AN EXAMPLE CONCERNING THE TOPOLOGICAL CHARACTER OF THE ZERO-SET OF A HARMONIC FUNCTION

ANDRZEJ SZULKIN

Let $f(x_1, x_2) = (f_1(x_1, x_2), f_2(x_1, x_2))$ be a harmonic mapping (i.e. f_1 and f_2 are harmonic functions) of a neighbourhood of the origin in \mathbb{R}^2 into \mathbb{R}^2 and suppose that f(0,0) = (0,0). The following result is due to H. Lewy ([2], Theorem 1):

The mapping f is one-to-one in some neighbourhood of the origin if and only if the Jacobian $\partial(f_1, f_2)/\partial(x_1, x_2)$ does not vanish at the origin.

A simple proof of this theorem has been given by L. Bers ([1, Lemma 3.1], see also $[4, \S 136]$):

Let $x = (x_1, x_2)$ and let ||x|| denote the Cartesian norm of x. By the Taylor formula,

$$f_i(x_1, x_2) = p_i(x_1, x_2) + r_i(x_1, x_2)$$
 $(i = 1, 2)$,

where p_i is a homogeneous polynomial of degree k_i and $r_i = o(\|x\|^{k_i})$ as $x \to 0$. Assume that the Jacobian of f vanishes at the origin. Then either $k_i > 1$ for some index i or $k_1 = k_2 = 1$ and $p_1 = \alpha p_2$ for some real number α . In the first case the zero-set of p_i consists of k_i lines crossing the origin (since $p_i(x_1, x_2) = \text{Re}(c_i z^{k_i})$ for some complex number c_i and $z = x_1 + ix_2$). It follows that there is no neighbourhood V of the origin such that the zero-set of $f_i \mid V$ can be topologically embedded into the real line. Hence f is not one-to-one in any neighbourhood of the origin. In the second case, set $g_1 = f_1 - \alpha f_2$, $g_2 = f_1 + \alpha f_2$. Since $\partial g_1/\partial x_1 = \partial g_1/\partial x_2 = 0$ at the origin, (g_1, g_2) satisfies the assumptions of the previous case and hence is not one-to-one. So (f_1, f_2) cannot be one-to-one either.

The problem of generalizing this theorem to higher dimensions seems to be open. A partial solution, for harmonic gradient mappings of R³, has been obtained by H. Lewy in [3]. In connection with Bers' proof it is natural to ask the following question (which has been posed to me by professor H. S. Shapiro):

Received November 7, 1977.

Let $f(x_1, ..., x_n)$ (n > 2) be a real harmonic function, defined in a neighbourhood of the origin in \mathbb{R}^n and suppose that f and grad f vanish at the origin. Is it true that there is no neighbourhood of the origin such that the zero-set of f in this neighbourhood can be embedded into \mathbb{R}^{n-1} ?

An affirmative answer would immediately lead to a generalization of H. Lewy's theorem to higher dimensions. However, we demonstrate by an example that this question actually has a negative answer.

EXAMPLE. Let $f(x, y, z) = x^3 - 3xy^2 + z^3 - \frac{3}{2}(x^2 + y^2)z$. This is a homogeneous harmonic polynomial and f(0, 0, 0) = 0, grad f(0, 0, 0) = (0, 0, 0). We shall show that the zero-set of f is homeomorphic to \mathbb{R}^2 .

Introduce polar coordinates:

$$x = r\cos\theta\cos\varphi$$
 $y = r\sin\theta\cos\varphi$ $z = r\sin\varphi$.

The set Z of zeros of f on the unit sphere is given by the equations:

$$\cos^3\theta\cos^3\varphi - 3\sin^2\theta\cos\theta\cos^3\varphi + \sin^3\varphi - \frac{3}{2}\sin\varphi\cos^2\varphi = 0 ,$$

$$r = 1$$
,

which after a simple modification become

$$\cos 3\theta = \frac{3}{2} \tan \varphi - \tan^3 \varphi ,$$

$$r = 1 .$$

Note that the function $g(t) = \frac{3}{2}t - t^3$ has a maximum less than 1 for $t \ge 0$ and that $\lim g(t) = -\infty$ as $t \to \infty$. It follows that there is a number $\alpha \in (0, \pi/2)$ such that $\frac{3}{2} \tan \alpha - \tan^3 \alpha = -1$ and $\frac{3}{2} \tan \varphi - \tan^3 \varphi \in [-1, 1]$ for any $\varphi \in [-\alpha, \alpha]$. Therefore, for $3\theta \in [0, \pi] + k\pi$ (k is a fixed integer), θ is a continuous function of φ in $[-\alpha, \alpha]$ and the set Z is the union of six arcs l_k , given by the equations

$$\theta = \frac{1}{3}(-1)^{k+1} \arccos\left(\frac{3}{2}\tan\varphi - \tan^3\varphi\right) + \frac{2}{3}\pi\left[\frac{k}{2}\right],$$

where k = 1, ..., 6, $\varphi \in [-\alpha, \alpha]$, arc cos $t \in [0, \pi]$ and $\lfloor k/2 \rfloor$ denotes the integer part of k/2. It is easy to verify that the arcs l_k and l_{k+1} (for k = 1, ..., 5) have precisely one endpoint in common, so do the arcs l_1 and l_6 , and all other pairs of arcs are disjoint. So we see that the set Z is homeomorphic to the circle. The zero-set of f consists of all rays emanating from the origin and passing through the points of Z. Since no ray passes through more than one point of Z, the zero-set of f is homeomorphic to \mathbb{R}^2 .

REFERENCES

- 1. L. Bers, Isolated singularities of minimal surfaces, Ann. of Math. (2) 53 (1951), 364-386.
- 2. H. Lewy, On the nonvanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
- 3. H. Lewy, On the nonvanishing of the Jacobian of a homeomorphism by harmonic gradients, Ann. of Math. (2) 88 (1968), 518-529.
- J. C. C. Nitsche, Vorlesungen über Minimalflächen, Springer-Verlag, Berlin Heidelberg New York, 1975.

UNIVERSITY OF STOCKHOLM SWEDEN