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THE EULER DERIVATIVE

AN INTRINSIC APPROACH TO THE
CALCULUS OF VARIATIONS

JAAK PEETRE

0. Introduction.

In this note we consider variational problems involving v-jets of curves and
we wish in particular to give an intrisic form of the Euler equations analogous
to the one we obtained in [4] (cf. also [5], [6]) for v=1. In [4] we also
considered multiple integral problems but presently at least we refrain from
that generalization.

A standard reference to the theory of jets is [2]. We also make extensive use
of the fact that the bundle of v-jets can be canonically mapped into the vth
order osculating bundle (see e.g. [7]). Since the latter is a vector bundle we
thereby achieve a certain linearization of the setup.

For an over all treatment of the Calculus of Variations from the classical
standpoint see [9].

NOTATION.

v v!
(k) = Ho=R! 0=k=v)

are the binomial coefficients; they are often interpreted as 0 if k<0 or k>v.
l.c.=local coordinate.

1. Jets.

Let M be a C® manifold, n=dim M.

A curve in M is a C* map x: R —> M. Let t € R and v an integer >0 be
given. Regard two curves x and y as equivalent if they have contact up to order
v at t, i.e. in terms of l.c’s:

dx@)  dy)
dt* dt*

(i=1,...,n,05k=v).
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The v-jet at t of x is the equivalence class to which x belongs. We denote it by
xM(t). If v=1 we can identify it with a tangent vector x'(t) of M, i.e. an element
of the tangent bundle T=TM of M. The set of all v-jets at t of curves is noted
by J!=J!(R, M) and their union again by J*=J"(R, M) (=U, g J! (R, M)). Thus
J}=J}(R, M)~ T. Some of our considerations are formally valid also for v=0 if
we agree to interpret JO =J?(R, M) as M. J} is a bundle over M, with projection
xM(t) — x(t). J* is a bundle over R x M with projection x®(f) — (t,x(¢)).
There is also a canonical map J! — J?™': x®(t) — x®~1(¢), (which means
that J} can be considered as a bundle over J! ™! too).

The additive group of reals R* has a canonical action R on J* which is
defined as follows: Let a € R. If x is any curve in M define the curve x, by x,(t)
=x(t—a). Then R(a):J} — J'4z: xP(t) — x™(t+a). Since this action
obviously is free we can identify J} with J},, and we have then J'~R x J*
where we now write J'=

Chanbe of 1.c.’s in J,: Consider a v-jet y at t and let x be any curve such that
y=x"(¢t). In a l.c. neighbourhood in M containing the point x(t) of M 7 is then
entirely determined by the (v+ 1)n-tuple (%)= (y",9"%,...,7") where we have
put
d"x 3]

T

ik

(i=1,...,n; 0Zk=v).

In a different lc. neighbourhood we have instead the (v+1)n-tuple (y'%)
=(y"%,9"1,...,7"") where we have put

. a*x’ (¢)
k= '=1,...,n; 05k<v).
o i'=1,...,n; 0Zk=v)

Let the change of l.c.’s (in the overlap of these l.c. neighbourhoods) be mediated
by x"'=¢"(x) and put ¥ (x')=0d¢" (x')/0x’. Then we have

x'(0) = o' (x'(®) ('=1,...,n).
Repeated differentiation gives

dx® () RN ' (t)
o = VKO,

a2 (t)

oo d? d
B w0 sl

2 T a w'( {0)]]

xS (=TI g
I ;o( k )dtv prei s (t)] de*

k

(i=1,..,n).
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Here the coefficients
dj

SN 0sjgv-1)

again can be expressed in terms of the derivatives d*x'(¢t)/dt* (i=1,...,n; 0k
<v-1). Therefore we get an expression for (y"'*) in terms of (y*). In particular
this proves that J} is indeed a manifold.

A curve x in M is called regular at t if the 1-jet (i.e. the tangent) at ¢ is
different from 0. Similarly we say that a v-jet at ¢t is regular if its image under
the canonical map J! — J} ™! is different from 0. The set of regular v-jets at ¢ is
denoted by J}*. It is an open submanifold of J;. We also agree to write J**
=Jy*.

2. Osculating bundles.

J" is not a vector bundle. However there exists a canonical map from J* into
a certain vector bundle, namely the vth order osculating bundle (definition
below). '

Let first T'=T"M be the v-th order iterated tangent bundle of M (that is,
T'M=T(T*"'M) (v>1), T'"M=TM=T). If x is any curve in M then the
assignment t +— x’'(t) defines a curve x’ in TM. This gives a canonical map

J'R,M) — TJ" YR, M) .

(For v=1 this can be interpreted as the canonical isomorphism
J'(R, M)~ TM.) If we reiterate this construction we get the sequence

J'RM)—= T 'RM)— ... > T 'J'R,M) > T'M
and thus by composition the map
(2.1) ‘ J'— T

Next let 7™ =T"M be the v-th order osculating bundle of M (see Pohl [7],
Feldman [2]). An element D of T™ (a vth order tangent vector) over a point x
of M is essentially a vth order linear partial differential operator without
constant term at x; in terms of l.c.’s:

D = Z D'@,), (D'eR)
o<|I|sv
where I denotes a multi-index, I =i, ... i, and |I| its order, |I|=k, and where
we have put 9, =0, ... 0,, 0,=0d/0x". A section of T is then nothing but a vth

order linear partial differential operator without constant term on M, i.. in
terms of l.c.’s:
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D= Y D'§ (D scalar functions in the lc.s) .
o<|lisv
We have the obvious canonical imbedding
TC"YM > TOM .
We have also a canonical map

TTOM — TC*YM

which is defined as follows. A tangent vector & of T®™”M at D is defined by a
curve E in TYM with D= E(0), & = E'(0). On the other hand each E(t) can be
interpreted as an element of 2'(M) (the space of L. Schwartz distributions on
M) and in the sense of the topology of that space the limit

dE(0) . E(t)—E(0)
= lim
dt t—0 t

too exists, defining a linear partial differential operator of order v+ 1 at x, thus
an element of T"*YM. In terms of l.c.’s: If

E@) = Y EM@)yy D =Y D)
where y is the curve in M over which E lies, the image of & is given by

PO _ 5 xB@)+3 XD @),

where X =Y X'(d)), is the tangent of y at x, that is, X =y'(0).

(A slightly different point of view: Let D be a section of T™ and X a vector
field on M. Denote by ¢, the flow corresponding to X (in general only locally
defined). Then on one hand we have (d/dt)D,| _,, a section of TT"M, and on
the other hand XD, a (v+ 1)th order linear partial differential operator on M.)

We now get the sequence
"M - T"'TYM — T'"2T®M —
- ... TT" VM - TOM
and by composition the map
(2.2) T — T™ .
Finally if we compose the maps (2.1) and (2.2) there results the map
(2.3) J'— T™,

Note that the map (2.3) is not injective. However as we shall see below its
restriction to J'* is everywhere regular (i.e. the indiced map on the tangent
space is an isomorphism), thus in particular locally injective.
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In what follows we usually without further comment identify a v-jet with its
image in T® under the map (2.3). As far as we are only concrned in local
questions such an identification is certainly permissible.

Let y be a v-jet at 0 and pick up a curve x such that y=x"(0). Then the
corresponding vth order tangent vector D obtained by application of (2.3) is
defined by Df==d"f(t)/dt".

Also if X is a vector field over M there corresponds to it by this procedure a
particular section D of T®), namely D= X". (Through every point x of M there
passes an integral curve of X. Therefore a v-jet is determined at each point x of
M and we may apply (2.3).)

The previous claim that the restriction of the map (2.3) to J'* is everywhere
regular will result from corollary 2.2 below to the following important

LEMMA 2.1. Let y be an element of J* over the point x of M and pick up a vector
field X on M such that y is the v-jet at O of the integral curve of X through x, so
that X" (x) is the image of y under the map (2.3). Then for any other vector field Y
on M the partial differential operator [YX"](x) at x which we regard as an
element of T¥* Y, belongs to the image of the map TJ® — TTY, induced by
(2.3), composed with the map TT™ — T®*Y, The same is also true for the
operator Y X”(x).

PROOF. Let i, be the flow belonging to Y (i.e. Y=yi|,-o). Set X,={,o X oy, !
where 1, is the flow on TM induced by y,. Then for each ¢ X (x) belongs to the
image of J* under the map (2.3). Also (d/dt)X}|,—o=[YX"](x) (in the sense of
distributions). This proves the first assertion of the lemma. The second one we
have essentially already established.

CoROLLARY 2.1. Also all the partial differential operators X*Y (x) where 0<k
=<v belong to that image.

Proor. In view of the second part of lemma 2.1 it suffices to take k <v. Apply

the first part with Y replaced by 7Y, 5 any scalar function on M. We have the
formula

24 (nY,X"]

nYX'—X"(nY)

v

nYX'—y (Z) (X~ X*Y

k=0

]

v—1
x-S ()omer
k=0
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[nY, X"](x) is thus always in the said image. Now choose #n such that X*~*5(x)
#0, X/n(x)=0if j+v—k. Then [nY, X*](x) is proportional to X*Y(x) and the
desired conclusion follows.

COROLLARY 2.2. Assume that y is regular. Then the image contains (v+ 1)n
linearly independent elements.

Proor. Since y is regular we may choose l.c.’s such that X =48, (=0/9x?).
Choose now Y=4, (=8/0x’). Then we have the (v+ 1)n linearly independent
operators 8%0; (0Sk<v, i=1,...,n).

Let G” be the group of v-jets of difftfomorphisms ¢ of R such that ¢ (0)=0. G*
is a Lie group and operates on the right on J*. We identify TR with R x R. The
map ¢ — |¢'(0)| then induces a canonical homomorphism G’ — R*: g — |g|
(“norm”™). A scalar function f on J¥ is said to be homogeneous (of degree 1) if
S(vg)=lgl f(y) of all y € J' and all g € G*. Let X be a vector field on M and
consider the corresponding section X* of T™. Let 4 be any non-vanishing
scalar function on M. Then the vector fields X and AX have the same integral
curves. Le. if x is an integral curve of X then xo¢, where ¢ is a suitable
diffeomorphism of R, is an integral curve of AX. It follows that if f is
homogeneous then f((AX))=Af (X"). Here we may clearly after a passage to
the limit drop the assumption that 4 is non-vanishing. Notice however that the
homogeneity of f entails that f must be singular on the set J*\ J**.

3. Integrals.
Let f be a fixed C* function on J*. Then for every curve x on M and every

compact intervall [«, ] =R, x,4 denoting the restriction (‘arc’) of x to [a, f], we
can define the integral

B
6. ¢ = o) = [ T60)ar.
A convenient way of defining f is to give a one-parameter family f, of C*
functions on J* (with C® dependence on t) and use the identification of J} with

JY=1Jj via the action R(t) (see Section 1). We can then put f(y)=£((R(1))"'y)
for y € J} so the integral becomes

(]
@.r) P = P(x,) = j LR@) X (®)dt ,

which we abusively write as

(3.1") b = B(x,) = f ’ £ (1) dt .
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We distinguish two special cases.

1° The “time-independent” case, f, is independent of t. Writing f= f, we thus
have the integral

(3.1) ¢ = d(x,) = r (o) de

2° The “parameter-invariant” case. The above f is homogeneous (see
Section 1). Let ¢ be any diffcomorphism of R and consider the curve y=xo¢.
We claim that the integral takes the same value if we replace x by y; that is,
®(y,5) = P(x,5) where a=0(y), B=(0). Indeed we have y(t)=x (¢ (1)) 0™ (1)
where @™ (t) is the v-jet at t of ¢. Therefore by homogeneity

SV = fx(e@)le @

and the classical formula for change of variable in an integral proves the point.
Since fis singular on J*\ J** it is convenient in this case to restrict oneself to
regular curves x.

The general case of the integral (3.1) can be formally reduced to the
parameter-invariant case, by enlarging the number of variables. Consider the
product manifold M =R x M. Then given a one parameter family f, of
functions on J'=J'M uniquely define a homogeneous function f on J'M by
requiring f (X (£))=£,(x®(t)) where x is any curve on M and x is the curve on
M defined by x(t)= (t, x(t)). Clearly we then have

f”f(x%» dt = f ’ a0y

The main problem of the Calculus of Variations is to find conditions on a
given curve x which secure that @(x,) is minimized (or maximized) within a set
of arcs close to x,; in the sense of a suitable topology.

By a deformation of a curve x we mean a one-parameter family of curves x,
(with C* dependence on s) such that x=x,. By the formula Y=0x,/0s|,-, is
defined a vector field along x. Then variation of @ in the direction of Y is
defined by the formula

od = s-————~—-d¢(x”“”) .

dS s=0
The total variation is then a linear functional in x =sY. A necessary condition
for an extremum is this that & =0 for all directions Y. In Section 8 we will
work out this condition leading to the Euler equations in an intrinsic form.
First we shall however develop the necessary machinery (Sections 4-7, Section
7 may be omitted at first reading).
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4. Lie derivatives in general bundles.

Let B be any bundle over M with projection n: B — M. Consider the
category €, whose objects are the non-empty open sets U of M and whose
morphisms are diffeomorphisms ¢ from a non-empty U open subset of M onto
a non-empty open subset V of M. Let there be given a functor from %), into the
corresponding category ¥p formed with B which on the objects induces the
mapping U +— n~!(U). Assume also that n defines a natural transformation
from that functor into the identity functor, meaning that we have the
commutative diagram:

n (U) 2> 271 (V)
~} ¢
o -2, Vv

¢ is the map induced by ¢. Then every vector field X on M induces a vector
field X on B defined as follows. Let ¢, be the flow associated with X, that is,

_ 4o,

th

t=0 '
(In general ¢, is only locally defined.) Then we set

__dq';,
=%

t=0

where ¢, is the flow induced by ¢,.

We can now define two particular Lie-derivatives.

First let f be any C* scalar function on B. Then, X being as before a vector
field on M, we set Ly f=Xf. This is again a scalar function on M.

Next let a be any C™ section of B. For each t a,= ¢, ! ca- ¢, is again a section
of B. We therefore set

Lxa = %a:h:o .

This is now a section of TB. However in the case when B is a vector bundle we
can identify it with a section of B again denoted by Lya. Indeed for every
element a of B with x=mn(a) there is a canonical isomorphism b > b} (the
vertical lift) from the fiber of B over x to the tangent space of B at g, it is
formally defined by

d
V -
b, = dt(a+tb)

t=0 *

Thus elements of B and vertical tangent vectors of B can be identified. (It
follows also that every section b of B can be lifted to a section b” of TB.)
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ExaMpLE 4.1. If B=T™M we have Lya=[Xa] where [-] denotes the
commutator (Lie bracket).

We now wish, in the case of a vector bundle B, to relate Ly f and Lya.
First we define the fiber derivatives of a scalar function fon B. If a and b are
any elements of B belonging to the same fiber we set

, d
fbsa) = bjf = —f(a+1b)
dt t=0
We can then announce the following result, the proof of which is immediate
from definitions:

LeMMA 4.1. Assume that B is a vector bundle over M. Let f be a scalar function
on B, a a section of B and X a vector field over M. Then holds the formula

Lyf(a) = X(f(a)—f(Lxa; a).

5. The Lie derivative in the case of jets..

Let f be any C™ scalar function on T®. Then in view of lemma 4.1 and ex.
4.1 holds (with due change of notation)

(5.1) Lyf(D) = Y(f(D)~f([YD],D)

where D is any section of T® and Y a vector field on M.

We now claim that the same.formula (5.1) is also applicable if f is only
defined on J¥ (locally considered as a submanifold of T") and D is of the
special form D= X", X a vector field on M, that is a sectibn of J* (locally
regarded as a subbundle of T*). To this end we locally extend f to a function f
defined on T, Then clearly we have Y7 (X"*)=Yf(X") and furthermore lemma
2.1 tells us that f([YX*]; X*) too is independent of the particular choice of the
extension. We can therefore unambiguously write f([YX*]; X*) in place of
F(YX"]; X). Therefore there results the formula

(5.2) Lyf(X*) = Y(f(X")-f((YX"]; X")

where thus f'is any scalar function on J” and Y and X vector fields on M, X"
being interpreted as a section of J*.

We wish also to see what happens if we replace Y by #Y, n a scalar function
on M. To this end we replace Y by nY in (5.2) and apply (2.4). We find:

(53) Linf () = nLyf(X)+ 3 (,‘;) (XHF (X*7Y; X)
k=

where the terms f(X'~*Y; X*) are defined in an analogous fashion as
JYX']: X").

Math. Scand. 42 — 21
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6. The Euler derivative.

Let again f be any C* function on J* and Y a vector field on M. We define
the Euler derivative of f with respect to Y by the formula

(6.1) Erf(X) = Lyf(X)+ 3 (- 1)"( )X"f(X" 5 X)

k=1
(In view of corollary 2.1 all the terms to the right in (6.1) involving f are
certainly meaningful, with the same interpretation as in Section 6.) If we also
introduce the Noether derivative of f with respect to Y by the formula

(62) Nyf(X") = Z (=1~ ‘( )X" (XY X)
we can write (6.1) more concisely as
(6.1') Eyf(X*) = Lyf(X)+X(Nyf(X"71)) .
Here is what this means for the first few values of v:
v=1: Eyf(X) = f-yf(X)—Xf(Y; X);
Nyf(X) = f(Y; X) (see [4])
v=2: Eyf(X?) = Lyf(X?)=2Xf(XY; X))+ X*[(Y; X?);

Nyf(X) = 2f(XY; X3)-Xf(Y;X?)
v=3: Eyf(X®) = Ly f(X?)=3Xf(X2Y; X3+
+3X3(XY; X3 - X3 (Y; X3);
Nyf(X3) = 3f(X?Y; X3)-3Xf (XY, X3+ X*f(Y; X3).

ExampLE 6.1. If f(X")= Xg(X" ') where g thus is a function on J*~! we have

Eyf(X")=0. To see this we have to evaluate all the fiber derivatives involved.
The method of proof of lemma 2.1 yields at once

(6.3) JOYX'L; X)) = [YX1gX* ™ H+Xe((YX ' X° 71

from which again by the device used in the proof of corollary 2.1 readily
follows

(6.4) ()](X" by, X*) = (k i)X X *y; X h+

(k 2)g(X" kY; X* Y +[f k=1]Yg(X* ™)

—g((YX ' X7 (15ksvy).
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Inserting (6.3) and (6.4) into (6.1) we readily get
Eyf(X") = YXg(X*™H)—-[YX]g(X" ™)~
~Xg([YX' ' XY+

v—2
+ Z (—1)*( i)x"“ (X% 7y, X h+

1)k 1 kg v-ky. v=1y__
+ Z (=1 <k 2)X g(X" Y XV
—YXg(X"H+g((YX ' X =0

where we used [YX]=YX—-XY.

We begin our discussion of (6.1) by remarking that the right hand side of
(6.1) at a given point x of M only involves the v-jet of X" in the direction of X.
Therefore (6.1) really defines a function on J2*,

Next we investigate what happens if we replace Y by Y, 5 a scalar function
on M. We claim that we have

(6.5) Eyf(X") = nEyf(X").

Since obviously Ey f(X") for a fixed X is additive in Y it follows from (6.5) that
making Y vary we get a differential form on M. We denote this differential form
by Ef(X") (the Euler form). If Ef (X*)=0 (the Euler equations in intrinsic form)
we say that X is an extremal field (with respect to f). We say also that a curve x
is an extremal curve (with respect to f) if Ef(X")=0 for some vector field X
tangent to x. By the above observation this definition is independent of which
vector field we choose. In particular the integral curves of an extremal field are
extremal. An extremal field is called normalized if Xf(X*)=0. This implies that
f(X") is constant along the integral curves.

In order to prove (6.5) we have to evaluate the second term to the right in
(6.1) with Y replaced by nY. (The first term was already considered in Section

5.) We get
i (‘1)k<Z>ka<vik <v—k> (Xjr’)X\—k—jY;X\'>
K= <o Jj
i vi _l)k(v)< > i ()(Xj+k h hj'(X\'—kij; X\)

) i(—1)“(,2)(:_,'f)(’D(X""n)X"f(X""Y; XY).
r=1 h=0 k=h -

Here the product of the three binomial coefficients can be rewritten as

1/v\(r
m(r)<k)k(k—l) o (k=(h+1).

lI
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On the other hand by considering the Taylor expansion for z=1 of the
function (1-—z)"—1 we readily get the identity

-1 h=0
66 % (—1)*<2)k(k-1)...(k—(h+1)) = 0 O<h<r
k=1
(= 1)"h! h=r

Thus the end result becomes

NG 1)"(,‘;)X"f(X""'Y; x)-3 (:) (Xn)f (XY X
If we compare this with (5.3) we readily get (6.5).
The transformation properties of Ey f(X") when X is varied will be studied
in Section 7.
We conclude by the following formula for the Euler derivative of the pth
power of f:

6.7) Eyf?(X") = p(f(X )" Eyf(X")
k

T (- 1)*(,:) ) (k)X"[(f(X”))""‘]X""‘f'(X“"‘Y; X,

=1 \J

The proof is immediate. From (6.7) follows in particular that if X is a
normalized extremal field for f then it is also a normalized extremal field for
any power of f.

7. The homogeneous case.

In this somewhat technical section we investigate the Euler derivative in the
special case when fis homogeneous (see Section 2). This entails that we have

(7.1) f(AX)) = A (X")

for every scalar function A on M and every vector field X on M. fis singular on
J*N\ J**. Therefore in order to be safe let us temporarily at least assume that
neither A nor X vanishes.

First we investigate what (7.1) means for the fiber derivative. Take A of the
form A=1+t{ where { is an arbitrary function on M. This gives the relation

(7.2 S(A+0X)) = A+)f(X7) .

We have the expansion

v-1
(L+X) = X 40 T X (X)X
h=0
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= X"+t Z Z ()(X’C)X" it

where the dots . . . indicate terms of higher order in ¢. Therfore differentitation
of (7.2) gives

Yy ( )(X’C)f(X“ XY = UX).
h=0 j=0

Choose now { such that X**{(x)+0, X{(x)=0 (j*v—k) for a given point x
of M. This proves the formula

03 WO X0 = 100

’ fX5x) =0 O<k<v)

Next let Y be an auxiliary vector field on M. We claim that we have
(7.4) FYX (X1 AX))-YAf(X) = H([(YX']; X).

To prove (7.4) we consider the flow ¥, belonging to Y and apply (7.4) with X
replaced by X,=y, '- Xy, {, being ‘the flow in TM induced by y,. Then
holds Xu=y*(X (¢, **u)) for any scalar function u on M. It follows that X}u
=yX(X (¥, *u)) so that differentiation of the right hand side of (7.1) gives
effectively the contribution A/([YX"]; X*). On the other hand since

=¥ (W *DX) ¥,
holds for any u
OX)u = ¥X (W *DX)Y Hu.
Therefore differentiation of the left hand side gives
JLY, AX)1; (AX))~ YAf(X)

where we also used (7.3) applied to AX. This establishes (7.4).
As an application of (7.4) we can now quickly settle the corresponding
question for the Lie-derivative. We claim that

(1.5) Ly f((AX)") = Af(X")
Indeed (5.2) combined with (7.4) gives

Lyf((AX)) = Y (X)) =LY, (AX)']; (AX")
AY(f(X))+(YDS(X) = H[YX']; X)) Yif(X)
= AY(f(X)-F[YX'];X") = ALy f(X")

proving (7.5).
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To proceed further let us in (7.4) replace Y by #Y, n a scalar function. With
(2.4) this gives
v—1

nf (LY, GX)T GX))— Y (Z)((/iX)”"‘n)f((/lX)* Y; (AX))—

k=0

v—1
—nYAf (X)) = if[YX'): X) - ¥ (Z)z(xv-kn)f(xw; X).

k=0
At this juncture we involve the following combinatorial formula:
(7.6) (AX) = Z Y Ae (X)L (X2A)XI
where the inner summation is extended over all k-sets of integers such that
€, 20,...,¢,20, ¢, +...+¢+j=k, and the coefficients 4, , are certain

uniquely determined integers which can be found inductively. Applied in our
case (7.6) gives

k
(1.7) ZZ(}) e (XA (XA ((AXYY, (X))
ji=0

- /<Z) FXkY: X)) (0<k<v)

where we now sum over all (v —j)-sets of integers subject to e, =0,.. .,e
el+ PR +€\._j+j=k.
We will also need a dual form of (7.6), namely

k
(7.8) (=DEXP = 3 Y (= 1VA,  AXI (X0 .. (X))
j=0

We are now in a position to prove the main result of this section which
expresses thus the homogeneity of the Euler derivative:

ProposITION 7.1. Assume that f is homogeneous. Then holds

(7.9) Eyf((AX)") = AEyf(X")
where X and Y are vector fields and 1 a scalar function on M.

ProoF. In view of (7.5) it suffices to consider the second term to the right in
(6.1). Using (7.8) and (7.7) we now obtain

v—1

y (——1)"<Z)(ZX)"]'((/'.X)““‘Y; (X))
k=0
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v—1
k‘_\:o Z (_l)k—e,— —e.(Z)Ae! e“lxk—e,— —ek(Xe%) .

L (XEDATF((AX)TRY; (AX))

v—1

) (—Uf(”.)xff(X”‘fY; X")
j=0 J

which is all there is needed.

OPEN QUESTION. Is it possible to establish all this — notably proposition
7.1 — in a more direct and less computational manner? (We remark that (7.5)
at least certainly can be obtained directly from the definition of the Lie
derivative.)

8. Applications to the Calculus of Variations.

We begin by the time-invariant case (see Section 3). Thus we consider the
integral (3.1"") where f'is any function on J® and x any curve on M. Then holds
the following formula for the variation of & in the direction of Y:

B
8.1) 0P = sj Eyf(x™)dt+s[Nyf(x™ ()]~ .

In order to prove (8.1) we extend x' to a vector field X defined on M and
likewise Y to a vector field on M still denoted by Y. (Initially x’ and Y were
vector fields along X only.) If X is regular, which we may as well assume, at
least locally this is possible. We can even achieve that in a suitable lc.
neighbourhood holds x(t)=(t,0,...,0), X=0/0x!, Y=08/0x* so that the
deformation x; of x corresponding to Y can be taken to be x,(t)=(t,5,0,. . .,0).
Then holds in particular [Y, X*]=0. We therefore get by virtue of (6.1') and
(6.2)

d(p (xs, aﬁ)

B
i =J Yf(X")dt

a

= J ’ Eyf(X")dt+ F XNyf(X")dt

a a

8
= j Eyf(x® () de+ [Ny f(x (@) -
This establishes (8.2).

The general case, i.e. the integral (3.1”) where f, is a one parameter family of
functions on J*, can most simply be treated by reducing it to a homogeneous
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problem in the product space M =R x M, by the process indicated in Section 3.
Then will enter in place of Ey f(X") the expression (compare (6.1))

k
Ly f(X")+ Y (—1)“(—1)“<Z>X"j;(x"-’% X"
k=1

where X = (0, X) thus is a vector field on M. A similarly modified expression
will appear in place of Ny f(X"). We leave the details to the reader, if there is
any left.

In what follows we will however concentrate on the time-independent case,
with special attention to the parameter-invariant case (i.e. f homogeneous).

As a first consequence of (8.1) we notice that if x is an extremal curve (i.e. we
have the Euler equations Ef (X)) =0, see Section 6) then 6@ =0 in all directions
Y such that Y vanishes up to order v—1 in the direction of x’ at the points x (o)
and x(B). The converse is of course also true but we refrain from entering
into the details.

Another immediate consequence of (8.1) which by the way also results
directly from (6.1') — is Noether’s theorem: Assume that fis invariant for Y in
the sense that Ly f=0. Then Ny f(X™(t)) is constant along any extremal curve.

We want also to give sufficient conditions for an extremum. Consider an
extremal field X for f (i.e. Ef(X")=0, see Section 6). Trying to imitate a
classical procedure (Caratheodory’s “Konigsweg”, see e.g. Rund [9]) we wish
to replace our integrand f with another one f* equivalent to f'in the sense that
the value of the integral ®(x,;) where x is any integral curve of X. Then X is
extremal for f* too. We require furthermore that f*((X)")=0 for any other
vector field X with strict inequality unless X and X have contact up to order v
somewhere. Let us agree to say that f* is positive definite with respect to X.
(Also the difference f—f* should be of some simple type.) If all this is the case
it then follows that we have a strong minimum: If x,; is an integral curve
x of X and X is any other curve with

2@ = X T@, TP = x00)

then holds @(X,) 2 P(x,s) with equality only if X,;=x,.
A natural choice for f* seems to be

(82) @) = f(X)-Xg(X*™Y)

where g is a function on J* ™!, Clearly this f* is always equivatent to t. Let us
see what the positive definiteness of f* implies. Firstly since f*(X")=0 we get
(83) f(X) = Xg(X*7Y)

(We notice in passing that (8.3) implies that X indeed has to be an extremal, by
virtue of example 6.1.) Moreover f*(X") attains a minimum for X=X so
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differentiation shows that (6.3) must hold which again entails (6.4). In the
homogeneous case (8.3) is a consequence of (6.3) or (6.4).

In contrast to the classical case v=1, these conditions (8.3) and (6.3) or (6.4),
do not suffice to determine g uniquely. We are therefore lead to try with the
following more special form

(8.4) gX"™) = X g+ X" hu 4y,

where ug,u,,...,u,_, are certain functions on M. (6.4) now gives

8.5) <’:> FX*Y; XY = i (Z :>Xk "Yu, .

This is a recursion for determining Yu,, and thus g, and leads to

(8.6) Yu, = <Z>P’§, f(X)  (0<k<v)

where we have put
(8.7) LX) = Z (—1)*(';>X"f(Xk-"Y; X))  (0sk<v)

(Compare the definition of Ny f(X"), formula (6.2)!) It may be easily verified
that for any function n on M

(8.8) Py f(X*) = nPyf(X")  (0sk<v).

Thus letting vary Y we see that (8.7) defines for fixed X certain differential
forms denoted by P*f(X*) (0<k<v). It follows that the integrability
conditions for the equations (8.6) take the simple form

8.9 dPFf(X*) =0 (0Zk<v).

Finally we insert the expression for g thus obtained by (8.6) in the formula
for f* (8.2). We find the expression

v—1
(8.10) X X) = f(X)- % (Z)X”"‘"Pl%f(X')

k=0
which may be considered as a generalization of the classical Weierstrass excess
function, to which it reduces if v=1, at least in the homogeneous case: the non-
homogeneous case is most conveniently treated by passage to the product
manifold M=R x M (see Section 3).

ReEMARK 8.1. For v=2 a definition of an excess function was suggested by
Rund [8] and (according to Rund [9]) a generalization to general v was given
by Lister [3].
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9. Connections in osculating bundles.

A (linear) connection in T =T™M (regarded as a vector bundle over M)
determines a linear horisontal lift X¥ to TT® of any vector field X on M such
that for each section D of T™M the difference XD — X (D), which thus is a
vertical section of TT®™M, in addition is linear in D. We can therefore write

(VxD)V = XD- X" (D)

where thus VD is a section of T (the covariant derivative of D with respect to
X), V standing for the vertical lift (see Section 4). We have the standard rules:

Vx(D,+D,) = VyxD, +VxD,, VxuD) = uVyD+ XuD,
Vx,+x,0 = Vx D+Vx D,
VuxD = uVyD (u a scalar function on M) .

If fis any C® scalar function on T™ we set Vyf=Xf We then have the
formula

©.1) Vxf(D) = X(f(D)~f(VxD; D)

where D is any section of T™ and X a vector field on M (compare [6] and
lemma 4.1).
We say that our connection is special if furthermore holds

9.2) VyD = XD

for any section of T~ ! regarded as a subbundle of T compare [2]). In what
follows we restrict our discussion to special connections.
For a special connection we define its torsion by the formula

9.3) T(Y; X*) = Vy X' =V (X*71Y)—-[YX"]
where Y and X are vector fields on M. (If v=1 (9.3) reduces to the usual

definition of torsion of a connection in T=TM.)

ExaMmPLE 9.1. The connections called dissections by Feldman [2] are special
in our sense and moreover fulfill T(Y; X*)=0. Indeed (9.3) can also be written
as

9.3) T(Y;X") = K(Y,X)X*!
where K is the curvature of our connection. Notice also that (9.2) implies
9.2) K(YX)X*=0 (0<k<v).

Let us investigate as usual the transformation properties of T(Y; X"). Let n
be any scalar function on M. We claim that
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9.4) T(nY; X*) = nT(Y; X)

so that making n vary we obtain for a fixed X a form on M.
To prove (9.4) we consider in turn the various terms entering to the right in
(9.3). The first one causes no trouble:

9.5) VX" = nVyX".

Next we notice that

v—1 -
Xv—l(”Y) = Z (V 1)()("7’]))(\’_,‘—117.

k=0 k

Using (9.2) and the Pascal triangle this gives

'« (v-1 k+1 —k-1
y r (X Ipx Y+
k=0

©.6) Vx X" (nY)

v=1 —1
+ Z <Vk )Xkﬂxv—kY'*'nVX(Xv-lY)
k=1

» (Zj‘(X"n)X“"‘H NV (X"71Y)
k=1

(9.5) and (9.6) together with (2.4 readily lead to (9.4). (Another proof of (9.4)
follows from (9.3').)

From (9.2') and (9.3') follows likewise that for any scalar function A on M
holds

9.7 T(Y; (AX)) = AT(Y; XV)
but we omit the proof.
We now come to the main result of this section. Let f be a scalar function on

J'. Assume that f'can be (locally) extended to a function on T®. We still denote
the extension by f and set for a fixed vector field X on M

©.8) u(D) = f(D; X*)

D being any section of T, Let Y be an auxiliary vector field on M. Then holds
the following rather bizarre formula (cf. [4] for v=1)

9.9) Eyf(X) = Vy f(X")+u(T(Y; X))~ Viu(Y).

In order to prove (9.9) we consider the various terms contributing to the
right member of (6.1).
First (5.2), (9.8), (9.1) give

(9.10) Lyf(X")

Y(f(X")-u(YX']
Vyf(X)+u(Vy X" =LY, X7]).
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Next again by (9.1), applied to u and reiterated, and (9.2)

XkH(Xv—kY)

k\ ;
(j)Vku(V';‘{’(X k)

J

™M= ng

('j‘,)vg(xv-fyn p(Vy X' 1Y) .

k=1

L}

Taking the sum we get

©.11) 5 (~—1)“(V)X"f'(X"""Y; X
k=1 k
- % 2 o(p)(4macme
=1 k=j J

tL (_I)VC)“(V"X“Y) = Viu(V) = (VX" 1Y)

where we use the formula

-1 j=0
M v\/k )
Erii)=| o oo
(=1 j=v

which is just (6.4) rewritten. (9.8) now follows from (9.10) and (9.11) if we also
take account of (9.4).

Notice that from (9.9) combined with (9.5) gives a new proof of (6.2). In the
same way using also (9.7) we can probably get a new proof of (7.9)
(homogeneous case).

OPEN PROBLEM. We-do not know if there exists a special connection which.
leaves invariant J* (regarded as a submanifold of T™). If this were the case all
the terms to the right in (9.9) would have a meaning independent of the
extension of f.

Note (nov. 77). In a paper entitled “Further comments on the Euler
derivative” (technical report, Lund, 1977:7), not intended for publication in the
present form, some concrete illustrations to problems pertaining to
Differential Geometry and Physics are given. The author will send copies on
request. I have also become aware that the definition of the Euler derivative
given in the present paper, viz. (6.1), is equivalent to the one already used by
Tulczyjew (see e.g. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23
(1975), 964-969, 24 (1976), 1089-1096). I now plan a long paper where I will
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generalize all this adopting the point of view of A-points of A. Weil (see
Colloques Internationaux du C.N.R.S., Géométrie Différentielle, Strasbourg,
1953).
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