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C*-ACTIONS

JAMES B. CARRELL and ANDREW JOHN SOMMESE

I. Introduction.

In this paper we show that the basic structure theorem of Bialynicki-Birula
[1] for G, actions on a complete non-singular variety goes over without
change to holomorphic C*-actions with fixed points on a connected compact
Kaehler manifold X. Roughly speaking [cf. section III for a full statement], X
can be decomposed in either of two functorial ways into the union of a finite
number of C*-invariant sets X ; which have the following properties: each X ; is
Zariski open in its closure which is an analytic set; there exists a C*-
equivariant maximal rank surjection of X ; onto a connected component F; of
the fixed point set of X with vector space fibres; F; is a section of X;; and the
normal bundle of F;in X is a specific subbundle of the normal bundle of F;in
X. One corollary is that X is projective if and only if the fixed point set of C* in
X is projective. Another is that X is rational if the fixed point set of C* in X is.
This fact is due, in the algebraic case, to D. Lieberman [8].

The proof breaks into two halves. The first studies certain local fibrations
around the fixed point set of compact groups acting by means of
biholomorphisms on a general compact complex manifold X. Somewhat
amazingly, though a complex exponential map doesn’t exist, it almost does and
this lets one talk about what would be the image on X of certain subbundles of
the normal bundle of the fixed point set. These results can be looked at as
globalizations of some of the classical results of H. Cartan [cf. 2, Chap. I] on
Reinhardt and other circular domains.

The second half of the proof is a straightforward application of the key
result in [15] on the closure of orbits of a holomorphic C* action with non-
empty fixed point set on a compact connected Kaehler manifold.
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I1. Local fibrations around the fixed points.

Let X be a compact complex manifold and V a C*® vector field on X. The
one parameter group ®: Rx X — X gotten by integrating V is a one
parameter group of biholomorphisms of X if and only if V—iJV is a
holomorphic vector field, where J is the complex structure tensor of X. This
remark allows one to show that certain bundles associated to the fixed point
set of a compact Lie group G acting smoothly on X via biholomorphisms are
holomorphic. It also allows one to pass from an S'-action on X (via
biholomorphisms) to a holomorphic C*-action on X ; that is an action of C* on
X for which the natural map C* x X — X is homomorphic.

Now let #: Gx X — X be a C* action of a connected compact Lie group
on a not necessarily compact complex manifold by means of biholomorphisms.
Then the fixed point set of @ is a complex submanifold of X. To see that it is a
manifold is not hard; e.g. [16, p. 213]. To see that it is a complex submanifold,
use the fact that F is the set of common zeros of the holomorphic vector fields
V—iJV where V denotes the vector field on X generated by a one-parameter
subgroup of G. Note that @ gives rise to a fibrewise linear action d® of G on
T(X)|F, where T(X) denotes the holomorphic tangent bundle of X. In fact,
since G is compact, hence reductive, d® extends to a holomorphic action of the
complexification G¢ of G on T(X)|F.

A continuous linear representation of G on a finite dimensional complex
vector space V determines a unique direct sum decomposition V=@V, ®V,,
where A runs over all irreducible representations of G on V and G acts trivially
on V,. Here V¥, denotes the direct sum of all representations of type A in V. This
isotypic decomposition is an immediate consequence of the existence of a G-
invariant Hermitian metric on ¥V and Schur’s Lemma which says that an
equivariant linear map between two inequivalent irreducible representations is
trivial. If @: Gx X — X is a C* action of G on X via biholomorphisms, then
T(X)|F decomposes correspondingly into a direct sum of holomorphic
subbundles @E,® T(F) and G acts trivially on T(F). This decomposition can
be seen directly from the existence of a holomorphic embedding of a G-
invariant neighborhood of each x € F in a CN which is equivariant for some
representation of G in GL (N,C) [12].

LemMA 1. Let &: Gx X — X be a C™ action of a compact connected Lie
group G on a complex manifold X by means of biholomorphisms. Let Y be a not
necessarily reduced complex analytic subspace of X that is invariant under G. Let
A:Y— CN be a holomorphic map equivariant with respect to some
representation ¢: G — GL (N,C). Then if A extends to a holomorphic map
A: X — C¥, one can find an equivariant extension, A In particular if X is Stein,
then an equivariant extension of A exists.



C*-ACTIONS 51

Proor. Let dg denote the normalized Haar measure on G. Let

Ap) = J o(g™Y)oA-d(g,p)dg where ge G and pe X .
G

Note that

Aod(go,p) = L e(g ") A-b(ggo, p)dg

= L 0(gog ™ 1)o A b(g,p)dg = 0(8o)° A(p) .
Aiso it is clear that Zl Y=A|Y=A. Thus A is the desired extension.

EEMMAIL Let 9: Gx X — X and ¥: Gx Y — Y be C* actions of a compact
connected Lie group G on connected complex manifolds X and Y by means of
biholomorphisms. Let A: X — Y be an equivariant holomorphic map and let
A(F)<H where F is a component of the fixed point set of X and H is a
submanifold of the fixed point set of Y. If for each fe F, no irreducible
subrepresentation of G in N(H),, occurs among the subrepresentations of
N(F)P for any t>0, where N(F)" is the t-th symmetric power of the normal
bundle of F, then A(X)<H.

Proor. Using Lemma I, T(X)|F contains N(F) as a direct summand. dA4,
thus equivariantly maps N(F), to N(H)4(,. By the above hypothesis for t=1
and Schur’s lemma, dA,: N(F), — N(H)(,, is the 0 map. In this situation one
gets an equivariant map from N (F)‘,z’ to N(H)4;, which by the above is also
zero. Iterating this one has shown that if w is a holomorphic function on a
neighborhood U of A(f) such that w(H)=0 then woA4 has zero Taylor series
on A"Y(U)NV where V is a neighborhood of f. Thus A(f)<H.

It is convenient when @: Gx X — X is a C* action of a compact Lie group
G on X by means of biholomorphisms to introduce some notation. Let F be a
connected component of the fixed point set of G on X. We have

T(X)|F = T)@E,®....®F,

where 4; are the nontrivial irreducible representations that occur in the fibre of
T(X), over any point. For Ic{1,...,n}, let

jel jel

ProPOSITION 1. Let ®: G x X — X be a C*™ action of a compact connected Lie
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group G on a complex manifold X by means of biholomorphisms. Let F be a
connected component of the fixed point set of G in X and let

T(X)|F = E;,®...®E, ®T(F) .

IfI<{1,...,n} is such that no subrepresentation of Ay (I' is the complement of I
in {1,...,n}) occurs in any symmetric tensor power of A;, then there exists a
connected complex manifold F ; with a C* action of G by biholomorphisms and a
unique equivariant embedding &;: ¥ — X such that:

A) there is a maximal rank equivariant holomorphic surjection p;: #; — F
with a section s: F — .

B) ¢;s is the identity on F and do;|s(F) gives an equivariant isomorphism of
T(#)|s(F) and E;®T(F).

Proor. The main idea is to produce an equivariant embedding of a
neighborhood of an arbitrary x € F into C™ where m=dim X. As G is compact,
each point x € F has arbitrarily small G-invariant neighborhoods U,. By a
result of R. Richardson [12], there exists, for some U,, an holomorphic
embedding ¢,: U, — CV, equivariant with respect to some representation
G — GL (N, C), such that dg, is injective for all y € FN U,. By Lemma I, there
exists an equivariant linear map n: CN — T(X),=C™ for which ndg, is the
identity. By the inverse function theorem, ng is an embedding of a (possibly
smaller) invariant neighborhood onto an open set in C™ which has an
equivariant local inverse g. Therefore for some G-invariant neighborhood W,
of the zero section of N(F)|U,NF, one can define a holomorphic map
¥ .. W, > X by first denoting the points of W, by (y,v) where y € F and
v € N(F), and setting

?.(,0) = g(no(y)+ndo,(v)) .

Since any translation by a fixed point of a map equivariant with respect to a
linear action is again equivariant, ¥, is equivariant. Furthermore, ¥, |FN U,
is the inclusion into X where we have identified F as usual with the zero
section of N(F). Finally, note that the maps ¥, define a system of local
coordinates near F, since if W, NW,+ @, then ¥ 1y _is biholomorphic.

Given E; as above, let &, denote the union of the images of the maps
Y. |E;NW, as x ranges over F. By Lemma II and the assumption on I, these
images fit together in the sense that if W, N W, + &, then ¥, (W, NW,NE)
=¥, (W,NW,NE,)is a well defined submanifold of X satisfying A and B when
@ is the inclusion and p, the map defined by composing a ¥ ~! with the bundle
projection of N(F) on F. '



C*-ACTIONS 53

A question that immediately poses itself is when is #; a neighborhod Y of
the zero section F of a vector bundle (resp. when does an equivariant
exponential map on Y < N(F) exist)? The answer is obvious; each ¥ ¥ !
must be linear (resp. the identity). An effective criterion (cf. [1, p. 490]) for
this to happen in terms of the representation on a fibre of E; now follows.

LemMa III. Let G — GL (V¢) be a representation of a compact Lie group on a
complex vector space V. Let f U — V- be a G equivariant holomorphic
Jfunction that takes the origin to the origin, where U is an invariant open set
around the origin. f is the restriction of a linear mapping Ve — Ve if no
subrepresentation of G in V¢ occurs in the representation of G in any symmetric
tensor power S*Vc of V¢ for k> 1.

Proor. This is really just Lemma II. Let df, denote the linear mapping from
Ve to Ve gotten by identifying T(Vc), with Ve. Now f—df,=¢ is still
equivariant. dg, is so one gets a map from S2V¢ to V; by Schur’s lemma and
the hypothesis this map is 0. Repeating one gets the Maclaurin-Taylor
expansion of ¢ is 0.

REMARK. One should note if no subrepresentation of ¥V occurred in any
symmetric power S*V for k> n then one could conclude ¢ was a polynomial
mapping of degree at most n.

Let us give a few examples that illustrate the above.

ExampLE L Let S* act on C? by (a,b) — (za, z'b). The map (a,b) — (a,b+a’)
is not linear though equivariant. Note that the representation on the second
factor is contained in the tth symmetric power of C2. The representation space
V, of eigenvectors (a,0) of weight one admits two equivariant imbeddings
satisfying A and B: namely, the identity and (a,0) — (a,a?). Since their images
are clearly distinct, the hypothesis on I in Proposition I cannot be removed.

ExampLE II. Let SU (2), the compact real form of SL (2, C), act on C? via the
usual representation of SL (2,C). Since any symmetric power of this
representation is irreducible the lemma applies; but consider the direct sum of
this representation on itself. One has SU (2) acting on the 2 x 2 matrices and
the determinant is an invariant quadratic function on these matrices! This is
because in taking symmetric tensor powers of C2@C? one gets actual tensor
powers of C? with itself from the cross terms. One can compute when the
lemma applies by using formulas such as the Clebsch-Gordan series [11, p.
33].
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Now let us specialize to S* actions and give a more complete description of
the &, of Proposition 1. If S! acts complex linearly on a vector space V¢ it
splits V¢ into a direct sum &@,.z V,, where n € Z is an integer and v € V, goes
to z"V under the action of z € §'; the isomorphism type of an irreducible
representation is given by an integer. The n € Z for which V, is nontrivial are
called weights.

Now note S*V,, the kth symmetric power of V,, is a direct sum of
representations of type kn. Thus:

COROLLARY 1. Let @: ' x X — X be a C* action of S* on a complex manifold
X by means of biholomorphisms. Let F be a fixed point component and let

T(X)|F = T(ﬂ@(j@? E,)@((—BJ E,.)

where I={i,,...,i,} with i;<iy<...<i, <0 and J={j,,...,j,} with 0<j, <
<. <Js Then:

(A) #, and F are both defined. In fact for k>0, ¥+ is defined where k*
={i el :i>k>0}. Similarly, for k<0, F,- is defined where k™ ={ie J : i<k
<0}.

(B) Similarly, # -+ is defined where 2* ={r € I : r is divisible by the prime s}
and likewise F 5-.

(C) More generally, F , is defined if #=(IUJ)NS, where S is a sub-
semigroup of Z not containing 0.

(D) & , is a tubular neighborhood of the zero section of a vector bundle if #
={i,} or {j,} or more generally (INJ)U S, where S is a sub-semigroup of Z such
that (S+S)NI1UJ is null.

(E) If & is the restriction of a holomorphic C*-action on X, then each &+
(respectively & ,-) of (i) may be assumed to have vector space fibres with respect
to the morphism p,+ (respectively p.-) of Proposition 1, part A.

Proor. To prove parts A—D, simply use the fact that S*V,, the kth
symmetric power of V,, is of type kn with respect to the induced S*-action and
apply Lemma IIL If X is compact, then the identity component of the group
of all biholomorphisms of X is a complex Lie group acting holomorphically on
X so @ has an extension to C* x X. This C* takes any tubular neighborhood
of the zero section of E; (respectively E;) onto all of E; (respectively E;). Now
for any x € F, the map ¥, defined in the proof of Proposition I extends to Ej,
(respectively E;,) and every nearby fibre by the duplication formula ¥, (y,v)
=A"1¥,(y, Av), where (y,v) denotes a point of E;, (respectively E;)) and Ae C*
sends (y,v) into the domain of ¥,. The independence of 4 in this extension
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follows from the S'-equivariance of ¥, and the identity principal. This
completes the proof of E.

We note that one has a filtration &, =%, ; ,<.... It is interesting that
though they are not in general tubular neighborhoods of the zero sections of
vector bundles, quotients are well defined and the graded object gotten is
simply a tubular neighborhood of F in @;.,E; (and similarly for J). This
follows immediately from:

LemMa IV. Let S! act complex linearly on a complex vector space V. Let V¢
=V, ®V; where

I={leZ]| 0<i<...<A=a}
and
J={weZ| a<py<...<p}

for some a, where V; and V; are the subrepresentation spaces containing all
subrepresentations of type j €l and j e J respectively. Let f U — V- be an
equivariant holomorphic map where U is a neighborhood of the origin in Vc. Let
p1: Ve — V; denote the usual projection. Then f extends to V¢ and there is a
unique equivariant map f;: V; — V; such that fiopy=pj°f.

ProoF. fextends to Ve by the remark. If such an f; exists it is clearly unique
since f;: V; — V; must be gotten by composing the inclusion V; — (¥;,0) with
prof. If we write f as p;o f@p,of what we must show is that p;of does not
depend on the V; variables. Let V; have coordinates {z,,2,,...,221,222,- - - }
and V; have coordinates {w;;,W;s,...,Wy;,Wp,...} Where ne S' takes
{21, 2125+« 322152225 « s Wity Wizs- + s Wais Wagee o -} 1O {nM2y 1M 205, . . 17225,

Co MW, . "Wy, . ). Now by projecting V; onto a one dimensional
irreducible vector subspace one gets a holomorphic function f;: ¥ — C such
that f;(®(n, (z,w)))=1°f;(z,w) where §<a. One concludes from power series
expansions that f; is a sum of monomials a;;,zjjw% with r;A,+q,u,=0. But
since 4,>0 and p,>a and d<a we see that q,=0.

II1. The invariant decomposition.

In this section we will be solely concerned with holomorphic C*- (and (C*)"-)
actions on a compact Kaehler manifold X that have at least one fixed point
on each component of X. By the main result of [15], this happens if the Lie
algebra of vector fields (C*)" induces on X is annihilated by every holomorphic
one form. The following is due to Bialynicki-Birula in the algebraic case [1].

ProposiTioON I1. Let C* act holomorphically with at least one fixed point on a
connected compact Kaehler manifold X. Let {F ,l 1<j<r} be the connected
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components of the fixed point set of C* on X. There exist two functorial
decompositions (the plus and the minus decompositions) into C*-invariant sets
(V] | 1SjSr} (respectively {V} | 1Sj<r}) such that

A) V} (respectively V) is Zariski open in its closure which is an analytic
subset of X.

B) There exists a C*-invariant maximal rank holomorphic surjection nj : V|
— F; (respectively n; — F)) with vector space fibres.

C) T(V})|F;=N(F)*@®T(F) (respectively T(V;)|F;=N(F)  ®T(F)),
where T(X)|F;=T(F)@N (F)* @N(F;)~ is the usual decomposition in terms of
the fixed part and the positive and negative weights of the associated S'-action.

D) There is precisely one component F, (respectively F,) called the source
(respectively the sink) such that T(X)|F,=T(F)®N(F)* (respectively
T(X)|F,=T(F)®N(F,)".

E) X fibres meromorphically over the source (respectively the sink) with
generic fibre bimeromorphic to CPN.

Proor. We will prove the above for the plus decomposition; the minus
decomposition is precisely the same. The V| are defined in accordance with
Proposition I as the C*-invariant submanifolds which are associated to the
N(F)*. We first show that X=U V. By the basic Lemma II—A of [15],
each point x of X has a well defined limit x’ under lim,_, 4 x, where 1 e C*
and A x denotes the image of x under A. It is clear that x’ € F. By this and the
invariance of the V,T*, it is sufficient to show that each point x’ € ﬁj has a
neighborhood U such that if x € U and lim,_,4-x is contained in F;, then
x € V]. Let U be the domain of an equivariant biholomorphism ¢ onto an
open set in C". By replacing ¢ by ¢ —¢(x’) one can assume ¢(x')=0. Choose
local coordinates (w,,...,w,) on @(U) so that if 1 € C*, then

A Wpye o owy) = (Awy, . AW Wy, W Aw g, AW
where each k;>0 and each j;<0. Here s=rank N(F)* and t=dim V.

Now {w € ¢(U):lim,_oA-we ¢(UNF)} is the intersection of ¢ (U) and the
hyperplane H={w,,,=...=w,=0}, and by definition ¢(V; NU)cHN (V).
It is clear that V; NU’is closed in U so in fact e(V; NU)=HNoe(U). Thus
xe V], and hence X =U V,

Each V' is Zariski open in compact analytic space V+ such that the C*-
action on_!/j extends to Vj and n] extends to a holomorphlc equivariant
map =/ : V; — F,. Now by a simple application of the main proposition of
[13] (or by means of Lemma I-A, and Lemma 1I-A of {15] and Siu’s extension
theorem [14]), one sees that the inclusion of V' in X extends meromorphically
to V* This shows A. It also shows that one and only one ¥} say V{ can be
Zarlskl open; this proves E.



C*-ACTIONS 57

There is an exactly analogous decomposition when (C*)" acts with at least
one fixed point on a compact connected Kaehler manifold X except that
T(V;)|F;=N(F)*®T(F;, where

T(X)|F; = T(F)®N(F)*®N(F)~®r,

where N(F)* is the largest summand with no trivial direct summands on
which (C*)" acts with semi-positive weights (and similarly for T(V ;)| F)). This
is proven by induction. One does the decomposition for (C*)"~! x {1} and notes
that since (C*)" is commutative, {1} x C* leaves the fixed point set and the
decomposition invariant. One now simply applies the above proposition to the
action of {1} x C* on the fixed point set of (C*)"~* x {1} and notes everything
is compatible. The following corollary is well known.

CoroLLrary II. Let (C*)" act holomorphically on a not necessarily connected
compact Kaehler manifold X. The Euler characteristic of X is equal to the Euler
characteristic of the fixed point set of X.

Proor. One can assume X is connected. If (C*)" has no fixed point set on X
then the Euler characteristic (X) of X is 0. Thus one can assume (C*)" has a
fixed point set with connected components {F; | 1<j<r}. By Proposition II X
=U;V;}. Thus &(X)=%,;6(V}). Now =nj:V} — F; is a maximal rank
surjection with vector spaces or fibres, and thus &(V;)=4&(F).

Coroirrary IIL If (C*)" acts on a compact Kaehler manifold X, then X is
projective if and only if the source (sink) is projective. In particular, X is
projective if and only if the fixed point set is projective.

Proor. Only one assertion is non-trivial. Assume thé source is projective and
that X is connected. Since X is bimeromorphic to ¥; and since a Moisezon
Kaehler space is projective by Moisezon’s theorem [9, p. 280, Cor. II], it
suffices to show that ¥ is Moisezon. One can do this directly but it is easier to
blow up F, in V to get V; with a meromorphic surjection onto the blown up
F, and generic fibre CP!. The blown up F, is projective and we can use the
theorem of Kodaira—Kawai—-Hironaka [10, Cor. 5.2].

ReMARk. If X is projective it can be shown [8] that X is birational to F,
x CP?% and similarly for F,. This yields the pleasant consequence that a
Kaehler X is birational to CPN if F, (or F,)is. If X is not projective, X is not
necessarily bimeromorphic to CP*x F;. To see this choose a Kaehler torus T
with no analytic subspaces and L — T a non-trivial line bundle. Add a copy
T, of Tto infinity on Lto get the compact Kaehler manifold Lthat C* acts on
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with source the zero-section and T, as the sink. If L=CP'xT
bimeromorphically, then L would have a meromorphic section. But then, since
L is non-trivial, T would have a non-trivial analytic subset, i.e., the zero and
pole loci, contradicting our choice of T.

The next example shows the situation can, as expected, be quite different for
compact complex manifolds.

ExampLE IL Let H be the Hopf manifold C*—{0}/Z where the Z action is
generated by (z,w) — (2z,2w). The C*-action i‘(z,w)=(4z,w) on C?—{0}
gives rise to a C*-action on H and CP! with respect to which the universal
surjection p: H — CP! is equivariant. On CP! the fixed point set is [0,1] and
[1,0]. On H it is only the torus T=p~ ([0, 1]). Now p~!([1,0]) is an invariant
set, and H—p~*([1,0])~ T x C equivariantly with C* acting on the second
factor. The closure of any orbit in H—p~*([1,0]) contains p~* ([0, 1]). Thus
there is a source but no sink. The sink is replaced by an invariant set.

ExampLE III. X can have isolated fixed points without being rational. For
example, let X’ be any compact Kaehler manifold, and let C* act on CP* x X’
by acting only on the first factor. On the first factor, let the action be A[w,z]
=[Aw, z]. Blow up any point ([1,0], x): the action lifts, and the fixed point set
consists of one copy of X', one copy of X’ with x € X’ blown up and one
isolated point in the CP" one replaced ([1,0],x) by.

Let Qy denote any sheaf on X of the form (Q9)®“@®...®(Q%)®* with
some p; and a; both positive, where Q% denotes the sheaf of germs of
holomorphic p-forms on X. Since X is bimeromorphic to V§ and since
holomorphic sections of 4 are bimeromorphic invariants, it makes sense to
talk about sections of Qy that are pullbacks of sections of Q5 via 7] Vi
— F, (and similarly for F,).

COROLLARY 1V. Let (C*)? act holomorphically with at least one fixed point on
a compact Kaehler manifold X. Let F, and F, denote the source and the sink.
Then for any sheaf Qx defined above,

H°(X,Qy) ~ HO(FI,QFl) = HO(F,,QF) .
In particular, H°(X,Q%)=0 if ¢>inf {dim¢ F,,dim¢c F, }.
Proor. It suffices to do the part concerning F,. Since nj: Vi — F, is

locally a product projection, the tangent sheaf of X restricted to a fibre is a
direct sum of the normal sheaf to the fibre and the tangent sheaf to the fibre.
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Now if n € H*(V, Qy7) was not the pullback of a section of Qp,, then, by
using the last line and the fact that the normal sheaf to a fibre is trivial, one
could find some section y of an Qcp., which is absurd.

The above sharpens and generalizes [3], [5], and [7, p. 161] for C*-actions.
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