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ON A CONJECTURE OF ALPERIN AND MCKAY

G. 1. LEHRER

For any finite group G and rational prime p, denote by m,(G) the number of
irreducible complex characters (henceforth referred to as “characters™) whose
degree is prime to p. Such characters will be referred to as p’-characters.
Alperin has conjectured (see [1] for details and background) that for any G:

(1) m,(G)=m,(Ns(S)), where N(S) is the normalizer of a p-Sylow subgroup S
of G.

Alperin (loc. cit.) proves (1) when G=GL (n, g) and g =p°. Since then, (1) has
been proved for G=GL (n,q) or G=2X, (the symmetric group on n symbols)
and p any prime by Olsson [7]. The purpose of this note is twofold: firstly, we
show that the results of [2] and [3] imply (1) for almost all finite Lie groups of
“conformal type” over F, (e.g. the general symplectic group rather than
Sp (2n,q)) and g=p°. Secondly, we prove (1) for G=SL (n,q) and q=p*, with
the aid of the results of [5] and [6]. The former resuit follows very easily from
those of [2] and [3] by Alperin’s method. In contrast, to prove the result for
SL (n, q) one needs much more detailed information about the p’-characters of
GL (n,q) and their restriction to SL (n,q). The way in which distinct
arithmetical paths lead to the same result here lends support to the conjecture.

For an abelian group 4, (A4) will denote its complex character group.

1. The case of an algebraic group over a finite field.

Our notation is as follows: G is a connected, reductive group defined over F;
it is assumed that G has connected centre Z, and that the characteristic p is
good for G (see [3]; only a few small characteristics are excluded in some
cases). G will denote the group F -rational points of G, and [ the F -rank of G/Z.

Let B, T and U be as in § 5 of [3]. Then U is a Sylow p-subgroup of G, B
=Ng(U) and B is the semidirect product B=T.U.

We shall prove:
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THEOREM 1. With notation as above,
m,(G) = m,(B) = |Z|¢'

where Z is the group of rational points of the centre Z of G.

Proor. Theorem 3 of [2] asserts, inter alia, that mp(G)=|Z|q’. Hence one
needs only to show that m,(B)=|Z|¢". For this, following Alperin, one notes the
following facts:

(3) m,(B) is the number of irreducible complex characters of B/U'.

The proof is the same as Alperin’s for the case GL (n,g).

Now there is a canonical isomorphism n: U/U' — X, x ... x Xg where
X;=GF (¢")* and n,+...+n,=I (see [3, p. 258]). Thus for any linear (i.e.
1-dimensional) character 4 of U, one defines its support by

supp (4) = {i l Ax *1}.
As in [1], one then has

(4) Two linear characters of U are conjugate under the action of B (or,
equivalently, T) if and only if they have the same support.

This is clear from the arguments used to establish Theorem B’ in [3]. The
proof of the theorem is now completed by showing

(5) The number of irreducible complex characters of B/U’ is |Z|-¢".

We have a canonical isomorphism: B/U’ — T.U/U'. Since T is abelian
and has p’-order, all the irreducible characters of B/U’ are constructed as
follows: one takes an irreducible (linear) character u of U/U’, extends to its
centralizer T(u).U/U’ and induces to B/U’. The set of |T(u) characters
{(ow®V" | @ € (T(w) '} depends only on the T-orbit (u). Hence the number
of irreducible characters of B/U’ is

(6) m(B/U’) = % IT(€Q)

the sum being over the T-orbits 2 of characters of U/U’, and T (£2) denoting the
stabilizer of any element of Q. But by (4), the orbits corresponds to subsets I
<{l1,...,1}. Moreover by the arguments in § 5 of [2], it is easy to see that

T = ITI/I_! (¢"-1)

= |Z|']] (@"-1).
Thus E
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m(B/U") = m,(B)
= IC“,ZM,} 1Z] ’g (g"-1)
= 1ZIT] @ 1+1)
= |ZlgZ"
= |Zl¢' .

This completes the proof of Theorem 1.

2. The case G=SL (n,¢q).

For this section, notation will be as follows: G=GL (n,q), B is the group
of upper triangular matrices in G, T is the group of diagonal matrices in G, U
(< B)is the (p-group) of upper unitriangular matrices. For any subgroup H <G.
H, will denote H NSL (n,q). Thus G, =SL (n,q), U;=U and B;=Ng (U,). We
shall prove, (for p=characteristic of F):

THEOREM 2. m,(G,)=m,(B,).

To prove this, it will be necessary to go into more detail concerning the
p'-characters of G and B. In fact we shall in effect set up an explicit bijection
between the two sets, something which was not necessary for the proof of
theorem 1. We first note the following elementary facts:

LemmMa 3. Let H, K be finite groups, K<aH with H/K cyclic, of p’-order. Then

(i) For any irreducible character y of H, ylg =p; + . .. + 1, where the sum is
precisely over one H-orbit {u,,...,u,} of characters of K.

(ii) If x, and y, are characters of H then their restrictions to K either coincide
or are disjoint, and y,|x = x2lx < x, =0y, with 8 € (H/K) .

(ili) The p'-characters of K are precisely the irreducible constituents of the
restrictions of the p'-characters of H.

(iv) For any character y of H, let f (x) be the number of characters ' of H such
that y' =0y for some 0 € (H/K), and let e(y) be the number of irreducible
components of x|g. Then e(y)' f(x)=|H/K|.

Putting these facts together, we' obtain

, el _ g e
& m(K) = 270 = ZiHK]

- Kl
IH|

e(x)’?

N
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where the sum is over the p’-characters y of H. Notice also that in the action of
(H/K) on the characters of H, the stabilizer S(x) of y has order |H/K|/f (x)
=e(x). Hence (7) can be rewritten

Kl

®) my(K) = T

X ISP .

Here S(y) is the stabilizer in (H/K) of x, and the sum is over the p’-characters
of H.

We now set up a bijection between the p’-characters of G and B, such that
[S(y)| is the same for corresponding characters. This will prove theorem.

p’ characters of G. The p’-characters of GL (n, q) are precisely the characters
=J92({r Do. ..o J¥D({r}), in the notation of [5]. Here (y,> is an n;-
simplex, {r;} is the partition of r; consisting of one part, and Y*_, ny;=n. Now
{y;> corresponds ([6]) to an irreducible monic polynomial f; of degree n; over
F, ({¥., ¥4, . .} is regarded as the set of roots of f)). Thus the character y above
may be written

) x=r1rr.
=f=t"+a,t" '+... +a,
= [als""an] (an*o)'

This identification of the p’-characters with polynomials of degree n
immediately gives m,(G)=q""'(¢—1), as this is the number of monic
polynomials of degree n over F,, with non-zero constant term.

In view of (8), we describe how (G/G,) acts on y above: we have (G/G,) = F%,
and by Corollary 5.23 in [5], the latter acts on y by multiplicatively translating
the roots of f. If we denote y above (cf. (9)) by

x = [a,a,...,a,]

(recalla; e F,i=1,...,n—1,a,€ F}), thenfora e (G/GI)A; F¥ it is easily seen
that

(10) ¥* = [aa,,a*a, d’a;,. . .,d",)] .
For the same y, define

supp(y) =1 = {i| a,=0} < {1,...,n—1}.
Then for the stabilizer S(y) of x in F¥, we have (from (10)).
(11) IS = {aeF} | a=1for i¢l} .
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p’-characters of B. From the discussion preceding formula (6) it is apparent
that for each p’-character y of B there is a subset I < {1,...,n—1} such that
corresponds to a character ¢ of T(I). Moreover I and ¢ are uniquely
determined by y. We write

(12) r=(Lo).

To identify T'(I), consider the isomorphism «: T — Ff x ... xF¥ (n times)
given by

(13) a(diag (ay,. . .,a,) = (a.a5 .. .,a,_1a, %, a,) .

Identifying T with F¥ x ... x F¥ using «, we have

(14) TU) = {(ty,.. oty | tieF¥ t,;=1for iel}.
In this way we identify y with a symbol

(15) x=[oder, @j€FY, je{l,2,...,n}.

The character ¢ of y= (I, ¢) is defined by

(16) Pty . oty = utl_ll @ity -

We now describe the action of (B/B,) on y. Using the notation of the
discussion preceding (6) above, we have, for 6 € (B/B,)

17 0. (puP'V" = ((0)- PV

where 6 denotes the product of ¢ and the restriction of 8 to T(I), and pu is the
linear character of U in (6). Since B/B, may be canonically identified with T/T,
(and hence similarly for their character groups), we therefore have in the
notation of (12), for 6 € (T/T,) = (B/B,)

(18) 2 =0.0g) = (I 09).
Any character 8 of T which is trivial on T, is of the form
0(diag (ay,- - -,a,) = Y¥(a,a,...a,), forsome y € (F;‘)A
= Y(aa; Wiaas'y ... Y(ay-1a, " " W(a)",
that is,
(19) O(tys. . -5t,) = YEIWA(E,) ... Y™ ()

(here y € (F¥)).
Thus from (15) and (18) we have, for 6 € (T/T,)

(20) =Wl e FEH).
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It follows that the order of the stabilizer S(y) of x in (B/B) (=(T/T,)) has
order given by

(03)) ISG) = Iy e FY | y/=1"for jéI}.

Thus in both (11) and (21), |S(x)| depends only on I ={1,...,n—1}, and has
the same value in each case. Since the number of y corresponding to a given I is
the same in both cases (= (g —1)"~"!), Theorem 2 now follows from (8) applied
to the pairs G,G; and B, B,.
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