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NONCOVERING OF MULTIPLES

TORLEIV KLOVE

In this paper we consider a combinatorial problem which arose in coding
theory. Let ¢g>1 be an integer. We define a partial ordering on the non-
negative integers by m covers n if and only if each coefficient in the g-ary
expansion of m is greater than or equal to the corresponding coefficient in the
g-ary expansion of n. Our problem is to find how many of the integers less than
q™ do not cover any multiple of b where b is some fixed integer dividing g™ — 1.
The number of such integers is the number of information symbols in some
codes of length g™ — 1 over GF (q), where g is a prime power. The codes are in
a class of codes defined by Lin and Yiu [3]. We do not make use of this fact,
however, and so we will treat the problem as a purely combinatorial problem.

2.

We will use the following notations:
The elements of an m-dimensional vector u will be denoted ug, u,,. .., u,_1,

u < vifand only if u; £ v; for i=0,1,...,m—1,
m-1 m—1 .
lwl = Y uw, Jul= Y ug.
i=0 i=0

The columns of an n x m matrix E will be denoted by €%, ¢!,. . .,e™ !, the rows
by e;,e,,...,e, and the elements by e;;.

Let b be a positive integer which is prime to g and let s=ord, (g), that is, 5 is
the least positive integer such that ¢°=1 (mod b). Let

M = {0,1,...,q—1},
Z(A) = {le M*| if 0<usl, then |u| £0 (modb)},
P(1) = $£(/), that is number of elements in £ (4) .
Then P(4) is the number of integers < ¢** which do not cover any multiple of b.

Further let
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12 TORLEIV KLOVE
F = {feN*] if 0<g<f, then |ig] =0 (mod b)}
q—-1
Y ie e 9"} ,
i=1
Ap) = {le M* | #{u|l,=i & p=j (mods)}=e,},

A() = ELéJ‘ Ag(A) .

The multinomial coefficients are denoted by

& = {E e N@-Dxs

c _ c! if m>0, ¢;=0 for
CisCare v rCm)  C€1lCy! ... Cnlc=3T,c)! alli, and Y¢,Sc,
=1 if m=0.
Note that

€C15€25. . -, Cpy C15C25- - s Cpy—1 zci

LemMa 1. We have A(Q)< £(4).

ProoF. Let l € A(4). Then I € Ag(4) for some E € &. Let 0<u <. Then

A=-1s5-1

Z Z qas+uu“+”

=0 u=0

llull

s—1 A-1

Y ¢ Zo U4, (modb).

u=0

n

Hence

]

llull (mod b) .

A-1 Ai-1 A-1
( Z uam Z uus+l" LR Z uas+s—l)
= =0

=0 =0

Further
A-1 A-1 -1
Z Ugs ey = Z lysvn = Z i€y, -
=0 =0 i=0
By the definition of & it follows that ||u|| 0 (mod b). Therefore ! € £ (4).
LeMMA 2. We have £ (X)) A(A).

Proor. Let l € #(4) and let
e; = #u| l,=i & p=j (mods)} .
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Let E=(e;). Then l € Ag(4). We will show that E € &. Let 0<g=<Y! | ie;.
Then

q—-1 A-1
gu § Z lein = las+u .
i =0

i=1

For u=0,1,...,s—1, let

k-1
k, = max {k g,> Y l,s+u} if g,>0.
=0
=—1 lf gﬂ=0 .
Then —1k,<4—1. Let
ua's+u = las+u fOI' a<kp )
k,2—1

uk,.s+u = 8u— Z las+u )
c=0

Ugsey = 0 for >k, .

By the definition of k,, 0=y 4, </, 4+, Hence 0<u =1 and so
lull #£0 (mod b). Further

s~1 g—-1

s—1
gl = Y 8.8* = Y Y Hg+,q" = lull £ 0 (modb).
u=0 u=0o0=1

Therefore 9= ie; € & and so E € 8.
Lemma 3. If E£E', then Ag(A)NAp(A)=.
Proor. Obvious.
LemMA 4. We have

T e ec) (1)
$Ag(A) = .
£ jl;[o (elj’e2j’~ creq-2,;) \l¢]

Proor. For a given j there are

(e ) = e s (1)
€125 1€4-1,j €1j€2j- 1842, led]

ways to choose the elements I;,l, . ;,. . ., ;4 11, Such that e;; elements are equal

toifori=1,2,...,q—1. Further, the choices for different j’s are independent.

We can now prove our main theorem.
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THEOREM 1. We have

(oo ()
P(A) = ,
@) E‘é; jIJ) (eu’ezj’- g2,/ \le]

Proor. By lemmata 1, 2 and 3

P(A) = $L() = $4(3) = ¥ #45(4)
Eeé&

and so the theorem follows by lemma 4.

LeEmMMA 5 (Gould [2, identity no. 6. 44]).

A\ (2 _mi"><:m’") n+m—j A
m/\n) S \m—jn—j)\n+m—j)"

Using lemma 5 s times on each term in the sum in theorem 1 we get the
next theorem.

THEOREM 2. There exist non-negative integers A,= A;(q,b) such that

PO = ¥ Ai<':) .

iz0

We could, by theorem 1 and lemma 5, get explicit expressions for the 4;’s. In
general they will be very complicated however. In the remaining part of this

Table 1. 4,(2,b)

N3 s g 9 1 13 15
12 8 6 26 150 336 14
2 2 20 24 144 1660 5160 146
3 16 48 324 5480 22176 896
4 45 414 8130 42504 3244
5 18 336 6810 46152 7464
6 3 168 3990 35616 11816
7 48 1760 22356 13696
8 6 530 10692 12012
9 100 3720 8008

10 10 912 4004

11 144 1456

12 12 364

13 56

p—
-
»H
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paper we will give simpler expressions for the 4;’s in special cases. In particular,
we have computed all 4;(2,b) for b=3,5,. ..,35. The values for b< 15 are given
in table 1. Since 4,(2.b)=1 for all b this is omitted in the table. In the next

section we prove that A,(2,b)=0 for i= b, these values are also omitted in the
table.

3
In this section we take a closer look at & to get more information about the
Ai(g,b)s.
DerFINITION. If E is an n x m matrix, then
oE = (e" " 1,e%e!,....em"?).
LemMA 6. (i) If u € N®, then ||ou| =q|u| —u,.,(g°—1),
(i) if fe F, then af € F,

(iii) if E € &, then oE € &,
(iv) #4,6()=$45 (D).

Proor. (i) We have

s—2 s—1
loull = ug_y+ Y wg'™' = u_y—u,_,g°+q ) ugqg'
i=0 i=0

= —u_1 (=1 +qllul .
(i) If u’_s_r\ff, then u=0"'u’' <f. Hence ||u||£0 (mod b). Further by (i),
\ lwll = llow| = gllull # 0 (modb)
since ged (¢,b)=1.
(iii) If E € &, then Y9 }ie; € #. Hence

q-1

q-1
Y ice, =0 ie, e F
i=1 1

by (ii) and so ¢E € &.
(iv) This follows immediately from Lemma 4.

LemMa 7 (Bovey, Erdos, and Niven [1]). Let b>0 and k =0 be integers with
b—2k=1. Given any n—k integers a,,a,,. . .,a,_, there is a non-empty subset of
subscripts I such that ;. a;=0 (mod b) if at most n— 2k of the integers lie in the
same residue class modulo b.
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Putting k=0 in lemma 7, we see that any sequence of b (or more) integers
has a subsequence with sum congruent to zero modulo b. Hence se get the
following corollary. '

CoroLLARY. (i) If fe &, then |f|Sb—1,
(i) 4;(q,b)=0 for i=b.

By lemma 6 iv, to find #4g(4) it is enough to find #A4 g (4) for some j. We
may for instance choose j such that if 6/E = (¢};) then Y, i€} > Y, i€}, for all k.
This motivates the next definition.

DEFINITION.

F,={feF| foxf for i=1,2,...,s—1 &|f|=r}.

DerINITION. To each f e &, we associate the sequence a,,a,,. . .,a, with f;
1’s followed by f; q,’s, f q,’s etc. where ¢;=¢' (mod b) and 0= g;<b. Then any
subsequence has a sum £0 (mod b).

LemMa 8. If k< (b+1)/3 and f € &, _,, then
(i) fo=b—2k+1z2(b+1)/3,
(i) fo>3(b—k).

ProoF. (i) By Lemma 7, if f,<b—2k then f¢ #. Hence fo2b—2k+12
(b+1)/3 when k= (b+1)/3.
(i) By (),
2fo—(b—k) = 2b—4k+2—-b+k = b+1-3k+1 =2 1.

Lemma 9. If k< (b+1)/3 and f € F,_,, then Y328 fig,<b.

PRrOOF. Let a4, a,,. . ., a, ., be the sequence associated with £, and let A be the
set of integers that\appears in the sequence. Let S=S5, denote the sum of some
arbitrary subsequence with v elements, all >1.

The proof of the lemma is done in several steps.

() If SSAb, then S<Ab—fy—1< (A—1)b+2k—2.

Suppose S Ab—f,. Let a,a;,,. . .,a; be the subsequence with sum S. Since
Ab-S=fo

al,az,. . .,alb_.s,a,-l,a,-z,. . .,a;v
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is a subsequence also and it’s sum is
(Ab—S8)'1+8 = Ab = 0 (modb).
This is a contradiction. Hence

S Ab—fo—-1 = (A-1)b+2k-2
by lemma 8i.

(I) If ae A, then a<b—f,—1.
Since a<b this follows from (I).

(II1) If S=S'+a where a is a summand of S, a<f,+1, and S'S b, then S <
Ab—f,—1.

By (I), S'<Ab~f,—1 and so SSAb—f,—1+f,+1=4b. Again by (I), S
Ab—fo—1.

V) Sp241S4b+b—fo—1.

We prove this by induction on A. By (II) it is true for A=0. Suppose it is true
for A—1. Then

Srie1 = Sy tat+d £ Ab—fo—1+2(b—fo—1)
= Ab+b+b-3f;,—1 < Ab+b-2
by the induction hypothesis, (I), and lemma 8i. By (I), $;;,,;<Ab+b—f,—1.
(V) The sequence ay,a,,. . .,a,_, has at most one element in [ f,, b/2].

Suppose a,a’ are two elements from the sequence which both are in [ f;, b/2].
Then S,=a+d € [2fy,b]. By () 2/, <S,sb—f,—1and so 3f,<b—1. Thisisa
contradiction to lemma 8i.

(VD) If a € A, then a<b)2.
First we notice that if a>b/2, then a= (b+1)/2. Let

o = number of elements of (a;) in [(b+1)/2,d),
B = number of elements of (a;) in [ fo,b/2],

y = [(a—1)/2] (the integer value),

0 =a—-1-2y.

Suppose a>0. Let g;,a;,,. . .»a;, ., be the 2y +1 largest elements of (a;) and let

27+1 2y+1

U= Y {a—-0®+12}, Vv= Y a W= Y a,
=1 =1

a;i€[2, fo—1]

Math. Scand. 43 — 2
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T= ) 1+V+W = fo+V+W.
a=1

First we show that U+1=8+4. By (IV), <1, and by definition 6<1.
Suppose U+1<f+35. Then f=6=1 and U < 1. We will show that this gives a
contradiction. Since f=1, there exists an a € AN[f,, b/2]. We consider the
cases b even and b odd separately. First b even. Then U <1 implies U=1/2, a;,
=b/2+1,and y=0.Ifa<b/2,then a<b/2—1and b)2—1—a<b/2—1—fy<fo.
Hence

§ = (2~1-a)1+a+a, = b =0 (modb),

a contradiction. If a=5b/2, then the elements of AN[f,,b) are a=b/2 and ¢
=b/2+1; a appear once in A and c twice since =1. Since a+2c<2b, a+2c
+V=2b—f,—1 by (III) and induction. Therefore

V<2—a-2c—fo—1=b2—f,-3.
Since a=2 and f=1,
Vz2b—k—fo—a—p) = 2(b—k—f,—3).
Combining we get b/2—f,—3 = 2b—2k—2f,—6 and so
Jo 2 3b/2-2k-3 =z 3b/2-2(b+1)/3-3 = (b/2—-2)+(b—5)/3.
Therefore, if b= 5, then f,=b/2—2 and so
S = (b/2-2)1+a+2c = 2b =0 (modb)

a contradiction. For b=2 and b=4 it is obvious that a =0, and in particular ¢
=0 and we have a contradiction. The case b 6dd is similar to the first subcase
since a< (b—1)/2<b/2. We omit the details.

By (IV), W=yb+b—f,—1. Hence by (III) and induction we get V+ W <
yb+b—f,—1, and so TEyb+b—1. On the other hand,

Tz Y 14+U+@y+1)(b+1)2

ae[l, fo—1]

(b—k=2y—1=6—P)+U+yb+y+ (b+1)2
2 pb+b—1+(b+1)2—y—k—1.

I

Combining the two inequalities involving T we get
y 2 (b+1)2—k-1.
Further
2y+1)b+1)/2 = WS yb+b—fo—1 S yb+2k-2

and so
y S 2k-2—-(b+1)2.
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Combining the two inequalities involving y we get 3k = b +2 contradicting our
assumption that k< (b+1)/3. Hence =0 and the proof of (VI) is complete.

(VID) S,y-s, Sb—fo—1.

By (VI) there are no elements >b/2 and at most one element >f in the
sequence (a;). Let S, be the sum of the v largest elements in (a,). Then S, <b/2
and by (III) and induction §,£b—f,~1 for v=1,2,...,b—k—f,. Note that

Sy—k-s, is the sum of all the elements > 1.
Hence

b—k
a; = forl+8y -y, £ b—1

i=1

by (VII) and the proof of lemma 9 is complete.

THEOREM 3. Let k< (b+1)/3. Then & ,_, can be characterized as follows:
Let g;=q' (modb), 0<gq;<b. Then (fo, fi,.. ., fio1) € Foy if and only if
{21 filgi—1) <k and 3525 fi=b—k.

Proor. By lemma 9, if (fy, fi,. . s fe-1) € F -y then

s—1 s—1
Zfi:b—k and Zfiqx'<b-
i=0 i=0

Hence

s-1 s—1
k> 3 filgi—1) = 21 filg;i—1)
i=0 i=
since go=1. On the other hand, if Y52} fi(g;—1)<k and 332§ fi=b—k then
S8 figi<b. If 0<u<f, then 0<Y u,q;£Y fig,<b and so
lull = Z uq; £ 0 (modb).
Hence f € #. Further
s—1 s—1
k=12 Y flg—0) 2 ¥ fi=b—k=f
i=1 i=1

and so fy2b—2k+1>(b—k)/2. Therefore f,>f; for i=1,2,...,s—1 and
fe#F, .

Theorem 3 gives a very simple method to find the elements of #,_,. To
illustrate this we give the leading coefficients of P(4) for g=2. We notice that if
q=29 then J:f.
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THEOREM 4. If b=3, then A,_,(2,b)=s.
If b=5, then A,_,(2,b)=s(b—1).
If b=17, then

Ay_3(2,b) = s{(b;1)+b——3} if 2'=3 (modb) is solvable ,
= s(b— 1) otherwise .
2
If b29, then
b—1 b—-4 o .
A,_4(2,b) = s 3 +2 ) +2(b—4) if 2'=3 (modb) is solvable ,
= s(bgl) otherwise .

Proor. From the proof of theorem 2 it follows that only those f for which |f|
2b—k will contribute to A4,_,(2,9).

If k<(b+1)/3, then fo>f; for i=1,2,...,5—1 by lemma 8 (ii). Hence
f,af,..., 05" f are all distinct and by lemma 6(iv) give the same contribution to

Table 2.
k By B2 Bs Bs 71 Y2 7?3 Ya
1 b—1 0 0 0 1 0 0 0
2 b2 0 0 1 0 0
b-3 1 0 0 0 b-2 b-3 0
3 b-3 0 0 0 0 0 1 ) 0
b—4 1 0 0 0 0 b-3 b—4
b-3
b-5 2 0 0 0 0 ( ) ) b—4)(b-5)
b—4 0 1 0 0 0 b-3 b—4
4 b—-4 0 0 0 0 0 0 1
b-5 1 0 0 0 0 0 b—4
b—4
b-6 2 0 0 0 0 0 ( 5 )
b-5 0 1 0 0 0 0 b—4
b—4
b-17 3 0 0 0 0 0 ( 3 )
b—6 1 1 0 0 0 0 b-Hb-95
b-5 0 0 1 0 0 0 -
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A, Hence to find 4, for k< (b+1)/3 it is enough to find the contribution
from f € #,_, and multiply by s. Further the elements of &#,_, are found by
theorem 3. In table 2 we give the possible elements of #,_, for k <4 and we list
their contributions to A, _,. In the table, §; is the number of i’s in the sequence
associated with f and y; is the contribution to 4,_;.

Adding up the contributions we get theorem 4 for b <3k —1. The remaining
cases, k=3 and b=7, k=4 and b=9 are true by table 1.

By the same method we can get expressions for A4;(2,b) for i=b—5, b—6, etc.
By a similar method we can also find A,(q, b) for g>2. We notice that if g=g’
(mod b) and q>b, ¢’ > b then A;(q,b)=A4,;(¢', b). We will use this fact in section
5 to find explicit formulae for P(4) when g=+1 (mod b).

4.

In lemma 6 iv we proved that $4,g(4)=#Ag(4). Therefore there are several
equal terms in the sum in theorem 1 and we may bring them together.
Formally, let

E eqv E if and only if E=0¢'E’ for some i .

Then eqy is an equivalence relation. Let & denote the set of equivalence classes
and (E) the number of elements in the class E. Then we can restate theorem 1
as follows.

THEOREM 5. We have

lei] A
P(}) = EZ (E) H (el,,ez,, ey 21)(,&)

The advantage of theorem 5 over theorem 1 is that in some cases we may be
able to give a characterization of one member in an equivalence class which is
simpler than the definition of . For instance in theorem 3 we showed that if ¢
=2 and |f|=b— (b+1)/3 then the equivalence class of f contains a member f”
such that Y322 f.g;<b. In the remainder of this section we consider the case g
=2 and b=2°—1. The reason is twofold. The case is interesting from a coding
theory point of view and we can show that each equivalence class contains a
member f such that || f]| <b.

DerinITION. For i=0,1,...,5—2 let g; be defined by

Qi(fmfl,' . ',fi»fH-l" . "fs—'l)

= (foo frre - fi=2di, fis1+di . s f)
where d,=[(f;—1)/2].
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Then g; will leave 1 (if f; is odd) or 2 (if f; is even) at position i and carry the
exceeding to position i+ 1 where half of it is added.

LemMa 10. For i=0,1,...,s—1 we have

@) lefI=1S1Il for all f,
(i) if fe &, then o,f € F.

Proor. (i) We have
s—1
lef Il = ¥ f2/=24;-2'+d;- 2" = |If].
j=0
(i) Suppose u<g,f. Let w’ be defined by
u; = u; if j#i, i+1,
u; = ui+2di lf u,-+1=_>_d,- 3
= ui+2u1+l if Ui 41 <di)
Uiy = Uiy —d; if w24,
=0 if u;,,<d;.

Then o’ <f and so {|w'|| =0 (mod b). Further |lu|| = ||u’||. Hence |#|| £0 (mod b).
Therefore g;,f € F.

DEFINITION. Let f € N*, f,_, =0, and let j,, j,,. .., j,=s—1 be the subscripts
of the elements of f which are zero, i.e., f;=0for j=j,, j,,. . ., j. f;# 0 otherwise.
Let

vifli = Qj;-1°Qj;~2°+ -+ °Qj_,+1

for i=1,2,...,r, where j,+1=0,
vIf1 = vIf[1JevIf 12T .. .ov[f|r] .
Lemma 11. If f;=0, then v[¢* ™' ~ifJeo* ™! "If=0""1"Ioy[ f1f.

Proor. First we note that the last element of ¢°~!7/f is f;=0 so that
v[o*~!if] is defined. Let f= (F,,F,,...,F,) where F,F,,...,F, are blocks of
elements, the last element in each block being 0, that is, F;=(f,—y,. .., f;). If
Jj=j; then

vf1f = (Fy,Fy..  F)

and
1 f1f) = (Fisrse . FLF,...,F).
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On the other hand

o 1if = (Fiyp. .., F Fy,.. . F)
and so
V[o‘s—l_{f]ods~l—lf = (F:'+1a' . -7F;-,F’19' . -7F,l) .

Lemma 12, If [ fI| < |of || and ||f || <b, then f,_, =0.

Proor. By lemma 6i

A2 lefll = 21f 1 =fi-1@=1) = If I+ 1l =fizab .
Hence f,_,=|fll/b<1 and so f,_,=0.

THEOREM 6. Let q=2 and b=2°"'. If f € &, then | a'f| <b for some i.

Proor. The proof is by induction on r=#{j | f;=0}.Since ||(1,1,...,1)|=b,
r=1 for all fe #. Therefore, the basis r=0 for the induction is empty. Let
r=1 and suppose that the theorem is true for all lower values. We may assume
that f,_, =0 since otherwise we could use o repeatedly until the last element is
0. Let f;=0 for j=j,, j,,. .., j,=s—1. From lemma 10i it follows that |v[f1f |
=| f|l. From the definition of v[ f] it follows that the elements of v[ f]f are
1 or 2 except possibly those with subscripts j,, jy,. . -5 j,-

Cask 1. v[ f]f has r elements which are 0. These are then the elements with
subscripts j,, j;,- - -,j,=5—1. Hence

IWIFIFI € 200424224+ ...+27Y) = b—1

and so ||f|<b in this case.

Cast 2. v[f]f has less than r elements which are 0. By the induction
hypothesis ||a°(v[ f]1f)]| <b for some i, and by lemma 12 we may assume that
the last element of c*(v[f]f) is 0. Then iy=s—1—j; for some i, 1 Li<r. By
lemmata 10i and 11 we get

lo®f Il = IIv[e®f1@°NI = I CLFDfI < b

and the proof of theorem 6 is complete.
Combining theorems 5 and 6 it is simple to find P(4) for g=2 and b=2°—1.

5.

In this section we give explicit expressions for P(4) in the cases when g= +1
(mod b), ¢>b.
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THEOREM 7. If g=1 (mod b), then P(})= (*}271).

ProoF. Since g=1 (mod b) we have ||I|| =|I| (mod b). Hence I € £ (J) if and
only if |l|<b—1. The number of vectors I € #(4) such that |I|=i for 0<i<
b—1 is equal to the number of ways i objects can be placed into 4 boxes, i.e.
(*717Y). Hence

bl /1+i—1) (,1+b—1) (A+b—1)
Pl = = = .
@ z‘o( i-1 A b-1
THEOREM 8. If g= —1 (mod b) and q>b, then

A+b-1
P(A)=2( b—1 )—1.

Proor. We have s=2 and
A-1 A-1
=Y bi- Zo Livy (modb).
i=0 i=

If I has two non-zero elements with subscripts j, j, of opposite parity and u;,
=u;, =1, u;=0 otherwise, then u<1 and ||uf|=0 (modb). Hence I ¢ Z(4).
Therefore

L) = {(5,0,1,,0,.. ., 15,50 | 0<Y 1,<b—1}
U {(0,1,,0,13,...,0,1; ) | 0<Y ,;<b—1}.
Comparing with the proof of theorem 7 we see that

b=l fi+i—1 A+b—1
P() =142 Y ( 1 >_2< b1 )—1.

i=1

By [2] identity 3.20 we can rewrite theorem 7 as follows:

b=l (b—1\[4A
PU) = ,.;o( - )(m)
le] i
P(4) = .
4 Y_i§<b <el,e2,. . 'aeq‘l)(lel)

Comparing the coefficients of (1) we get the following identity:

By theorem 1

CoROLLARY. If g=1 (mod b) and m<b—1, then



NONCOVERING OF MULTIPLES 25

(R B

where the summation is over those (q— 1)-tuples (e, e,,. . .,€,_,) of non-negative
integers for which Y9-! e;=m and Y1-1ie,<b—1.

Finally I thank Shu Lin who put my attention to the main problem
considered in this paper.
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