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CLUSTER VALUES OF
ANALYTIC FUNCTIONS ALONG PATHS

T. W. GAMELIN! and MIKIO NIIMURA

Summary.

Let D be a bounded open subset of the complex plane. We consider the
cluster values of a meromorphic function f with respect to a family & of paths
in D terminating at 0dD. Under certain conditions on @, it is proved that
Cly (f, p) contains the boundary of the cluster set of f at a given point p € 0D,
and that every value in Cl (f, p)\ Cl; (f, p) is assumed by f infinitely often in
each neighborhood of p with the possible exception of a set of values of
logarithmic capacity zero. The theorems extend results obtained by K. Noshiro
[6] for the open unit disc.

1. Introduction.

Let D be a domain in the complex plane C. We will consider paths in D that
terminate at 0D. Such a path ¢ will always be parametrized so that ¢(t) € D for
0<t<1, while ¢(1) € dD is the terminal point of ¢.

The cluster set of an extended complex-valued function f along ¢ is denoted
by CI (f, ). It is the set of limit points in the extended complex plane of f (¢ (1)),
as t11. For a family @ of paths, the @-cluster set of f at a point p € dD is
defined to be

Cly (fip) = 800 U{CL(f,¢); €@ lo()—pl<e},

where the closure is taken in the extended complex plane. The full cluster set of
f at p is defined as usual to be

ap = () FBNAR: ),

where 4(p; €) is the open disc centered at p with radius &. Evidently Cly (f, p) is
a closed subset of Cl (f, p). We will also be dealing with the range R(f, p) of fat
p, which consists of those values assumed infinitely often by f in each
neighborhood of p:
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R(f,p) = ﬂo f(DNA(p;e) .

We consider the problem of imposing conditions on D and & so that every
meromorphic function f on D has the following properties.

(1.1) Clg (f, p) includes the topological boundary of CI (,p).
(1.2) ClL(f,p)\[Cls (f;) U R(£, p)] has logarithmic capacity zero.

K. Noshiro [6;5, p. 40, Theorem 9; 5, p. 43, Theorem 11] has proved that any
meromorphic function f on the open unit disc 4 has properties (1.1) and (1.2),
providing the terminal points on 94 of the family @ form a set of full arc-length
measure.

With the aid of a theorem from [4] and Bagemih!’s theorem on ambiguous
points [1], we aim to extend the Noshiro theorems to more general domains.
We give two extensions. The first, in Section 3, is valid for arbitrary domains.
The second, Section 4, is valid for domains with the property that harmonic
measure is carried by an at most countable number of boundary continua.
Section 5 includes an example that shows that the family of paths required for
this special class of domains may be much smaller than the family required by
the results for general domains.

2. Homotopic paths terminating in 0D.

In this section, we discuss some background material on homotopy classes
of paths in D that terminate at 0D, where D is a bounded domain in the
complex plane.

Let ¢ and ¥ be two paths in D terminating at dD. We say that ¢ is homotopic
to y, written @ ~, if there is a continuous family of paths ¢, 0=<s=1,in D,
each terminating at the same point of 8D, such that p,=¢ and ¢;=y. In
particular, homotopic paths have the same terminal point.

Let m: 4 — D be the universal covering map of 4 onto D. Let g, denote the
radial path in 4 terminating at e ¢ 84, defined by go(r)=re”’, 0sr<1. The
path mog, in D is called a conformal ray in D. By Fatou’s Theorem, the
conformal ray mog, terminates at a point of oD for almost all (d6) values of the
parameter 6. Let y, denote the path mog, whenever it terminates at a point of
oD.

Lemma 1. If ¢ is a path in D terminating at a point of 0D, then any
(continuous) lift ™o of ¢ to 4 is a path in A that terminates at a point of 04.

PRrOOF. Since 7 is a covering map, the lifted values (n~!-@)(s) accumulate
towards 04 as s11. Suppose that n™'o¢ does not terminate at a point of d4.
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Then there is an open arc of 04 included in the cluster set 7! o ¢. Furthermore,
the radial cluster set of m at each point of this arc includes the value p. By
Fatou’s Theorem, n is constant. This contradiction establishes the lemma.

LEMMA 2. Let ¢, 0=5=<1, be a homotopy of paths in D terminating at p € éD.
Then there is a lift of the homotopy to paths n~'oq in A, each terminating at
0A. For any such lift, each path n~'oq_ terminates at the same point of dA.

ProOF. Since  is a covering map, we can lift to 4 the piece of the homotopy
©,(t) for parameter values 0<s<1 and 0=t< 1, to obtain a continuous family
n~!og, of paths in A. By Lemma 1, each of these paths terminates at a point of
04. To prove the lemma, it suffices to show that the diameters of the sets

E, = {(rn o)1) ; 0Ss<1)

tend to zero as t11.

Suppose not. Then there is a sequence t,71 such that the continua E,
converge to a subset of 04 including an arc with nonempty interior. Again p
belongs to the radial cluster set of m at each point of the arc, and this leads to a
contradiction.

LeEMMA 3. If ¢ is a path in D terminating at p € 0D, then there is a conformal
ray 7y, that is homotopic to .

PrOOF. Suppose that the lift z~'o¢p of ¢ to 4 terminates at e € 04. We
claim that ¢ ~ 7y, We assume for convenience that ™! has initial point 0, as
does the ray g,.

By Lindel6f’s Theorem, n has nontangential limit value p at e, so that y,
terminates at p. There is then a domain U in 4 whose boundary oU is a simple
closed Jordan curve in 4 U {e"}, such that both n~!o¢ and the radial segment
0y are included in U, while n(z) — p as z tends to e through 0U. Such a
domain can be constructed, for instance, by covering 4 by a grid of squares so
that the oscillation of n on the individual squares tends to zero as the squares
approach the boundary 04 of A. By traversing appropriately the outer
boundary of the collection of squares in the grid that meet one of the two paths
above, one obtains the curve oU.

Another application of Lindel6f's Theorem shows that n(z) — p as z tends
to ¢ through U. Hence = extends continuously to U, mapping U into DU {p}.
Since U is topologically a closed disc, it is a simple matter to find a homotopy
of the paths n 'o¢ and g, through paths in U terminating at . The
projection of this homotopy is then a homotopy of ¢ and y, through paths in D
terminating at p.
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LeEMMA 4. Let T be a covering transformation of A associated with m, so that
noT=mn. If y, is any conformal ray that terminates at p € 0D, and T(e®)=¢,
then y,. also terminates at p, and yg ~7,.

PrOOF. Let y(r)= T (re'®), 0<r < 1. Then ¥ is a lift of y,, and y terminates at
T () =¢". By Lemma 3, y,~7,.

LeEMMA 5. Suppose that y, and y, both terminate at a point p of 6D, and that y,
~7yq. Then there is a covering transformation T such that T (e®)=e"".

Proor. Let ¢, 0551, be a continuous family of paths in D terminating at
p € 0D, such that g, =7, and @, =7, Let y,=n"'- @, be a lift of the homotopy
to 4, normalized so that y, () =te®, 0<t < 1. Now V¥, is a lift of y,, so there is a
covering transformation T satisfying T (re’®)=y,(r), 0<r<1. By Lemma 2, i,
and y, have the same terminal point, namely, . Consequently T(e®)=e'".

We have proved the following result.

THEOREM 1. Let D be a bounded domain in the complex plane, and let n: A
— D be the universal covering map. Then the set of points on 04 at which ©t has a
radial limit is invariant under the group of covering transformations of A. There is
a one-to-one correspondence between equivalence classes (modulo the group of
covering transformations) of points of 04 at which n has a radial limit, and
homotopy classes of curves in D terminating at éD.

Let h be an arbitrary complex-valued function on D. A homotopy class A of
paths in D terminating at 0D is ambiguous for h if there are two paths @, Y € 4
such that Cl (h, ¢) is disjoint from Cl (h, §). In view of the preceding discussion,
we can easily extend Bagemihl’s theorem on ambiguous points [1;5, p. 39,
Theorem 8] from the unit disc to arbitrary domains as follows.

THEOREM 2. There are at most countably many homotopy classes that are
ambiguous for a given complex-valued function h on D.

Proor. Let g be an arbitrary complex-valued function on 4. Bagemihl’s
theorem asserts that the set E of terminal points of homotopy classes that are
ambiguous for g is an at most countable subset of d4. Let A be a homotopy
class of paths in D that is ambiguous for h, and let ¢, € 4 be as above. Let
n~ Yo and n~ oy be lifts of @ and  that terminate at the same point g € 94.
Then the cluster sets of hon along n~'o¢ and n~!oy are disjoint, so that g is
an ambiguous point for g=hon. By Bagemihl’s theorem, q is restricted to lie in
an at most countable subset of d4. In view of Theorem 1, there can be at most
countably many such homotopy classes A.
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3. A cluster value theorem for arbitrary open sets.

Let D be a bounded open subset of C, with constituent components
D,,D,,. ... By harmonic measure for D we mean the measure u=73 u;/2/, where
p; is the harmonic measure on 0D; for any point of D;. We are interested only
in the class of mutual absolute continuity of pu.

Let f belong to H*(D), the algebra of bounded analytic functions on D.
Associated with a subset Q of 0D there is the essential cluster set of f along
conformal rays terminating in Q, denoted by Cl;(f, Q) [2, 3]. By definition, this
consists of those complex numbers w with the following property: For each ¢
>0, there is a domain D; and a family of conformal rays in D; of positive
measure with respect to the parameter 6, each of which terminates in a point of
Q, and along each of which f has a limit lying in 4(w; ¢). For p € éD, define

Clr (£p) = ) Olr (£ 4(p: )N3D)

Evidently Cl; (f,p) is a closed subset of Cl(f,p). Furthermore, Cl (f,p) is
nonempty if and only if p belongs to the closed support of harmonic measure
on dD.

The cluster set Cl (f, p) has an abstract formulation [2, 3]. Let A denote the
harmonic measure on the maximal ideal space .# (D) of H*(D), with closed
support denoted by supp (4), and let .# (D) denote the fiber of .# (D) over p.
Then Clr (f, p) coincides with the range of (the Gelfand transform of) f on
# (D) Nsupp (4). The cluster set CI(f,p) coincides with the range of f on
M ,(D). Now #,(D) is the maximal ideal space of the fiber algebra, the
restriction of H*(D) to . ,(D), while .# ,(D)Nsupp (4) includes the Shilov
boundary of the fiber algebra whenever p € supp (u). An elementary principle
of Banach algebra theory then implies that Cl (f, p) includes the topological
boundary of Cl (£, p), at least when p e supp (u). It is proved furthermore in [4]
that Cl(f,p)\[Cly (f,p)UR(f,p)] has zero logarithmic capacity. Thus to
establish (1.1) and (1.2) for a bounded analytic function f; it suffices to establish
the following:

G.1) Cly (£.p) = Clr (f,p) .

We will direct our attention towards formulating conditions which guarantee
that (3.1) is valid. The discussion in Section 2 leads naturally to the set of
conditions given by the following lemma.

LemMMA 6. Let & be a family of paths in D terminating at 0D. Suppose that the
Jamily of conformal rays y, homotopic to a path in @ forms a set of full measure
with respect to the parameter 0. Then Cly (f, p)= Cly (f, p) for each p € dD and
each bounded analytic function f on D.
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Proor. For convenience, we assume that D is connected, and we carry over
the notation of Section 2.

In view of Theorems 1 and 2, there is a set S of parameter values of full arc-
length measure with the property that for each 8 € §, there exists a path ¢ € ®
such that ¢ =1y, fhas a limit along y,, and that limit belongs to Cl (f, ¢). The
defintions of Cl (f,p) and Cly (f,p) now immediately yield the conclusion
(3.1).

THEOREM 3. Let D be a bounded open subset of C, and let p € 0D belong to the
closed support of harmonic measure. Let ¢>0, and let E be a Borel subset of 0D
of harmonic measure zero. Let d be a family of paths in D terminating at 0D such
that each path s in D terminating at a point of [A(p; &) 6D] \ E is homotopic to
some ¢ € ®. Then for each meromorphic function f on D,

(i) Cly (f, p) includes the boundary of Cl(f,p), and
(ii) ClL(f;p)\N[Cle (f,p)UR(S,p)] has zero logarithmic capacity.

Proor. First, assume that fe H*(D). In view of our earlier remarks, it
suffices to establish (3.1).

Observe that the family of paths in D terminating at points of E
corresponds to a set of parameter values of arc-length ‘measure zero. This is
proved, for instance, in [2]. In fact, if D is connected, and if # is the
nontangential boundary value function associated with the universal covering
map n: 4 — D, then 7 carries the measure df/2n on d4 onto the harmonic
measure for #(0) on dD.

Now we can adjoin to @ all paths in D terminating at points of (6D)\ 4(p; ¢)
without enlarging Cl, (f; p). Once this is done, (3.1) follows immediately from
Lemma 6, and the theorem is established for functions f in H*(D).

Assume next that f is meromorphic, and that Cl (f, p) omits a disc 4(w;e).
Then for r>0 sufficiently small, 1/(f—w) is bounded on DN A(p; r). Applying
the statement already proved to the bounded analytic function 1/(f—w) on
DN A(p; r), we find again that (i) and (i) hold. (It is at this point that it
becomes essential to consider bounded open sets rather than domains, since
DN A(p;¢) need not be connected.)

Finally, assume that f is meromorphic, and that Cl (f, p) coincides with the
extended complex plane C*. In this case, the boundary of Cl (f, p) is empty, so
that (i) is trivial. We must establish (ii).

Suppose that 0 € Cl(f, p)\ Clg (f, p). Choose 6>0 and B>0 such that

liminf, |f(e@) > B

for all @ € @ terminating at a point of 4(p; 26). It suffices to show that
{Iwl< B} \ R(f, p) has logarithmic capacity zero.
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Let V¥ be the open subset of D defined by
V={zeD; |z—pl<9, |f(2)<B}.

We claim that ¥V N oD has zero harmonic measure for V. Indeed, suppose not.
Let ¥V, be a component of V such that 0V, N 0D has positive harmonic measure
for V,. There is then a set Q of conformal rays in ¥V, corresponding to
parameter values of positive arc-length measure, so that the set S of terminal
points of the rays in Q lies within dV,NéD. In particular, S has positive
harmonic measure for V,, hence § has positive harmonic measure for D.
Consider the homotopy classes in D of the rays in Q that terminate at points of
S\ E. Each of these homotopy classes includes a path in @, and hence is
ambiguous for f. By Theorem 2, there are at most countably many of these
homotopy classes, so that S\ E is at most countable. Since E has zero
harmonic measure for D, also S has zero harmonic measure for D. This
contradiction establishes our claim.

Now 8V consists of an at most countable collection of analytic arcs, together
with a subset VN 0D which is of zero harmonic measure for V. Since Cl (f, p)
=C*, there are points of C\ V arbitrarily near p, and p belongs to the closed
support of harmonic measure for V. Furthermore, f € H®(V) satisfies | f|=f on
the analytic arcs in A(p; )N V. Applying the part of the theorem already
proved to the restriction of f to V and to any family of paths in ¥V whose
terminal points coincide with the analytic arcs in dV, we find that the
boundary of the cluster set of f|, at p is included in the circle {|w|=p}. Now
Cl(f,p) includes {|w|<p}. Assertion (i), applied to f|y, then shows that
{Iw|< B} \ R(f,p) has logarithmic capacity zero. The proof is complete.

At the final stage of the argument, we could cite Corollary 1.4 of [4] or the
arguments of [5], instead of the special case of Theorem 3 already proved.

The conclusion (ii) of Theorem 3 is valid even when p € éD does not belong
to the closed support of harmonic measure, while the conclusion (i) fails only in
a very trivial special case. Indeed, if p ¢ supp (u), then there exists §>0 such
that 4(p; 6)\ D has logarithmic capacity zero. There are two possibilities for a
meromorphic function f on D. The first is that Cl(f,p) coincides with the
extended complex plane C*, in which case C*\ R(f,p) has logarithmic
capacity zero. The second is that f extends to be meromorphic in a
neighborhood of p, in which case Cl (f, p) is a singleton. This dichotomy can be
established by an elementary argument, as in [5, p. 9, Theorems 1 and 2]. It
also follows from the proof given above.
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4. A special class of domains.

Fix a domain D, and let ¢ and y be two paths in D that terminate at 6D. We
say that ¢ is weakly equivalent to  if ¢ and y terminate at the same point p,
and if for each ¢>0, ¢(t) and Y (t) eventually lie in the same component of
DNA(p; ¢). This is evidently an equivalence relation, leading to weak
equivalence classes of paths.

It is not hard to establish that if ¢ and ¥ both terminate at the same point of
0D, then ¢ is not weakly equivalent to ¥ if and only if there exists e>0 and a
continuum K in 4(p; &) N 0D such that p € K, and ¢(¢) and ¥ (t) eventually. lie
in different components of A(p; ¢)\ K. Homotopic paths are weakly equiv-
alent, but weakly equivalent paths need not be homotopic.

Let h be any complex-valued function on D. A weak equivalence class of
paths is ambiguous for h if there are paths ¢ and ¥ in the equivalence class such
that Cl (h, @) is disjoint from CI (h, ).

Consider first these definitions in the case of the open unit disc 4. Any two
paths in 4 terminating at the same point of 04 are weakly equivalent, and in
fact homotopic. Hence the weak equivalence classes and the homotopy classes
coincide, and these are in one-to-one correspondence with points of d4.
Bagemihl’s Theorem asserts that there are at most countably many weak
equivalence classes that are ambiguous for a given function h.

Next consider the case in which D is a simply connected domain, not the
entire complex plane. Then any two weakly equivalent paths are easily seen to
be homotopic, so that again the weak equivalence classes coincide with the
homotopy classes. Furthermore, the results of Section 2 show that there is a
one-to-one correspondence between homotopy classes of paths in D
terminating at 0D, and points of 04 at which the conformal map n: 4 — D has
a radial limit. Each homotopy class of paths contains precisely one path of the
form n(re’), 0<r<1, where n(e") is the radial limit of n at €®.

Let h be a complex-valued function on the simply connected domain D.
Consider an ambiguous weak equivalence class 4 for h, and let ¢ and § be two
paths in the class for which Cl(h,¢) is disjoint from Cl (h,¢). Now A4 is
specified uniquely by the terminal point e® of the paths n ™o and ™' <y in 4.
Since the cluster sets of hon along the paths ™o and n~ oy are disjoint, ¢
is an ambiguous point for hom. By Bagemihl’s theorem there are at most
countably many such points. Consequently there are at most countably many
weak equivalence classes of paths in D that are ambiguous for h.

Now we extend Bagemihl’s theorem one step further.

THEOREM 4. Let D be a domain in the complex plane, and let K be a connected
component of 0D containing more than one point. Let h be an arbitrary complex-
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valued function on D. Then there are at most countably many weak equivalence
classes with terminal points in K that are ambiguous for h.

Proor. Each component of the complement C*\ K of K in the extended
complex plane C* is simply connected. We apply the preceding discussion (as
we may) to the component V of C*\ K containing D, and to any extension of
hto V.

Let ¢ and ¥ be paths in D terminating at p € K. If ¢ and y are weakly
equivalent in D, they are certainly weakly equivalent in V. We claim that the
converse is also true. Indeed, suppose ¢ and ¥ are not weakly equivalent in D.
Then there exists ¢>0 and a continuum Q < éD such that p € Q, and ¢(¢) and
V() eventually lie in different components of 4(p; &)\ Q. Now Q < K, so that
¢(t) and ¥ (t) eventually lie in different components of 4(p; ¢)\ K. Hence ¢
and y are not weakly equivalent in V.

Thus the weak equivalence classes in D terminating at points of K are in
one-to-one correspondence with a certain subset of the weak equivalence
classes of V. Evidently classes in D that are ambiguous for h correspond to
classes in ¥V that are ambiguous for any extension of h. The remarks preceding
the theorem show that there are at most countably many such classes.

Using Theorem 4, we can now establish the following analogue of Theorem
3.

THEOREM 5. Let D be a bounded open subset of C such that harmonic measure
for D is carried by an at most countable number of connected components of OD.
Let p € 0D belong to the closed support of harmonic measure. Let €>0, and let E
be a Borel subset of 0D of harmonic measure zero. Let ® be a family of paths in D
terminating at 0D such that each path Y in D terminating at a point of
[4(p; NODIN\E is weakly equivalent to a path in ®. Then for each
meromorphic function f on D,

(i) Clg (f,p) includes the boundary of Cl1(f,p), and
(i) CI(f,p)\[Clg (f,p)UR(S, p)] has logarithmic capacity zero.
Furthermore, if f € H®(D), then

(iii) Cly (f,p)=>Clr (£p)-

Proor. Again we consider first fe H®(D), in which case it suffices to
establish (iii).

Assume for convenience that D is connected.

Let J be an at most countable union of components of dD that carries
harmonic measure. By Theorem 4, there is an at most countable number of
weak equivalence classes of paths that terminate at J and that are ambiguous
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for f. By enlarging E, we can assume that E includes the terminal points of
these ambiguous equivalence classes.

Suppose w € Cly (f,p). Let §>0 satisfy d<e. According to the definition,
there is a Borel subset S of 4 of positive length such that for each ¢ € S, the
conformal ray y, terminates at a point of 4(p; ) N éD, and for has radial limit
at " that belongs to 4(w; ). By discarding from S a set of zero length, we can
assume that for each ¢” € S, the conformal ray y, terminates at a point of J \ E.
Since & <, there is for each € € S a path ¢, € @ that is weakly equivalent to
¢ Since the weak equivalence class of y, is not ambiguous for f, the limit of f
along 7, belongs to Cl(f,@,). In particular, there exists ¢ € @ such that
Cl (f,¢) meets A(w; ). Since this is true for all small >0, w belongs to
Cle (f.p), and (iii) is established, along with (i) and (ii).

Now suppose that fis meromorphic. The case in which CI (f, p)4+C* can be
reduced to the case in which f'is bounded, as in the proof of Theorem 3. So we
assume that Cl (f, p)=C*. Then (i) is trivial, and the proof of (ii) proceeds in
exactly the same way as the proof of the corresponding assertion of Theorem 3,
except that “homotopy classes” must be replaced by “weak equivalence
classes.”

5. An example.

Let {4,} be a sequence of closed disjoint subdiscs of the open unit disc 4
such that the 4, accumulate on the entire boundary 04 of 4, while the radii r,
of the 4, satisfy Y r, <o0o. Let D be the champagne bubble domain defined by

D = A\U 4,.

Any two paths in D terminating at the same point of dD are weakly equivalent.
Furthermore, harmonic measure for D is absolutely continuous with respect to
arc length on dD.

Note that for almost every e'® € 04, there is a radial interval in D that
terminates at . This is because the discs 4, for n= N project radially onto
a subset of d4 of length on the order of 23 yr,, which tends to zero as
N— .

For our family &, we consider a family of radial paths in D terminating at 04
on a set of full arc-length measure, together with paths in D terminating at each
04, on a set of full arc-length measure. The family @ satisfies the hypotheses of
Theorem 5, when E is taken to be the subset of éD at which no path in ¢
terminates.

On the-other hand, for each € € 84, there is an uncountable number of
homotopy classes of paths in D that terminate at e'’. Consequently the family @
falls far from fulfilling the hypotheses of Theorem 3.
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