MATH. SCAND. 42 (1978), 306-312

JB ALGEBRAS WITH AN EXCEPTIONAL IDEAL

H. BEHNCKE and W. BOS

Abstract.

Let o/ be an arbitrary JB algebras with exceptional ideal J. Then J is
isomorphic to the set of all continuous cross sections vanishing at infinity of
some fibre bundle {B, Q,pr, M3, E¢}, with locally compact base space Q. Let
J°={ae o |acb=0forall b e J} be the annihilator of J. Then J° is a JB ideal
and &/(J +J°) is a special JB algebra of type I .

In [1] Alfsen, Shultz and Stermer have shown that every JB algebra & with
identity is, modulo its unique exceptional ideal J, a JC algebra. These results
extend also to the non-unital case, if one modifies the axioms for JB algebras
slightly [7]. Thus we shall assume throughout that the JB algebras satisfy the
axioms given in [7]. Then we may, if necessary, adjoin a unit and apply the
methods of Alfsen, Shultz and Stermer.

If one interpretes a JB algebra as the set of observables of a physical system,
one would consider J as an unphysical part. Hence it seems desirable to know
how the exceptional ideal J lies in the JB algebra /. Though one might expect
J to be a direct summand, Alfsen, Shultz and Stermer have already constructed
a counterexample for this conjecture [1, remark 9.8]. Here we shall show that
in general J is almost a direct summand. More precisely we prove that & is an
extension of J@J® by a special JB algebra of type I1,. Here J° denotes the
annihilator of J in . This is done by describing J as a M3-fibre bundle over
J =Prim J, its primitive ideal space. The proof for this follows the lines of the
corresponding result for n-homogeneous C*-algebras [8].

Throughout &/ will denote an arbitrary JB algebra satisfying the axioms of
[7] and J the exceptional ideal of &/. By an exceptional JB algebra J we
understand a JB algebra, all of whose nontrivial factor representations are onto
M3, Equivalently an exceptional JB algebra can be defined via the s-identities
[1, theorem 9.5].

Lemma 1. J=PrimJ with the Jacobson topology is a locally compact
Hausdorff space and % ,(J), the algebra of all continuous real valued functions on
J vanishing at infinity, is the center of J.
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Proor. The proof follows almost verbatim the proof of Kaplansky [5]. As an
intermediate space one uses the set H of all J-homomorphisms of J into M3
with the pointwise convergence topology. Using H we can define on J the weak
topology as the quotient topology from H. With the aid of the functional
calculus of JB algebras on shows then that J contains all weakly continuous
real valued functions on J vanishing at infinity. The remainder is then almost
trivial.

Since €, (J)<J, J clearly has a bounded (bound 1) central approximate unit.

Our next aim is to show that locally J looks like an algebra of continuous
functions with values in M$. To do this we have to lift the matrix units of M}
locally.

LEMMA 2. Let ay,a, € €, the Cayley numbers, with

aioaj+aj°ai = _25 i,j=1,2 .

ij
Then we have for every purely imaginary.a € ¢

ayo(azea) = ayo(aa,).

This is shown by expanding a, a, and a, with respect to the canonical basis
of € [2, p. 221].

LEMMA 3. For each P, € J there exists a neighborhood U of P such that J(U)
~%(U)®@MS. Here J(U) is the quotient of J by the kernel of U.

PrOOF. Let Py e J and let {e;}};-, be the usual matrix units of M;(%).
Arguing as in [8, proof of the lemma in § 2] we can find elements e;, e, and e,
in J and a neighborhood U of P, such that e,(P)=e¢; and such that the ¢;(P)
form a system of minimal orthogonal projections with sum 1 for all P e U.
Choose now s € J such that s(Py)=e,,+e,, and

[(e; +e)os](P) = [so(e,+e)](P) = s(P) forall PeU.

Replacing s by s— U, s— U,,s if necessary we may even assume (U,s)(P) = 0
for all Pe U.

Since s?(P,)= (e, +e,,) we can replace s by an element f(s*)os=s,,, for at
suitable continuous function f, such that

s2(P) = (e, +€)(P),  (Ugsp)(P) =0 =123

holds in some neighborhood of P, which we denote by U again. Similarly
determine an element s,; € J with analogous properties. Hence by the
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coordinatization theorem [4] we may choose coordinates of M$ at each P € U
such that

&;(P) = ey, 512(P) = ey t+ey, 513(P) = e;3+e3,;
and
S33(P) = 2(sy,08,3)(P) = ey3+e3, for i,j=1,2,3.
Now let by, b,,...,bg denote the canonical basis of 4. There exist elements

sihed, i=23, such that s} (Py)=b,e,, —b;e,;. Replacing s by s —s,,°
(s1 ,o53) if necessary and using again the functional calculus in J, we can achieve

sPhesfh(P) = dyle; +e)(P), (U s)(P) =0, i,j=1,2,

throughout a neighborhood of P,, which we denote again by U. Above we
have written s’ for s;; Argumg similarly with s —32_, s%o(sHos}) we
construct a local symmetry %) such that

(1) S(ll)zos(ljz(P) = 5l'j(e1 +82)(P), Ue,s(IJ;(P) = 0

holds for Pe U and i,j=1,2,3.
Now let 5¢) =8(s;3°53)0 (s23052). Then the local symmetries s, i=1,. . .,4
will satisfy (1) throughout U. Now choose s'*} € J with

)(Po) = bse;, —bsey, -

Working with s{)—3%_, s%0(s¥053)) as above we can determine a local
symmetry s$3) € J such (1) will hold also for the larger system. Define now

+ 5 .
sGTD = B(sy308th)0(553058)  i=1,2,3,

then the system (s{}), i=1,...,8 satisfies (1) in U,. For the proof of this one
needs lemma 2. The remaining local symmetries s{} and s}, i=2,...,8 are
then defined by 2s5Jos{} =s{} and s§} =25{0s{}. This proves the lemma.

An immediate consequence of this lemma is

THEOREM 1. ) J defines a fibre bundle #(J)={B,pr,J, M3, E¢}, the structure
bundle, where B=Up.;J(P) and where pr is defined by pr (a(P))=P € J.

b) Conversely, the system J(#) of all continuous cross sections vanishing at
infinity of a fibre bundle #={B,pr,Q, M3, E¢} with Q locally compact is a JB
algebra.

c) J is isomorphic to the Jordan algebra of all continuous cross sections of its
structure bundle.

d) Two exceptional JB algebras are isomorphic iff their structure bundles are
isomorphic.
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This theorem is shown almost like the corresponding results for n-
homogeneous C*-algebras in [8, § 2] once one knows that E4=Aut M§ [3].
Obviously the norm of the JB algebra in (b) is given by the sup norm of the
fibres. In order to prove (c) one defines for each a € J the map f,: J 3 P
— a(P). Clearly f, is a continuous cross section vanishing at infinity and a — f,
is a J-isomorphism of J onto f(J). It remains to show that f(J)=J(#(J)), i.e.
that f is onto. For this it suffices that every continuous cross section with
compact support is in f(J). However since %,(J)cJ and since J is locally
trivial a partition of unity argument reduces this problem to the case of a
trivial bundle.

Now let &/ be an arbitrary JB algebra with exceptional ideal J. For
each y € & let J(y) denote the JB subalgebra of &/ generated by y. If o/ has a
unit we choose the subalgebra generated by y and 1. Then we can define the
centralizer Z(y) by

Zy) ={ae | as(y"oy™) = (acy"oy™ for all n,mz0} .
Clearly
Z() = {ae | ac(yyoy) = (acy,)oy, for all y; e JG)} .
It is not too hard to see that this definition coincides with that of [1]. For
Scof let Z(S)= 5 Z (y) denote the centralizer of S.
LemMA 4. INZ (J)=%,(J)c Z (¥)

Proor. Let a € Z(J)NJ and b € /. Consider c=ao (b"ob™)— (a-b")ob™ and
let @ be an arbitrary factor representation of /. Then we have n(c)=0 if J is
annihilated and n(a)=a-1 or n(c)=0 if J is not annihilated. Since all factor
representations are faithful, we get ¢=0.

LEMMA 5. The annihilator J° of J, defined by

J° = {ae sl | acb=0 for all beJ}
satisfies
J° = {aest| acb=0 for all be %,(J)}.
J° is a closed special JB ideal of .

This lemma follows immediately from the fact that J contains a bounded
central approximate unit.

DEFINITION. A JB algebra o is called essentially exceptional if J= (0).
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THEOREM 2. Let & be an arbitrary JB algebra with exceptional ideal J. Then
J®JC is ¢ closed IB ideal of o/ and o /(J@®J°) is a special JB algebra of type
I<,, ie. all factors representations of o/ (J@®J®) are special Jordan factors of
type 1.

PrOOF. Since the set of factor representations of type I is closed in & and
since J is dense in (&//J°), (/J°) is a JB algebra of type I<;. Hence
/(J@J°) is a special JB algebra of type 1.

LEMMA 6. Let o/ be an arbitrary JB algebra and let of =Prim o denote its
primitive spectrum with the Jacobson topology. Then the sets ,s corresponding
to factor representations of type 1<, are closed.

Proor. Since in JB algebra one has the functional calculus of continuous
functions the usual C*-proof shows that for each x € &/ the function
fo: A 3 P — |x(P) is lower semicontinuous. Now define for each x € o,
={y*| y € o} the function

g 3P —sup ¥ Ix(P),

where the supremum is taken over all finite sets {x;} =/, with 0¥ x;<x.
Then Y |x;(P)| <Y Trx;(P)STrx(P) and thus g,(P)<Tr x(P). Conversely we
can always choose {x;}cs/, such that Y x;<x and such that Y |x;(P)|
=Tr x(P). Hence the function g (-)=Trx(-) is lower semicontinuous on <.
Clearly

A ={Pes| Tr1(P)Sn}

is closed.

This result can probably be shown also be using polynomial identities.
However we remark that the usual polynomial identities for associative rings
do not work. As an example consider

N = {xo(yoz)—(xoy)ozl x,y,z € o}

the associator set of &/ then every factor representation of type I, maps A"
={a-b | a,be #} onto a central element. In other words ao(boc)—
(aob)oc, ae A2, b,ce of is annihilated by all elements of ,s/. Every
factor representation n of type I, maps & onto a spin factor and we say = is
of type I, , if dimn(o)=n+1.

Using 4" and a refined argument, one can even show that the set of all
factorrepresentations of type 1<, <, are closed.

Theorem 2 implies in particular that any essentially exceptional JB algebra is
of type I ;. There is a different way to view theorem 2. Let & be an essentially
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exceptional JB algebra. Let a € & and P € J. Then a(P) is defined. By using
the center of J and a suitable coordinate bundle for %#(J), it is easy to see that
J 3 P — a(P) defines a bounded continuous cross section of #(J). Clearly the
map & 3 a — (a(P)) is a J-isomorphism of & into the JB algebra M (J) of all
bounded continuous cross sections of #(J). In fact M (J) can be considered as
the multiplier algebra of J. Let a € M (J) be positive and let (u;) be an bounded
increasing central approximate unit of J. Then au; is a bounded increasing
family of elements of J. Hence (a-u,) converges strongly in J, the enveloping
algebra of J. Here J denotes the strong closure of J in &. Thus M (J) can also
be viewed as the idealizer of J in J. In particular we see, & < MJ)cJ
=€ (Q)®MS3 [6]. This can be used to improve theorem 2 slightly. (The authors
thank the referee for providing a proof of this result).

COROLLARY. Let & be an essentially exceptional JB algebra. Then & is of type
I< 5 and every factor representation maps & onto a subfactor of M$.

Proor. We may consider &/ a subalgebra of #=J =% (Q)®@ MS. Let ¢ be any
pure state of ./ and let ¢ be an arbitrary pure state extension of g to 4. By ¢(g)
respective c(g¢) denote the central support g, ¢ in &/** respectively £#**.
Considering &/** as a subalgebra of #** the map x — xc{g) defined an
embedding of &/ **c(g) into B**c(g)=MS.

Conversely any subfactor 2 of MS can be obtained from a factor
representation of a suitable essentially exceptional JB algebra. To see this
choose a canonical basis of M$ b,,. . .,b,, such that by,...,b, is a basis of 2.
Now let & be the algebra of all sequence (a,) with a, € M§ and a,=Y o, b,
where we assume «, , — 0 for 272k=r+1 and a, , — o, € R for 1 Sk=r.
Then J=c,®@M3, J°=(0) and «//J=2.
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