least one closed half circle β which contains γ_0 and for which $|\bar{\mu}|(X_{\beta}) > 0$, where

$$X_{\beta} = \{ x \in X \mid \overline{h}(x) \notin \beta \} .$$

Because of the regularity of μ there is a compact subset K of X_{β} such that $|\bar{\mu}|(K) > 0$ and an open neighborhood V_{ε} of K such that $|\bar{\mu}|(V_{\varepsilon} \setminus K) < \varepsilon$. Let χ_{ε} be a continuous real valued function such that $0 \le \chi_{\varepsilon} \le 1$ and

$$\chi_{\varepsilon}|_{K} = 1, \quad \chi_{\varepsilon}|_{X \setminus V_{\varepsilon}} = 0$$

and denote $z_{\beta} \in \gamma$ the complex number which characterizes β by

$$\beta = \{ z \in \gamma \mid \operatorname{Re} z z_{\beta} \leq 0 \} .$$

Then for each $\lambda > 0$ the function $\lambda z_{\beta} \chi_{\epsilon}$ is an element of U, hence $\bar{\mu}(\lambda z_{\beta} \chi_{\epsilon}) \leq 1$ for each $\lambda \geq 0$, that is,

$$\bar{\mu}(z_{\beta}\chi_{\varepsilon}) = |\bar{\mu}|(z_{\beta}\bar{h}\chi_{\varepsilon}) \leq 0$$

which clearly contains a contradiction because $z_{\beta}\bar{h}>0$ on K which implies $|\bar{\mu}|_{K}(z_{\beta}\bar{h})>0$ and because ε can be chosen sufficiently small.

98 WALTER ROTH

Therefore $|\bar{\mu}|(X_0)=0$ and \bar{h} may be replaced by its restriction on $X \setminus X_0$ which only takes values in γ_0 .

4.3. An extension theorem in [6] states the following:

Let X be a compact Hausdorff space, M a real linear subspaces in $C_{\mathsf{C}}(X)$ (respectively $C_{\mathsf{R}}(X)$), N a closed convex cone in M, which separates the points of X and contains the constant functions, R a sup-stable convex cone in $C_{\mathsf{R}}(X)$ which contains the real parts of all functions in $\lim N$ (the complex linear hull of N). Suppose Y is a compact subset of X such that

- (1) for every measure μ supported by Y there is a boundary measure $\bar{\mu}$ supported by Y such that $\bar{\mu} \mu \in (\ln N)^{\circ}$.
- (2) For every complex boundary measure $\mu \in N^{\circ}$ implies $\mu|_{Y} \in M^{\circ}$.
- (3) $\lim N|_Y$ is dense in $M|_Y$.

Suppose U is a 0-neighborhood in $C_{\mathsf{C}}(X)$ defined by a strictly positive bounded l.s.c. function $\varrho \colon X \times \gamma \to \mathsf{R}$ such that U is R-stable.

Then for every $f \in M$ such that $f|_Y \in U|_Y$ there is $g \in N \cap U$ such that $f|_Y = g|_Y$.

Applying our stability-theorem we know the neighborhood U to be R-stable if $\varrho_z \colon X \to \mathbb{R} \cup \{\infty\}$ is R-superharmonic for every $z \in \gamma$. Thus the above extension theorem contains generalizations of some well-known results, such as T. B. Andersen's split-face theorem [3] and Alfsen-Hirsberg's theorem about extensions of affine functions on compact convex sets [2].

REFERENCES

- E. M. Alfsen, Compact convex sets and boundary integrals (Ergebnisse der Mathematik 57), Springer-Verlag, Berlin - Heidelberg - New York, 1971.
- E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces in C_C(X), Pacific J. Math. 36 (1971), 567-584.
- 3. T. B. Andersen, On dominated extension of continuous affine functions on split faces, Math. Scand. 29 (1971), 298-306.
- B. Hirsberg, Représentations intégrales des formes linéaires complexes, C.R. Acad. Sci. Paris, Sér. A 274 (1972), 1222–1224.
- 5. O. Hustad, A norm preserving complex Choquet theorem, Math. Scand. 29 (1971), 272-278.
- W. Roth, A general Rudin-Carleson theorem in Banach spaces, Pacific J. Math. 73 (1977), 197-214.

TECHNISCHE HOCHSCHULE DARMSTADT FACHBEREICH MATHEMATIK SCHLOSSGARTENSTR. 7 61 DARMSTADT WEST-GERMANY