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ON THE GAUSSIAN MARKOFF SPECTRUM

HENRY W. HANSEN

Abstract.

A method for determining small Markoff constants over imaginary
quadratic fields is described. In particular, the first two gaps of the field Q(i)
are determined.

1. Introduction.

Let f(x,y)=ax?+bxy+cy? be a quadratic form with complex coefficients
and with discriminant D(f)=b% —4ac+0. For such a form, define the minimum
M (f)=inf|f(x,y)| over the set of pairs of Gaussian integers (x, )= (0,0), and
the Markoff constant u(f)=M(f)"ID(f)* if M(f)+0 and u(f)=o0 if M(f)
=0. The Markoff spectrum of Q(i) is the set of all Markoff constants u(f) as f
runs through the set of all non-singular complex forms.

Ford [3] in 1925 and Perron [5] in 1930 independently proved that the
smallest value of this Gaussian Markoff spectrum is 3% Cassels [2] in 1952
showed that this value is isolated in the spectrum in the sense that there exists a
constant M, > 3% such that if 0 < u(f) < M, then f'is equivalent to a multiple of
fi(x,y)=x%+xy+)% A. L. Schmidt [6] in 1967 developed the theory of Farey
triangles and quadrangles in the complex plane to show that M,>1.80.
Finally, in 1975, Schmidt [7] introduced the theory of regular and dually
regular chains, the Gaussian analog of real continued fractions, to completely
determine all complex binary quadratic forms with pu(f)<2.

In this paper, another method for finding some small Markoff constants in
imaginary quadratic fields will be described. In particular, we will give a proof
of the following

TueoreM. The Markoff constants for the field Q(i) in the interval (0,1.961) are
3% gnd (3/5)*41%= 1.9600700 . . ..

The forms associated with the second constant can be shown to be isolated
in the same manner as those for the first.
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2. Basic properties.

Two complex quadratic forms are equivalent if there exist Gaussian integers
r, s, t, u such that jru—st|=1 and g(x, y)=f(rx +sy, tx +uy). It is easily verified
that if g is equivalent to a multiple of f, then u(g)=u(f).

Further, in a manner completely similar to that of Cassels in the real case, [1,
pp. 20-21], we can show that if , s are relatively prime Gaussian integers and
f(r,s)=a +0, then f(x,y) is equivalent to a form g(x,y)=a'x?+b'xy+c'y?
where |b'| £2%a'|. So if f attains its minimum, i.e., if there is a pair of Gaussian
integers r,s such that f(r,s)=M(f)>0, it then suffices to assume that M(f)
=f(1,0) since we are now only interested in Markoff constants. And by
definition of u(f), we may certainly assume that M(f)>0.

If f does not attain its minimum, then we can continue to paraphrase Cassels
[1] and find a sequence of forms f,(x,y)=a,x?+b,xy+c,y* satisfying the
conditions

a, = f(rms,)
0 < M(f) <lal <M(f)+n7", |b] < 2%a,,
ID(f)l = ID(N), M(f,) = M(f),

for n=1,2,3,.... By compactness, there is a subsequence with coefficients
converging to F(x,y)=Ax?+ Bxy+ Cy?, and it follows immediately that u(F)
=u(f) and M(F)=A4=f(1,0).

Furthermore, since u(Af)= u(f), we can divide by the coefficient of x? and
consider only those forms f(x, y)= (x — ay)(x — by) with roots a, b satisfying the
conditions

1) ID(A) = la—b> > 0,
) [(x—ay)(x—by)l 2 1 for every (x,y)#(0,0), x,y € Z[i] .
Note that u(f)=|a—b|.

3. Method of proof.

By using an equivalent form if necessary, we may assume that the root a lies
in the square X=(0, —i, —1—i, —1). Being interested in only the smaller
Markoff constants, we can further assume that

3) u(f) = la—bl < 2,

and up to equivalence, this forces the root b into the square (—1—i, —1+2i,
2+2i,2—i). Finally, by using the diagonal symmetry (a, b) — (ia, ib), a denoting
the complex conjugate of a, we may even assume that b lies in the triangle
A(—1-i,242i,2-i).
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The proof will be split into six cases, with the root a € X, and b in one of the
six squares X, Y=(0,1,1—i, —i), Z=(1,2,2—i,1—i), U=(i,1+i,1,0), V=
(1+§,240,2,1), W=(1+42i,2+2i,2+i,1+i).

Inequality (2) can be rewritten as
“ Pey™!—al Z Iy 2xy~ b7t .

For a fixed pair of Gaussian integers x,, ¥, XoVo ! € X, X0y ! — b is bounded
above by some positive constant K since in each case b has been restricted to a
bounded region. Hence the inequality

Ixoyo ! —al Z K™ *|yol ™

1

forces the root a outside the circle with center x,yo ' and radius K ~*|y,|=2.

Similarly,
©® Iyt —bl 2 [y *xy™ ' —al "

puts similar restrictions on b. Enough such circles can be constructed in each
case to either cover an entire square, in which case no form arises, or to restrict
the roots a and b to small regions, thus enabling certain isolation techniques to
be applied in order to obtain the desired gaps.

4. The first gap.

Case L. a € X, b € X. Since a and b both lie in the same unit square, we get
from (4) and (5) that

Ix—al 2 27% |x-b z27%
for x=0, —1—i, —1 and y=1. This forces a=b= (—1~1i)/2, contradicting (1),

so no form arises in this case.

Case II. a € X, b € Y. For convenience translate each root by i, so that a €
(—1+4,i,0,—1), b € U. Applying (4), (5) with (x,y)=(1,1) gives in sequence

H-bl =2 1—(—1+i)|~' =57%,
[(=14i)—a 2 |(—=1+)—(1+i57H~' > 0.4819.
So by symmetry,
(6) |x—a] > 048 for x=—1,—-1+i,
7 |x—bl > 048 for x= 1,1+i.
Using these restrictions on a and b, we then get

(8) li—al, li—bl, |al, [b| > [1+0.52i"! > 0.887.
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These few constraints (6)—(8) on a and b are already sufficient to apply our
isolation methods, but we can restrict the roots much further with little effort.
This kind of finer analysis will be necessary for the later cases.

First, note that

) [Q+i)/2—b] = 47 Q2+i)/2—(—1+048i)|" > 0.1249
and by symmetry
(10) [(—2+i)/2—a] = 0.1249 .

Now, 0.89 +0.46i lies inside the circles (9) and (6a), so this point can be used to
give better approximations than 1+ 0.48i. Namely,

(11)  |x—a| > |[(—=1+i)—(0.89+0.46i)| "' > 0508 for x=—1+i,—1;
(12)  |x-—b] > 0.508 for x=1, 1+i;
(13)  |=1/Q+i)~al > 27 =1/(1 +i)— (0.89+0.46i)| ' > 0.359;

(14 |1/ —i)—b} > 0359.

Therefore the roots a and b are forced into the regions & and # bounded by
circles (10), (11), (13) and (9), (12), (14), respectively.

Region 4 is enclosed in a square with vertices 0.85 + 0.52i, 0.89 +0.52i, 0.89
+0.48i, 0.85+0.48i. Noting that 3%/2+i/2 € # and using symmetry for the
root a, we can write

(15) a= (-342+¢)+i(G+ey)
(16) b= (32+e)+iG+e,)
where the ¢; are real and

(17 le) < 003  (i=1,2,3,4).

It will next be shown that ¢, =¢,=¢;=¢,=0.
The law of arithmetic and geometric means applied to (2) gives

(18) Yx—ay?+y~x—by?* 2 2

where x,y are fixed Gaussian integers not both zero and y>0 is a constant.
Upon the substitution of the eight pairs

x» = 0,1),G1),(1,1),(1+i1), 2+i,2), (—2+1i,2), (—1+i,1), (- 1,1)
into (18), along with the choice
y = x—(¥2+i/2p17,
and a,b given by (15), (16), eight inequalities of the type
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Ag;+Bey + Cey+Dey, +E(e3 +e3)+ F(e3+¢63) = 0

are obtained. Upon taking the proper linear combination of these inequalities,
(see [4, pp. 23-24] for the explicit combination), we obtain

4 4
=Y lel+(B+3) Y & 20.
i=1 i=1

Rewriting this last inequality, we see that if some term of

4

Z [B+3Ye—lef] = 0

were positive, then for some i we would have |g>(3+3%)71>0.21,
contradicting (17). Hence each term is zero, so that ¢;=0 or |g]= (3+3%)"!
> 0.21. Therefore ¢,=0(i=1,2,3,4) and we have proved the following

TueoreM 1. If f(x,y)=(x—ay)(x—by) has roots ae (—1+1i,i,0, —1),
b e (i,1+1i,1,0) satisfying the conditions D(f)=|a—b*>0 and |f(x,y)|21 for
all pairs of Gaussian integers (x,y)= (0,0), then

Sxy) = (= (=342+4i/2p)(x— 342+i/2)y) = x*—ixy+y* .

After the investigation of the remaining cases, it will be seen that u(x? —ixy
+y%)=3% is the only value of the Markoff spectrum in the interval 0< u(f)

< (3/5)415.

5. The second gap.

We next assume that a € X and b e U; by making use of the symmetry
(a,b) — (ia,ib) we can even suppose that b e A(0,i,1+i). Since there is an
infinite chain of forms occuring in this case (see [7]), inequalities (4) and (5) are
not sufficient to locate the next form, as they were in section 4. If, however, we
also insist that

(19) 0 < la—b| < 1.961,

we can then show that any form f(x,y)= (x — ay)(x — by) satisfying conditions
(2) and (19) must have roots a and b lying either in the triangles 4,=
((—=1—i)/2, (—4—-3i)/5,(—4-2i)/5) and 4,=((3+4i)/5 (1+2i)/2,1+1i), re-
spectively, or in a pair of triangles symmetric to 4, and 4, about the origin
or about the diagonal Re (z)=1Im (2).

Denote the circle |z—a|=r by (a; r). Then, assuming a € 4, and b € 4,, and
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using only (4) and (5), we find that the root a is restricted to a region bounded
by circles ((—4—2i)/5; 0.1049), ((—4—3i)/5; 0.0976), ((—3—2i)/4; 0.03218),
((—23-15i)/29; 0.01738), and b to a region bounded by ((1+2i)/2; 0.1256),
((3+4i)/5; 0.1043), ((8 + 12i)/13; 0.0348), ((15+23i)/26; 0.01977). Note that all
centers are vertices of the Farey partition of the complex plane defined by A. L.
Schmidt [6].

Denoting by a, and b, the roots of f,(x,y)=x*+ (¢ —2i/5)xy—iy*, we can
then write

a = ay+(0,+i6;), b = by+(63+id,)
where
|64] < 0.0015, ]6;/ < 0.0013 for j=2,3,4.
By using these bounds to obtain similar ones for the error term in a+ b and ab,
we obtain the

LEMMA. Let f(x,y)=(x—ay)(x—by) have roots a€ 4,, b e 4, satisfying
inequalities (1) and (2). Then

(20) fxy) = X+ [G+e)— G+e)ilxy—[es+ (1+64)i]y?
where
(21) lel < 0.0004 for i=1,2,3,4.

For each pair of Gaussian integers (x,y) substituted into |f(x,y)|*21, f
defined by (20), an inequality

Ag,+ Be, + Cey+ Dey+ E(e2 +€3)+ F (2 +¢2)
+G(ere3—¢e284) + H(ese5+618) = 0

with rational integral coefficients is obtained. We use the inequalities
4
8283+ €184, 8185 — 828, < 0.5 ) &7
i=1

to eliminate the terms with coefficients G and H.

By choosing (x,y)=(0,1), (i,1), (=1,1), (1+i,1), (=i 1+i), (1+2i,2),
(2, =24i0), (—142i,142i), 2—i,—1+2i), (4i,3+2i), (5+i,—5+2i), and
taking the proper positive linear combinations of these inequalities (see [4]),
we obtain

(—led+115¢3) 2 0.

™

i=1

If some term were positive, then |g|>115"1>0.008, contradicting (21).
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Therefore all terms are zero and ¢;=0 for i=1,2,3,4.
We have therefore proved

THEOREM 2. Let f(x,y)= (x —ay)(x —by) have roots a € X, b € U, satisfying
(2), (19). Let a,, b, be the roots of

falxy) = x*+ G —=2i/S)xy—iy* .
Then (a,b) must be one of the four pairs
(a2, by), (—by, —ay), (idy,iby), (—ib,, —idy) .
Furthermore, f,(x,y) is the only such form satisfying (1), (2) and having roots
aed;, = ((—1-1)/2,(—4-=3i)/5,(—4-2i)/5)
and

bed, = (B+4i)5, (1+2i)/2,1+i).

COROLLARY. u(f,)= (%)*41%.

Proor. Note that (1 +2i)f, (x,y) can not attain any of the values i* or +1+i.
Therefore M(f,)=1.

6. Other cases.
Ifae X and b e Vor b e W, then we can show that no forms arise satisfying
(2) and (19). Enough of each region can be covered to force |a—b|>1.961.
In the remaining case, a € X and b € Z, the analysis proceeds exactly as
in section 5. In particular, the transformation (x,y) — (ix+y,x) maps
(1+2i)f,(x,y) into the form

(22) (1=2)f%(x,y) = (1=2i)x*+ (=3 +2i)xy + (1+2i)y?
with roots

a, = (a,—)"' X' = (=1+4i,i,0,—-1),

by = (b—i)™* V= (1+i,24i2,1).

Note that X', V are just translations by i of X, Z.

Proceeding as before, we can show that any root a satisfying (2) and (19)
lies in a region bounded by the circles ((—1+ 3i)/5; 0.1049), ((—4+7i)/13;
0.03840), ((—1+2i)/4;0.03219), and the root b in a region bounded by
((5+1i)/3; 0.05700), ((43+7i)/26; 0.01978), ((49 + 8i)/29; 0.01743). This allows
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us to write a form with roots a € 4;3=(—3+i/2,i,i/2) and b € V and satisfying
(2) and (19) as

',y = x> —=[G+e)+ E+e)ilxy+[(—2+e3)+ E+e,)ily?

where
(23) le] < 0.0035, for i=1,2,3,4.

But as before, we can obtain an inequality
4
2 (—lel+130e) 2 0,
i=1

and since [g]=13071>0.007 contradicts (23), it follows that ¢=0 for i
=1,2,3,4
Therefore we have proved

THEOREM 3. Let f(x,y)=(x—ay)(x—by) have roots a € X', b € V satisfying
(2) and (19). Let a',b" be roots of f;(x,y) defined by (22). Then (a,b) is one of
the four pairs

(a, by), (1+i—ay, 1+i=by), (1=a, 1 ~B)), (i+,i+5y).

7. Summary.
The above results are summarized below.

THEOREM. Let f(x,y) be a quadratic form with complex coefficients satisfying
the conditions

M(f) = inf|f(x,y) = f(1,0) = 1, (xy) * (0,0), x,y € Z[i],
0 < u(f) = IDUHFM()™! < 1.961.
Then f(x,y) is equivalent to a multiple of either
fixy) = X —ixy+)?,

(1420 f,(x,y) = A +2)x2+xy+ (2 —i)?,
or its conjugate form

(1=2i)f5(x,y) = (1 =2i)x*+xy+ (2+i)*.
It follows that the only Markoff constants for the field Q(i) in the interval
(0,1.961) are 3* and (3415
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We will show in another paper that the forms f, and f, are isolated, that is,
any form satisfying 3% < u(f)<1.961 is equivalent to a multiple of f, or f,.
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