NONCOVERING OF MULTIPLES

TORLEIV KLØVE

1.

In this paper we consider a combinatorial problem which arose in coding theory. Let q > 1 be an integer. We define a partial ordering on the nonnegative integers by m covers n if and only if each coefficient in the q-ary expansion of m is greater than or equal to the corresponding coefficient in the q-ary expansion of n. Our problem is to find how many of the integers less than q^m do not cover any multiple of b where b is some fixed integer dividing $q^m - 1$. The number of such integers is the number of information symbols in some codes of length $q^m - 1$ over GF (q), where q is a prime power. The codes are in a class of codes defined by Lin and Yiu [3]. We do not make use of this fact, however, and so we will treat the problem as a purely combinatorial problem.

2.

We will use the following notations:

The elements of an *m*-dimensional vector \boldsymbol{u} will be denoted $u_0, u_1, \ldots, u_{m-1}$,

$$u \le v$$
 if and only if $u_i \le v_i$ for $i = 0, 1, ..., m-1$,

$$|\mathbf{u}| = \sum_{i=0}^{m-1} u_i, \quad \|\mathbf{u}\| = \sum_{i=0}^{m-1} u_i q^i.$$

The columns of an $n \times m$ matrix E will be denoted by e^0, e^1, \dots, e^{m-1} , the rows by e_1, e_2, \dots, e_m , and the elements by e_{ij} .

Let b be a positive integer which is prime to q and let $s = \operatorname{ord}_b(q)$, that is, s is the least positive integer such that $q^s \equiv 1 \pmod{b}$. Let

$$M = \{0, 1, \dots, q - 1\} ,$$

$$\mathcal{L}(\lambda) = \{ \mathbf{l} \in M^{\lambda s} \mid \text{ if } \mathbf{0} < \mathbf{u} \leq \mathbf{l}, \text{ then } ||\mathbf{u}|| \not\equiv 0 \pmod{b} \} ,$$

$$P(\lambda) = \#\mathcal{L}(\lambda), \text{ that is number of elements in } \mathcal{L}(\lambda) .$$

Then $P(\lambda)$ is the number of integers $< q^{\lambda s}$ which do not cover any multiple of b. Further let

Received August 18, 1977.

$$\begin{split} \mathscr{F} &= \left\{ f \in \mathbb{N}^s \;\middle|\; \text{ if } \; \mathbf{0} < \mathbf{g} \leq f, \; \text{then } \; \|\mathbf{g}\| \not\equiv 0 \; (\text{mod } b) \right\} \\ \mathscr{E} &= \left\{ E \in \mathbb{N}^{(q-1) \times s} \;\middle|\; \sum_{i=1}^{q-1} i e_i \in \mathscr{F} \right\}, \\ \varLambda_E(\lambda) &= \left\{ \mathbf{l} \in M^{\lambda s} \;\middle|\; \# \left\{ \mu \;\middle|\; l_\mu = i \;\&\; \mu \equiv j \; (\text{mod } s) \right\} = e_{ij} \right\}, \\ \varLambda(\lambda) &= \bigcup_{E \in \mathscr{E}} \varLambda_E(\lambda) \;. \end{split}$$

The multinomial coefficients are denoted by

$$\binom{c}{c_1, c_2, \dots, c_m} = \frac{c!}{c_1! c_2! \dots c_m! (c - \sum_{i=1}^m c_i)!} \quad \text{if } m > 0, \ c_i \ge 0 \text{ for all } i, \text{ and } \sum c_i \le c \ ,$$

$$= 1 \quad \text{if } m = 0 \ .$$

Note that

$$\binom{c}{c_1, c_2, \dots, c_m} = \binom{\sum c_i}{c_1, c_2, \dots, c_{m-1}} \binom{c}{\sum c_i}.$$

LEMMA 1. We have $\Lambda(\lambda) \subseteq \mathcal{L}(\lambda)$.

PROOF. Let $l \in \Lambda(\lambda)$. Then $l \in \Lambda_E(\lambda)$ for some $E \in \mathscr{E}$. Let $0 < u \le l$. Then

$$\|\mathbf{u}\| = \sum_{\sigma=0}^{\lambda-1} \sum_{\mu=0}^{s-1} q^{\sigma s + \mu} u_{\sigma s + \mu}$$

$$\equiv \sum_{\mu=0}^{s-1} q^{\mu} \sum_{\sigma=0}^{\lambda-1} u_{\sigma s + \mu} \pmod{b}.$$

Hence

$$\|\boldsymbol{u}\| \equiv \left\| \left(\sum_{\sigma=0}^{\lambda-1} u_{\sigma s}, \sum_{\sigma=0}^{\lambda-1} u_{\sigma s+1}, \ldots, \sum_{\sigma=0}^{\lambda-1} u_{\sigma s+s-1} \right) \right\| \pmod{b}.$$

Further

$$\sum_{\sigma=0}^{\lambda-1} u_{\sigma s + \mu} \leq \sum_{\sigma=0}^{\lambda-1} l_{\sigma s + \mu} = \sum_{i=0}^{q-1} i e_{i\mu} .$$

By the definition of \mathscr{E} it follows that $\|\mathbf{u}\| \not\equiv 0 \pmod{b}$. Therefore $\mathbf{l} \in \mathscr{L}(\lambda)$.

LEMMA 2. We have $\mathcal{L}(\lambda) \subseteq \Lambda(\lambda)$.

Proof. Let $l \in \mathcal{L}(\lambda)$ and let

$$e_{ij} = \#\{\mu \mid l_{\mu} = i \& \mu \equiv j \pmod{s}\}$$
.

Let $E = (e_{ij})$. Then $l \in \Lambda_E(\lambda)$. We will show that $E \in \mathscr{E}$. Let $0 < g \le \sum_{i=1}^{q-1} ie_i$. Then

$$g_{\mu} \leq \sum_{i=1}^{q-1} i e_{i\mu} = \sum_{\sigma=0}^{\lambda-1} l_{\sigma s + \mu}.$$

For $\mu = 0, 1, ..., s-1$, let

$$k_{\mu} = \max \left\{ k \mid g_{\mu} > \sum_{\sigma=0}^{k-1} l_{\sigma s + \mu} \right\} \quad \text{if } g_{\mu} > 0.$$

= -1 \qquad \text{if } g_{\mu} = 0.

Then $-1 \le k_u \le \lambda - 1$. Let

$$u_{\sigma s + \mu} = l_{\sigma s + \mu}$$
 for $\sigma < k_{\mu}$,
$$u_{k_{\mu} s + \mu} = g_{\mu} - \sum_{\sigma=0}^{k_{\mu}-1} l_{\sigma s + \mu}$$
,
$$u_{\sigma s + \mu} = 0$$
 for $\sigma > k_{\mu}$.

By the definition of k_{μ} , $0 \le u_{k_{\mu}s+\mu} \le l_{k_{\mu}s+\mu}$. Hence $0 < u \le l$ and so $||u|| \ne 0 \pmod{b}$. Further

$$\|g\| = \sum_{\mu=0}^{s-1} g_{\mu}q^{\mu} = \sum_{\mu=0}^{s-1} \sum_{\sigma=1}^{q-1} u_{\sigma s + \mu}q^{\mu} \equiv \|u\| \not\equiv 0 \pmod{b}.$$

Therefore $\sum_{i=1}^{q-1} ie_i \in \mathcal{F}$ and so $E \in \mathcal{E}$.

LEMMA 3. If $E \neq E'$, then $\Lambda_E(\lambda) \cap \Lambda_{E'}(\lambda) = \emptyset$.

Proof. Obvious.

LEMMA 4. We have

$$\sharp \Lambda_E(\lambda) = \prod_{j=0}^{s-1} \binom{|e^j|}{e_{1,j}, e_{2,j}, \ldots, e_{q-2,j}} \binom{\lambda}{|e^j|}.$$

Proof. For a given j there are

$$\begin{pmatrix} \lambda \\ e_{1,j}, e_{2,j}, \dots, e_{q-1,j} \end{pmatrix} = \begin{pmatrix} |e^j| \\ e_{1,j}, e_{2,j}, \dots, e_{q-2,j} \end{pmatrix} \begin{pmatrix} \lambda \\ |e^j| \end{pmatrix}$$

ways to choose the elements $l_j, l_{s+j}, \ldots, l_{j+(\lambda-1)s}$ such that e_{ij} elements are equal to i for $i=1,2,\ldots,q-1$. Further, the choices for different j's are independent.

We can now prove our main theorem.

THEOREM 1. We have

$$P(\lambda) = \sum_{E \in \mathscr{E}} \prod_{j=0}^{s-1} {|e^{j}| \choose e_{1,j}, e_{2,j}, \dots, e_{q-2,j}} {\lambda \choose |e^{j}|}$$

Proof. By lemmata 1, 2 and 3

$$P(\lambda) = \# \mathcal{L}(\lambda) = \# \Lambda(\lambda) = \sum_{E \in \mathcal{E}} \# \Lambda_E(\lambda)$$

and so the theorem follows by lemma 4.

LEMMA 5 (Gould [2, identity no. 6. 44]).

$$\binom{\lambda}{m}\binom{\lambda}{n} = \sum_{j=0}^{\min(m,n)} \binom{n+m-j}{m-j,n-j} \binom{\lambda}{n+m-j}.$$

Using lemma 5 s times on each term in the sum in theorem 1 we get the next theorem.

THEOREM 2. There exist non-negative integers $A_i = A_i(q, b)$ such that

$$P(\lambda) = \sum_{i \geq 0} A_i \binom{\lambda}{i}.$$

We could, by theorem 1 and lemma 5, get explicit expressions for the A_i 's. In general they will be very complicated however. In the remaining part of this

Table 1. $A_i(2,b)$

i b	3	5	7	9	11	13	15
1,	2	8	6	26	150	336	14
2	2	20	24	144	1660	5160	146
3		16	48	324	5480	22176	896
4		4	45	414	8130	42504	3244
5			18	336	6810	46152	7464
6			3	168	3990	35616	11816
7				48	1760	22356	13696
8				6	530	10692	12012
9					100	3720	8008
10					10	912	4004
11						144	1456
12						12	364
13							56
14							4

paper we will give simpler expressions for the A_i 's in special cases. In particular, we have computed all $A_i(2, b)$ for $b = 3, 5, \ldots, 35$. The values for $b \le 15$ are given in table 1. Since $A_0(2, b) = 1$ for all b this is omitted in the table. In the next section we prove that $A_i(2, b) = 0$ for $i \ge b$, these values are also omitted in the table.

3.

In this section we take a closer look at \mathcal{F} to get more information about the $A_i(q,b)$'s.

DEFINITION. If E is an $n \times m$ matrix, then

$$\sigma E = (e^{m-1}, e^0, e^1, \ldots, e^{m-2}).$$

LEMMA 6. (i) If $u \in N^s$, then $||\sigma u|| = q||u|| - u_{s-1}(q^s - 1)$,

- (ii) if $\mathbf{f} \in \mathcal{F}$, then $\sigma \mathbf{f} \in \mathcal{F}$,
- (iii) if $E \in \mathcal{E}$, then $\sigma E \in \mathcal{E}$,
- (iv) $\# \Lambda_{\sigma E}(\lambda) = \# \Lambda_{E}(\lambda)$.

Proof. (i) We have

$$\|\sigma \mathbf{u}\| = u_{s-1} + \sum_{i=0}^{s-2} u_i q^{i+1} = u_{s-1} - u_{s-1} q^s + q \sum_{i=0}^{s-1} u_i q^i$$
$$= -u_{s-1} (q^s - 1) + q \|\mathbf{u}\|.$$

(ii) If $u' \le \sigma f$, then $u = \sigma^{-1} u' \le f$. Hence $||u|| \not\equiv 0 \pmod{b}$. Further by (i), $||u'|| = ||\sigma u|| \equiv q||u|| \not\equiv 0 \pmod{b}$

since gcd(q, b) = 1.

(iii) If $E \in \mathscr{E}$, then $\sum_{i=1}^{q-1} ie_i \in \mathscr{F}$. Hence

$$\sum_{i=1}^{q-1} i\sigma e_i = \sigma \sum_{i=1}^{q-1} ie_i \in \mathscr{F}$$

by (ii) and so $\sigma E \in \mathscr{E}$.

(iv) This follows immediately from Lemma 4.

LEMMA 7 (Bovey, Erdös, and Niven [1]). Let b>0 and $k \ge 0$ be integers with $b-2k \ge 1$. Given any n-k integers $a_1, a_2, \ldots, a_{n-k}$ there is a non-empty subset of subscripts I such that $\sum_{i \in I} a_i \equiv 0 \pmod{b}$ if at most n-2k of the integers lie in the same residue class modulo b.

Putting k=0 in lemma 7, we see that any sequence of b (or more) integers has a subsequence with sum congruent to zero modulo b. Hence se get the following corollary.

COROLLARY. (i) If
$$f \in \mathcal{F}$$
, then $|f| \leq b-1$, (ii) $A_i(q,b) = 0$ for $i \geq b$.

By lemma 6 iv, to find $\# \Lambda_E(\lambda)$ it is enough to find $\# \Lambda_{\sigma'E}(\lambda)$ for some j. We may for instance choose j such that if $\sigma^j E = (e'_{ij})$ then $\sum_i ie'_{i0} \ge \sum_i ie'_{ik}$ for all k. This motivates the next definition.

DEFINITION.

$$\mathcal{F}_r = \{ f \in \mathcal{F} \mid f_0 \ge f_i \text{ for } i = 1, 2, \dots, s-1 \& |f| = r \}$$
.

DEFINITION. To each $f \in \mathcal{F}_r$ we associate the sequence a_1, a_2, \ldots, a_r with f_0 1's followed by f_1 q_1 's, f_2 q_2 's etc. where $q_i \equiv q^i \pmod{b}$ and $0 \leq q_i < b$. Then any subsequence has a sum $\not\equiv 0 \pmod{b}$.

LEMMA 8. If $k \leq (b+1)/3$ and $f \in \mathcal{F}_{b-k}$, then

- (i) $f_0 \ge b 2k + 1 \ge (b+1)/3$,
- (ii) $f_0 > \frac{1}{2}(b-k)$.

PROOF. (i) By Lemma 7, if $f_0 \le b - 2k$ then $f \notin \mathcal{F}$. Hence $f_0 \ge b - 2k + 1 \ge (b+1)/3$ when $k \le (b+1)/3$.

(ii) By (i),

$$2f_0 - (b-k) \ge 2b-4k+2-b+k = b+1-3k+1 \ge 1$$
.

LEMMA 9. If $k \leq (b+1)/3$ and $f \in \mathcal{F}_{b-k}$, then $\sum_{i=0}^{s-1} f_i q_i < b$.

PROOF. Let $a_1, a_2, \ldots, a_{b-k}$ be the sequence associated with f, and let A be the set of integers that appears in the sequence. Let $S = S_v$ denote the sum of some arbitrary subsequence with v elements, all > 1.

The proof of the lemma is done in several steps.

(I) If
$$S \leq \lambda b$$
, then $S \leq \lambda b - f_0 - 1 \leq (\lambda - 1)b + 2k - 2$.

Suppose $S \ge \lambda b - f_0$. Let $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ be the subsequence with sum S. Since $\lambda b - S \le f_0$,

$$a_1, a_2, \ldots, a_{\lambda b-S}, a_{i_1}, a_{i_2}, \ldots, a_{i_n}$$

is a subsequence also and it's sum is

$$(\lambda b - S) \cdot 1 + S = \lambda b \equiv 0 \pmod{b}.$$

This is a contradiction. Hence

$$S \leq \lambda b - f_0 - 1 \leq (\lambda - 1)b + 2k - 2$$

by lemma 8i.

(II) If $a \in A$, then $a \leq b - f_0 - 1$.

Since a < b this follows from (I).

(III) If S = S' + a where a is a summand of S, $a \le f_0 + 1$, and $S' \le \lambda b$, then $S \le \lambda b - f_0 - 1$.

By (I), $S' \le \lambda b - f_0 - 1$ and so $S \le \lambda b - f_0 - 1 + f_0 + 1 = \lambda b$. Again by (I), $S \le \lambda b - f_0 - 1$.

(IV)
$$S_{2\lambda+1} \leq \lambda b + b - f_0 - 1$$
.

We prove this by induction on λ . By (II) it is true for $\lambda = 0$. Suppose it is true for $\lambda = 1$. Then

$$S_{2\lambda+1} = S_{2\lambda-1} + a + a' \le \lambda b - f_0 - 1 + 2(b - f_0 - 1)$$

= $\lambda b + b + b - 3f_0 - 1 \le \lambda b + b - 2$

by the induction hypothesis, (I), and lemma 8i. By (I), $S_{2\lambda+1} \le \lambda b + b - f_0 - 1$.

(V) The sequence $a_1, a_2, \ldots, a_{b-k}$ has at most one element in $[f_0, b/2]$.

Suppose a, a' are two elements from the sequence which both are in $[f_0, b/2]$. Then $S_2 = a + a' \in [2f_0, b]$. By (I) $2f_0 \le S_2 \le b - f_0 - 1$ and so $3f_0 \le b - 1$. This is a contradiction to lemma 8i.

(VI) If $a \in A$, then $a \leq b/2$.

First we notice that if a > b/2, then $a \ge (b+1)/2$. Let

$$\alpha$$
 = number of elements of (a_i) in $[(b+1)/2, b)$,

 β = number of elements of (a_i) in $[f_0, b/2]$,

 $\gamma = [(\alpha - 1)/2]$ (the integer value),

$$\delta = \alpha - 1 - 2\gamma.$$

Suppose $\alpha > 0$. Let $a_{i_1}, a_{i_2}, \ldots, a_{i_{2\gamma+1}}$ be the $2\gamma + 1$ largest elements of (a_i) and let

$$U = \sum_{j=1}^{2\gamma+1} \left\{ a_{i_j} - (b+1)/2 \right\}, \quad V = \sum_{a_i \in [2, f_0 - 1]} a_i, \quad W = \sum_{j=1}^{2\gamma+1} a_{i_j},$$

$$T = \sum_{a_i=1} 1 + V + W = f_0 + V + W.$$

First we show that $U+1 \ge \beta+\delta$. By (IV), $\beta \le 1$, and by definition $\delta \le 1$. Suppose $U+1 < \beta+\delta$. Then $\beta=\delta=1$ and U<1. We will show that this gives a contradiction. Since $\beta=1$, there exists an $a \in A \cap [f_0,b/2]$. We consider the cases b even and b odd separately. First b even. Then U<1 implies U=1/2, $a_{i_1}=b/2+1$, and $\gamma=0$. If a < b/2, then $a \le b/2-1$ and $b/2-1-a \le b/2-1-f_0 < f_0$. Hence

$$S = (b/2 - 1 - a) \cdot 1 + a + a_i = b \equiv 0 \pmod{b}$$
,

a contradiction. If a=b/2, then the elements of $A \cap [f_0,b)$ are a=b/2 and c=b/2+1; a appear once in A and c twice since $\delta=1$. Since a+2c<2b, $a+2c+V \le 2b-f_0-1$ by (III) and induction. Therefore

$$V \le 2b - a - 2c - f_0 - 1 = b/2 - f_0 - 3$$
.

Since $\alpha = 2$ and $\beta = 1$,

$$V \ge 2(b-k-f_0-\alpha-\beta) = 2(b-k-f_0-3)$$
.

Combining we get $b/2-f_0-3 \ge 2b-2k-2f_0-6$ and so

$$f_0 \ge 3b/2 - 2k - 3 \ge 3b/2 - 2(b+1)/3 - 3 = (b/2 - 2) + (b-5)/3$$
.

Therefore, if $b \ge 5$, then $f_0 \ge b/2 - 2$ and so

$$S = (b/2-2) \cdot 1 + a + 2c = 2b \equiv 0 \pmod{b}$$

a contradiction. For b=2 and b=4 it is obvious that $\alpha=0$, and in particular $\delta=0$ and we have a contradiction. The case b odd is similar to the first subcase since $a \le (b-1)/2 < b/2$. We omit the details.

By (IV), $W \le \gamma b + b - f_0 - 1$. Hence by (III) and induction we get $V + W \le \gamma b + b - f_0 - 1$, and so $T \le \gamma b + b - 1$. On the other hand,

$$T \ge \sum_{a_i \in \{1, f_0 - 1\}} 1 + U + (2\gamma + 1)(b + 1)/2$$

$$= (b - k - 2\gamma - 1 - \delta - \beta) + U + \gamma b + \gamma + (b + 1)/2$$

$$\ge \gamma b + b - 1 + (b + 1)/2 - \gamma - k - 1.$$

Combining the two inequalities involving T we get

$$\gamma \ge (b+1)/2 - k - 1 .$$

Further

$$(2\gamma+1)(b+1)/2 \le W \le \gamma b + b - f_0 - 1 \le \gamma b + 2k - 2$$

and so

$$\gamma \leq 2k-2-(b+1)/2.$$

Combining the two inequalities involving γ we get $3k \ge b+2$ contradicting our assumption that $k \le (b+1)/3$. Hence $\alpha = 0$ and the proof of (VI) is complete.

(VII)
$$S_{b-k-f_0} \leq b-f_0-1$$
.

By (VI) there are no elements >b/2 and at most one element $\ge f_0$ in the sequence (a_i) . Let S_v be the sum of the v largest elements in (a_i) . Then $S_1 \le b/2$ and by (III) and induction $S_v \le b - f_0 - 1$ for $v = 1, 2, ..., b - k - f_0$. Note that S_{b-k-f_0} is the sum of all the elements > 1.

Hence

$$\sum_{i=1}^{b-k} a_i = f_0 \cdot 1 + S_{b-k-f_0} \le b-1$$

by (VII) and the proof of lemma 9 is complete.

THEOREM 3. Let $k \leq (b+1)/3$. Then \mathscr{F}_{b-k} can be characterized as follows: Let $q_i \equiv q^i \pmod{b}, \ 0 < q_i < b$. Then $(f_0, f_1, \ldots, f_{s-1}) \in \mathscr{F}_{b-k}$ if and only if $\sum_{i=1}^{s-1} f_i(q_i-1) < k$ and $\sum_{i=0}^{s-1} f_i = b-k$.

PROOF. By lemma 9, if $(f_0, f_1, \ldots, f_{s-1}) \in \mathcal{F}_{b-k}$, then

$$\sum_{i=0}^{s-1} f_i = b - k \quad \text{and} \quad \sum_{i=0}^{s-1} f_i q_i < b.$$

Hence

$$k > \sum_{i=0}^{s-1} f_i(q_i-1) = \sum_{i=1}^{s-1} f_i(q_i-1)$$

since $q_0 = 1$. On the other hand, if $\sum_{i=1}^{s-1} f_i(q_i - 1) < k$ and $\sum_{i=0}^{s-1} f_i = b - k$ then $\sum_{i=0}^{s-1} f_i q_i < b$. If $0 < u \le f$, then $0 < \sum u_i q_i \le \sum f_i q_i < b$ and so

$$\|\mathbf{u}\| \equiv \sum u_i q_i \not\equiv 0 \pmod{b}$$
.

Hence $f \in \mathcal{F}$. Further

$$k-1 \ge \sum_{i=1}^{s-1} f_i(q_i-1) \ge \sum_{i=1}^{s-1} f_i = b-k-f_0$$

and so $f_0 \ge b - 2k + 1 > (b - k)/2$. Therefore $f_0 > f_i$ for i = 1, 2, ..., s - 1 and $f \in \mathcal{F}_{b-k}$.

Theorem 3 gives a very simple method to find the elements of \mathscr{F}_{b-k} . To illustrate this we give the leading coefficients of $P(\lambda)$ for q=2. We notice that if q=2, then $\mathscr{E}=\mathscr{F}$.

THEOREM 4. If $b \ge 3$, then $A_{b-1}(2,b) = s$. If $b \ge 5$, then $A_{b-2}(2,b) = s(b-1)$. If $b \ge 7$, then

$$A_{b-3}(2,b) = s \left\{ {b-1 \choose 2} + b - 3 \right\} \quad \text{if } 2^i \equiv 3 \pmod{b} \text{ is solvable },$$
$$= s {b-1 \choose 2} \quad \text{otherwise }.$$

If $b \ge 9$, then

$$A_{b-4}(2,b) = s \left\{ {b-1 \choose 3} + 2 {b-4 \choose 2} + 2(b-4) \right\} \quad \text{if } 2^i \equiv 3 \pmod{b} \text{ is solvable },$$

$$= s {b-1 \choose 3} \quad \text{otherwise }.$$

PROOF. From the proof of theorem 2 it follows that only those f for which $|f| \ge b - k$ will contribute to $A_{b-k}(2, q)$.

If $k \le (b+1)/3$, then $f_0 > f_i$ for i = 1, 2, ..., s-1 by lemma 8 (ii). Hence $f, \sigma f, ..., \sigma^{s-1} f$ are all distinct and by lemma 6(iv) give the same contribution to

Table 2.

k	$oldsymbol{eta_1}$	β_2	β_3	β_4	γ ₁	γ ₂	γ ₃	γ ₄
1	b-1	0	0	0	1	0	0	0
2	b-2 $b-3$	0 1	0 0	0 0	0 0	b-2	$\begin{array}{c} 0 \\ b-3 \end{array}$	0
3	b-3 b-4	0 1	0 0	0 0	0 0	0 0	1 b-3	. 0 b-4
	b-5	2	0	0	0	0	$\binom{b-3}{2}$	(b-4)(b-5)
	b-4	0	1	0	0	0	b-3	b-4
4	b-4 $b-5$	0 1	0 0	0 0	0 0	0 0	0 0	$ \begin{array}{c} 1 \\ b-4 \end{array} $
	b-6	2	0	0	0	0	0	$\binom{b-4}{2}$
	b-5	0	1	0	0	0	0	b-4 $(b-4)$
	b-7	3	0	0	0	0	0	$\binom{b-4}{3}$
	b-6 b-5	1 0	1 0	0	0	0	0	(b-4)(b-5) b-4

 A_{b-k} . Hence to find A_{b-k} for $k \le (b+1)/3$ it is enough to find the contribution from $f \in \mathscr{F}_{b-k}$ and multiply by s. Further the elements of \mathscr{F}_{b-k} are found by theorem 3. In table 2 we give the possible elements of \mathscr{F}_{b-k} for $k \le 4$ and we list their contributions to A_{b-k} . In the table, β_i is the number of *i*'s in the sequence associated with f and γ_i is the contribution to A_{b-i} .

Adding up the contributions we get theorem 4 for $b \le 3k-1$. The remaining cases, k=3 and b=7, k=4 and b=9 are true by table 1.

By the same method we can get expressions for $A_i(2, b)$ for i = b - 5, b - 6, etc. By a similar method we can also find $A_i(q, b)$ for q > 2. We notice that if $q \equiv q' \pmod{b}$ and q > b, q' > b then $A_i(q, b) = A_i(q', b)$. We will use this fact in section 5 to find explicit formulae for $P(\lambda)$ when $q \equiv \pm 1 \pmod{b}$.

4.

In lemma 6 iv we proved that $\# \Lambda_{\sigma E}(\lambda) = \# \Lambda_{E}(\lambda)$. Therefore there are several equal terms in the sum in theorem 1 and we may bring them together. Formally, let

 $E \text{ eqv } E' \text{ if and only if } E = \sigma^i E' \text{ for some } i$.

Then eqv is an equivalence relation. Let $\bar{\mathscr{E}}$ denote the set of equivalence classes and $\langle \bar{E} \rangle$ the number of elements in the class \bar{E} . Then we can restate theorem 1 as follows.

THEOREM 5. We have

$$P(\lambda) = \sum_{\bar{\boldsymbol{E}} \in \bar{\boldsymbol{e}}} \langle \bar{\boldsymbol{E}} \rangle \prod_{j=0}^{s-1} {|\boldsymbol{e}^j| \choose e_{1j}, e_{2j}, \ldots, e_{q-2,j}} {\lambda \choose |\boldsymbol{e}^j|}.$$

The advantage of theorem 5 over theorem 1 is that in some cases we may be able to give a characterization of one member in an equivalence class which is simpler than the definition of \mathscr{E} . For instance in theorem 3 we showed that if q = 2 and $|f| \ge b - (b+1)/3$ then the equivalence class of f contains a member f' such that $\sum_{i=0}^{s-1} f_i q_i < b$. In the remainder of this section we consider the case q = 2 and $b = 2^s - 1$. The reason is twofold. The case is interesting from a coding theory point of view and we can show that each equivalence class contains a member f such that ||f|| < b.

Definition. For i = 0, 1, ..., s-2 let ϱ_i be defined by

$$\varrho_i(f_0, f_1, \dots, f_i, f_{i+1}, \dots, f_{s-1})$$

$$= (f_0, f_1, \dots, f_i - 2d_i, f_{i+1} + d_i, \dots, f_n)$$

where $d_i = [(f_i - 1)/2]$.

Then ϱ_i will leave 1 (if f_i is odd) or 2 (if f_i is even) at position i and carry the exceeding to position i+1 where half of it is added.

LEMMA 10. For i = 0, 1, ..., s-1 we have

- (i) $\|\varrho_i f\| = \|f\|$ for all f,
- (ii) if $\mathbf{f} \in \mathcal{F}$, then $\varrho_i \mathbf{f} \in \mathcal{F}$.

Proof. (i) We have

$$\|\varrho_i f\| = \sum_{i=0}^{s-1} f_j 2^j - 2d_i \cdot 2^i + d_i \cdot 2^{i+1} = \|f\|.$$

(ii) Suppose $\mathbf{u} \leq \varrho_i \mathbf{f}$. Let \mathbf{u}' be defined by

$$u'_{j} = u_{j} if j \neq i, i+1,$$

$$u'_{i} = u_{i} + 2d_{i} if u_{i+1} \ge d_{i},$$

$$= u_{i} + 2u_{i+1} if u_{i+1} < d_{i},$$

$$u'_{i+1} = u_{i+1} - d_{i} if u_{i+1} \ge d_{i},$$

$$= 0 if u_{i+1} < d_{i}.$$

Then $u' \le f$ and so $||u'|| \not\equiv 0 \pmod{b}$. Further ||u|| = ||u'||. Hence $||u|| \not\equiv 0 \pmod{b}$. Therefore $\varrho_i f \in \mathscr{F}$.

DEFINITION. Let $f \in N^s$, $f_{s-1} = 0$, and let $j_1, j_2, \ldots, j_r = s-1$ be the subscripts of the elements of f which are zero, i.e., $f_j = 0$ for $j = j_1, j_2, \ldots, j_r, f_j \neq 0$ otherwise. Let

$$\nu[f|i] = \varrho_{j_i-1} \circ \varrho_{j_i-2} \circ \ldots \circ \varrho_{j_{i-1}+1}$$

for i = 1, 2, ..., r, where $j_0 + 1 = 0$,

$$\nu[f] = \nu[f|1] \circ \nu[f|2] \circ \ldots \circ \nu[f|r].$$

LEMMA 11. If
$$f_j = 0$$
, then $v[\sigma^{s-1-j}f] \circ \sigma^{s-1-j}f = \sigma^{s-1-j} \circ v[f]f$.

PROOF. First we note that the last element of $\sigma^{s-1-j}f$ is $f_j=0$ so that $\nu[\sigma^{s-1-j}f]$ is defined. Let $f=(F_1,F_2,\ldots,F_r)$ where F_1,F_2,\ldots,F_r are blocks of elements, the last element in each block being 0, that is, $F_i=(f_{j_{i-1}},\ldots,f_{j_i})$. If $j=j_i$ then

$$v[f]f = (F'_1, F'_2, \ldots, F'_r)$$

and

$$\sigma^{s-1-j}(v[f]f) = (F'_{i+1}, \ldots, F'_r, F'_1, \ldots, F'_i).$$

On the other hand

$$\sigma^{s-1-j}f = (F_{i+j}, \ldots, F_r, F_1, \ldots, F_i)$$

and so

$$v[\sigma^{s-1-j}f] \circ \sigma^{s-1-j}f = (F'_{i+1},\ldots,F'_{r},F'_{1},\ldots,F'_{1}).$$

LEMMA 12. If $||f|| \le ||\sigma f||$ and ||f|| < b, then $f_{s-1} = 0$.

Proof. By lemma 6i

$$||f|| \le ||\sigma f|| = 2||f|| - f_{s-1}(2^s - 1) = ||f|| + ||f|| - f_{s-1}b$$
.

Hence $f_{s-1} \le ||f||/b < 1$ and so $f_{s-1} = 0$.

THEOREM 6. Let q=2 and $b=2^{s-1}$. If $f \in \mathcal{F}$, then $||\sigma^i f|| < b$ for some i.

PROOF. The proof is by induction on $r = \#\{j \mid f_j = 0\}$. Since $\|(1, 1, \ldots, 1)\| = b$, $r \ge 1$ for all $f \in \mathscr{F}$. Therefore, the basis r = 0 for the induction is empty. Let $r \ge 1$ and suppose that the theorem is true for all lower values. We may assume that $f_{s-1} = 0$ since otherwise we could use σ repeatedly until the last element is 0. Let $f_j = 0$ for $j = j_1, j_2, \ldots, j_r = s - 1$. From lemma 10i it follows that $\|v[f]f\| = \|f\|$. From the definition of v[f] it follows that the elements of v[f]f are 1 or 2 except possibly those with subscripts j_1, j_2, \ldots, j_r .

Case 1. v[f]f has r elements which are 0. These are then the elements with subscripts $j_1, j_2, \ldots, j_r = s - 1$. Hence

$$||v[f]f|| \le 2(1+2+2^2+\ldots+2^{s-2}) = b-1$$

and so ||f|| < b in this case.

Case 2. v[f]f has less than r elements which are 0. By the induction hypothesis $\|\sigma^{i_0}(v[f]f)\| < b$ for some i_0 and by lemma 12 we may assume that the last element of $\sigma^{i_0}(v[f]f)$ is 0. Then $i_0 = s - 1 - j_i$ for some i, $1 \le i \le r$. By lemmata 10i and 11 we get

$$\|\sigma^{i_0}f\| = \|v\sigma^{i_0}f\| = \|\sigma^{i_0}(v[f])f\| < b$$

and the proof of theorem 6 is complete.

Combining theorems 5 and 6 it is simple to find $P(\lambda)$ for q=2 and $b=2^s-1$.

5.

In this section we give explicit expressions for $P(\lambda)$ in the cases when $q \equiv \pm 1 \pmod{b}$, q > b.

THEOREM 7. If $q \equiv 1 \pmod{b}$, then $P(\lambda) = {\lambda+b-1 \choose b-1}$.

PROOF. Since $q \equiv 1 \pmod{b}$ we have $||l|| \equiv |l| \pmod{b}$. Hence $l \in \mathcal{L}(\lambda)$ if and only if $|l| \leq b-1$. The number of vectors $l \in \mathcal{L}(\lambda)$ such that |l| = i for $0 \leq i \leq b-1$ is equal to the number of ways i objects can be placed into λ boxes, i.e. $\binom{\lambda+i-1}{\lambda-1}$. Hence

$$P(\lambda) = \sum_{i=0}^{b-1} {\lambda+i-1 \choose \lambda-1} = {\lambda+b-1 \choose \lambda} = {\lambda+b-1 \choose b-1}.$$

THEOREM 8. If $q \equiv -1 \pmod{b}$ and q > b, then

$$P(\lambda) = 2 \binom{\lambda + b - 1}{b - 1} - 1.$$

Proof. We have s=2 and

$$||l|| \equiv \sum_{i=0}^{\lambda-1} l_{2i} - \sum_{i=0}^{\lambda-1} l_{2i+1} \pmod{b}.$$

If l has two non-zero elements with subscripts j_1, j_2 of opposite parity and $u_{j_1} = u_{j_2} = 1$, $u_i = 0$ otherwise, then $u \le l$ and $||u|| \equiv 0 \pmod{b}$. Hence $l \notin \mathcal{L}(\lambda)$. Therefore

$$\mathcal{L}(\lambda) = \{ (l_0, 0, l_2, 0, \dots, l_{2\lambda - 2}, 0) \mid 0 \le \sum l_i \le b - 1 \}$$

$$\cup \{ (0, l_1, 0, l_3, \dots, 0, l_{2\lambda - 1}) \mid 0 < \sum l_i \le b - 1 \}.$$

Comparing with the proof of theorem 7 we see that

$$P(\lambda) = 1 + 2 \sum_{i=1}^{b-1} {\lambda+i-1 \choose \lambda-1} = 2 {\lambda+b-1 \choose b-1} - 1.$$

By [2] identity 3.20 we can rewrite theorem 7 as follows:

$$P(\lambda) = \sum_{m=0}^{b-1} {b-1 \choose m} {\lambda \choose m}.$$

By theorem 1

$$P(\lambda) = \sum_{\sum ie_i < b} \binom{|e|}{e_1, e_2, \dots, e_{q-1}} \binom{\lambda}{|e|}.$$

Comparing the coefficients of $\binom{\lambda}{m}$ we get the following identity:

Corollary. If $q \equiv 1 \pmod{b}$ and $m \leq b-1$, then

$$\sum \binom{m}{e_1, e_2, \dots, e_{q-2}} = \binom{b-1}{m}$$

where the summation is over those (q-1)-tuples $(e_1, e_2, \ldots, e_{q-1})$ of non-negative integers for which $\sum_{i=1}^{q-1} e_i = m$ and $\sum_{i=1}^{q-1} i e_i \le b-1$.

Finally I thank Shu Lin who put my attention to the main problem considered in this paper.

REFERENCES

- 1. J. D. Bovey, P. Erdös, and I. Niven, Conditions for a zero sum modulo n, Canad. Math. Bull. 18 (1975), 27-29.
- 2. H. W. Gould, Cobinatorial Identities, Morgantown, W. Va., 1972.
- Shu Lin and Kai-Ping Yiu, An improvement to multifold Euclidean geometry codes, Information and Control 28 (1975), 221-265.

MATEMATISK INSTITUTT
ALLÉGATEN 53-55
N-5014 BERGEN — UNIVERSITETET
NORWAY