JB ALGEBRAS WITH AN EXCEPTIONAL IDEAL

H. BEHNCKE and W. BÖS

Abstract.

Let \mathscr{A} be an arbitrary JB algebras with exceptional ideal J. Then J is isomorphic to the set of all continuous cross sections vanishing at infinity of some fibre bundle $\{B, \Omega, \operatorname{pr}, M_3^8, E_6\}$, with locally compact base space Ω . Let $J^0 = \{a \in \mathscr{A} \mid a \circ b = 0 \text{ for all } b \in J\}$ be the annihilator of J. Then J^0 is a JB ideal and $\mathscr{A}/(J+J^0)$ is a special JB algebra of type $I_{\leq 3}$.

In [1] Alfsen, Shultz and Størmer have shown that every JB algebra \mathcal{A} with identity is, modulo its unique exceptional ideal J, a JC algebra. These results extend also to the non-unital case, if one modifies the axioms for JB algebras slightly [7]. Thus we shall assume throughout that the JB algebras satisfy the axioms given in [7]. Then we may, if necessary, adjoin a unit and apply the methods of Alfsen, Shultz and Størmer.

If one interpretes a JB algebra as the set of observables of a physical system, one would consider J as an unphysical part. Hence it seems desirable to know how the exceptional ideal J lies in the JB algebra \mathscr{A} . Though one might expect J to be a direct summand, Alfsen, Shultz and Størmer have already constructed a counterexample for this conjecture [1, remark 9.8]. Here we shall show that in general J is almost a direct summand. More precisely we prove that \mathscr{A} is an extension of $J \oplus J^0$ by a special JB algebra of type $I_{\leq 3}$. Here J^0 denotes the annihilator of J in \mathscr{A} . This is done by describing J as a M_3^8 -fibre bundle over $\hat{J} = \operatorname{Prim} J$, its primitive ideal space. The proof for this follows the lines of the corresponding result for n-homogeneous C^* -algebras [8].

Throughout \mathscr{A} will denote an arbitrary JB algebra satisfying the axioms of [7] and J the exceptional ideal of \mathscr{A} . By an exceptional JB algebra J we understand a JB algebra, all of whose nontrivial factor representations are onto M_3^8 . Equivalently an exceptional JB algebra can be defined via the s-identities [1, theorem 9.5].

LEMMA 1. $\hat{J} = \text{Prim } J$ with the Jacobson topology is a locally compact Hausdorff space and $\mathscr{C}_0(\hat{J})$, the algebra of all continuous real valued functions on \hat{J} vanishing at infinity, is the center of J.

Received May 5, 1977.

PROOF. The proof follows almost verbatim the proof of Kaplansky [5]. As an intermediate space one uses the set H of all J-homomorphisms of J into M_3^8 with the pointwise convergence topology. Using H we can define on \hat{J} the weak topology as the quotient topology from H. With the aid of the functional calculus of JB algebras on shows then that J contains all weakly continuous real valued functions on \hat{J} vanishing at infinity. The remainder is then almost trivial.

Since $\mathscr{C}_0(\hat{J}) \subset J$, J clearly has a bounded (bound 1) central approximate unit.

Our next aim is to show that locally J looks like an algebra of continuous functions with values in M_3^8 . To do this we have to lift the matrix units of M_3^8 locally.

LEMMA 2. Let $a_1, a_2 \in \mathcal{C}$, the Cayley numbers, with

$$a_i \circ a_i + a_j \circ a_i = -2\delta_{ij}$$
 $i, j = 1, 2$.

Then we have for every purely imaginary $a \in \mathscr{C}$

$$a_1 \circ (a_2 \circ a) = a_2 \circ (a \circ a_1) .$$

This is shown by expanding a, a_1 and a_2 with respect to the canonical basis of \mathscr{C} [2, p. 221].

LEMMA 3. For each $P_0 \in \hat{J}$ there exists a neighborhood U of P_0 such that $J(U) \cong \mathscr{C}(\bar{U}) \otimes M_3^8$. Here J(U) is the quotient of J by the kernel of U.

PROOF. Let $P_0 \in \hat{J}$ and let $\{e_{ij}\}_{i,j=1}^3$ be the usual matrix units of $M_3(\mathscr{C})$. Arguing as in [8, proof of the lemma in § 2] we can find elements e_1 , e_2 and e_3 in J and a neighborhood U of P_0 such that $e_i(P) = e_{ii}$ and such that the $e_i(P)$ form a system of minimal orthogonal projections with sum 1 for all $P \in U$. Choose now $s \in J$ such that $s(P_0) = e_{12} + e_{21}$ and

$$[(e_1 + e_2) \circ s](P) = [s \circ (e_1 + e_2)](P) = s(P)$$
 for all $P \in U$.

Replacing s by $s - U_{e_1}s - U_{e_2}s$ if necessary we may even assume $(U_{e_i}s)(P) = 0$ for all $P \in U$.

Since $s^2(P_0) = (e_{11} + e_{22})$ we can replace s by an element $f(s^2) \circ s = s_{12}$, for at suitable continuous function f, such that

$$s_{12}^2(P) = (e_1 + e_2)(P), \quad (U_{e_i}s_{12})(P) = 0 \quad i = 1, 2, 3$$

holds in some neighborhood of P_0 , which we denote by U again. Similarly determine an element $s_{13} \in J$ with analogous properties. Hence by the

coordinatization theorem [4] we may choose coordinates of M_3^8 at each $P \in U$ such that

$$e_i(P) = e_{ii}, \ s_{12}(P) = e_{12} + e_{21}, \ s_{13}(P) = e_{13} + e_{31}$$

and

$$s_{23}(P) = 2(s_{12} \circ s_{13})(P) = e_{23} + e_{32}$$
 for $i, j = 1, 2, 3$.

Now let b_1, b_2, \ldots, b_8 denote the canonical basis of \mathscr{C} . There exist elements $s_{12}^{(i)} \in J$, i=2,3, such that $s_{12}^{(i)}(P_0) = b_i e_{12} - b_i e_{21}$. Replacing $s_{12}^{(2)}$ by $s_{12}^{(2)} - s_{12} \circ (s_{12} \circ s_{12}^{(2)})$ if necessary and using again the functional calculus in J, we can achieve

$$s_{12}^{(i)} \circ s_{12}^{(j)}(P) = \delta_{ij}(e_1 + e_2)(P), \quad (U_{e_i} s_{12}^{(j)})(P) = 0, \quad i, j = 1, 2,$$

throughout a neighborhood of P_0 , which we denote again by U. Above we have written $s_{ij}^{(1)}$ for s_{ij} . Arguing similarly with $s_{12}^{(3)} - \sum_{k=1}^{2} s_{12}^{(k)} \circ (s_{12}^{(k)} \circ s_{12}^{(3)})$ we construct a local symmetry $s_{12}^{(3)}$ such that

(1)
$$s_{12}^{(i)} \circ s_{12}^{(j)}(P) = \delta_{ij}(e_1 + e_2)(P), \quad U_{e_i} s_{12}^{(j)}(P) = 0$$

holds for $P \in U$ and i, j = 1, 2, 3.

Now let $s_{12}^{(4)} = 8(s_{13} \circ s_{12}^{(2)}) \circ (s_{23} \circ s_{12}^{(3)})$. Then the local symmetries $s_{12}^{(i)}$, $i = 1, \ldots, 4$ will satisfy (1) throughout U. Now choose $s_{12}^{(5)} \in J$ with

$$s_{12}^{(5)}(P_0) = b_5 e_{12} - b_5 e_{21}$$
.

Working with $s_{12}^{(5)} - \sum_{k=1}^{4} s_{12}^{(k)} \circ (s_{12}^{(k)} \circ s_{12}^{(5)})$ as above we can determine a local symmetry $s_{12}^{(5)} \in J$ such (1) will hold also for the larger system. Define now

$$s_{12}^{(5+i)} = 8(s_{13} \circ s_{12}^{(i)}) \circ (s_{23} \circ s_{12}^{(5)}) \quad i = 1, 2, 3$$

then the system $(s_{12}^{(i)})$, $i=1,\ldots,8$ satisfies (1) in U_0 . For the proof of this one needs lemma 2. The remaining local symmetries $s_{13}^{(i)}$ and $s_{23}^{(i)}$, $i=2,\ldots,8$ are then defined by $2s_{23}^{(1)} \circ s_{12}^{(i)} = s_{13}^{(i)}$ and $s_{23}^{(i)} = 2s_{13}^{(i)} \circ s_{13}^{(i)}$. This proves the lemma.

An immediate consequence of this lemma is

THEOREM 1. a) J defines a fibre bundle $\mathscr{B}(J) = \{B, \operatorname{pr}, \widehat{J}, M_3^8, E_6\}$, the structure bundle, where $B = \bigcup_{P \in J} J(P)$ and where P is defined by P is P in P

- b) Conversely, the system $J(\mathcal{B})$ of all continuous cross sections vanishing at infinity of a fibre bundle $\mathcal{B} = \{B, \operatorname{pr}, \Omega, M_3^8, E_6\}$ with Ω locally compact is a JB algebra.
- c) J is isomorphic to the Jordan algebra of all continuous cross sections of its structure bundle.
- d) Two exceptional JB algebras are isomorphic iff their structure bundles are isomorphic.

This theorem is shown almost like the corresponding results for n-homogeneous C*-algebras in [8, § 2] once one knows that $E_6 = \operatorname{Aut} M_3^8$ [3]. Obviously the norm of the JB algebra in (b) is given by the sup norm of the fibres. In order to prove (c) one defines for each $a \in J$ the map $f_a : J \ni P \to a(P)$. Clearly f_a is a continuous cross section vanishing at infinity and $a \to f_a$ is a J-isomorphism of J onto f(J). It remains to show that $f(J) = J(\mathcal{B}(J))$, i.e. that f is onto. For this it suffices that every continuous cross section with compact support is in f(J). However since $\mathscr{C}_0(\hat{J}) \subset J$ and since J is locally trivial a partition of unity argument reduces this problem to the case of a trivial bundle.

Now let \mathscr{A} be an arbitrary JB algebra with exceptional ideal J. For each $y \in \mathscr{A}$ let J(y) denote the JB subalgebra of \mathscr{A} generated by y. If \mathscr{A} has a unit we choose the subalgebra generated by y and 1. Then we can define the centralizer $\mathscr{Z}(y)$ by

$$\mathscr{Z}(y) = \{ a \in \mathscr{A} \mid a \circ (y^n \circ y^m) = (a \circ y^n) \circ y^m \text{ for all } n, m \ge 0 \}.$$

Clearly

$$\mathscr{Z}(y) = \{ a \in \mathscr{A} \mid a \circ (y_1 \circ y_2) = (a \circ y_1) \circ y_2 \text{ for all } y_i \in J(y) \}.$$

It is not too hard to see that this definition coincides with that of [1]. For $S \subset \mathscr{A}$ let $\mathscr{Z}(S) = \bigcap_{y \in S} \mathscr{Z}(y)$ denote the centralizer of S.

LEMMA 4.
$$J \cap \mathcal{Z}(J) = \mathcal{C}_0(\hat{J}) \subset \mathcal{Z}(\mathcal{A})$$

PROOF. Let $a \in \mathcal{Z}(J) \cap J$ and $b \in \mathcal{A}$. Consider $c = a \circ (b^n \circ b^m) - (a \circ b^n) \circ b^m$ and let π be an arbitrary factor representation of \mathcal{A} . Then we have $\pi(c) = 0$ if J is annihilated and $\pi(a) = \alpha \cdot 1$ or $\pi(c) = 0$ if J is not annihilated. Since all factor representations are faithful, we get c = 0.

LEMMA 5. The annihilator J^0 of J, defined by

$$J^0 = \{a \in \mathcal{A} \mid a \circ b = 0 \text{ for all } b \in J\}$$

satisfies

$$J^0 = \{ a \in \mathcal{A} \mid a \circ b = 0 \text{ for all } b \in \mathcal{C}_0(\hat{J}) \}$$
.

 J^0 is a closed special JB ideal of \mathscr{A} .

This lemma follows immediately from the fact that J contains a bounded central approximate unit.

DEFINITION. A JB algebra \mathscr{A} is called essentially exceptional if $J^0 = (0)$.

Theorem 2. Let $\mathscr A$ be an arbitrary JB algebra with exceptional ideal J. Then $J\oplus J^0$ is c closed JB ideal of $\mathscr A$ and $\mathscr A/(J\oplus J^0)$ is a special JB algebra of type $I_{\leq 3}$, i.e. all factors representations of $\mathscr A(J\oplus J^0)$ are special Jordan factors of type $I_{\leq 3}$.

PROOF. Since the set of factor representations of type $I_{\leq 3}$ is closed in $\widehat{\mathscr{A}}$ and since \widehat{J} is dense in (\mathscr{A}/J^0) , (\mathscr{A}/J^0) is a JB algebra of type $I_{\leq 3}$. Hence $\mathscr{A}/(J \oplus J^0)$ is a special JB algebra of type $I_{\leq 3}$.

LEMMA 6. Let \mathscr{A} be an arbitrary JB algebra and let $\widehat{\mathscr{A}} = \operatorname{Prim} \mathscr{A}$ denote its primitive spectrum with the Jacobson topology. Then the sets ${}_{n}\widehat{\mathscr{A}}$ corresponding to factor representations of type $I_{\leq n}$ are closed.

PROOF. Since in JB algebra one has the functional calculus of continuous functions the usual C*-proof shows that for each $x \in \mathcal{A}$ the function $f_x : \hat{\mathcal{A}} \ni P \to |x(P)|$ is lower semicontinuous. Now define for each $x \in \mathcal{A}_+$ = $\{y^2 \mid y \in \mathcal{A}\}$ the function

$$g_x: \mathcal{A} \ni P \to \sup \sum |x_i(P)|$$
,

where the supremum is taken over all finite sets $\{x_i\} \subset \mathscr{A}_+$ with $0 \leq \sum x_i \leq x$. Then $\sum |x_i(P)| \leq \sum \operatorname{Tr} x_i(P) \leq \operatorname{Tr} x(P)$ and thus $g_x(P) \leq \operatorname{Tr} x(P)$. Conversely we can always choose $\{x_i\} \subset \mathscr{A}_+$ such that $\sum x_i \leq x$ and such that $\sum |x_i(P)| = \operatorname{Tr} x(P)$. Hence the function $g_x(\cdot) = \operatorname{Tr} x(\cdot)$ is lower semicontinuous on \mathscr{A} . Clearly

$$_{n}\hat{\mathscr{A}} = \{ P \in \mathscr{A} \mid \operatorname{Tr} 1(P) \leq n \}$$

is closed.

This result can probably be shown also be using polynomial identities. However we remark that the usual polynomial identities for associative rings do not work. As an example consider

$$\mathcal{N} = \{x \circ (y \circ z) - (x \circ y) \circ z \mid x, y, z \in \mathcal{A}\}$$

the associator set of \mathscr{A} then every factor representation of type $I_{\leq 2}$ maps $\mathscr{N}^2 = \{a \circ b \mid a, b \in \mathscr{N}\}$ onto a central element. In other words $a \circ (b \circ c) - (a \circ b) \circ c$, $a \in \mathscr{N}^2$, $b, c \in \mathscr{A}$ is annihilated by all elements of ${}_2\mathscr{A}$. Every factor representation π of type I_2 maps \mathscr{A} onto a spin factor and we say π is of type $I_{2,n}$ if $\dim \pi(\mathscr{A}) = n+1$.

Using $\mathcal N$ and a refined argument, one can even show that the set of all factorrepresentations of type $I_{\leq 2, \leq n}$ are closed.

Theorem 2 implies in particular that any essentially exceptional JB algebra is of type $I_{\leq 3}$. There is a different way to view theorem 2. Let $\mathscr A$ be an essentially

exceptional JB algebra. Let $a \in \mathscr{A}$ and $P \in \widehat{J}$. Then a(P) is defined. By using the center of J and a suitable coordinate bundle for $\mathscr{B}(J)$, it is easy to see that $\widehat{J} \ni P \to a(P)$ defines a bounded continuous cross section of $\mathscr{B}(J)$. Clearly the map $\mathscr{A} \ni a \to (a(P))$ is a J-isomorphism of \mathscr{A} into the JB algebra M(J) of all bounded continuous cross sections of $\mathscr{B}(J)$. In fact M(J) can be considered as the multiplier algebra of J. Let $a \in M(J)$ be positive and let (u_{λ}) be an bounded increasing central approximate unit of J. Then au_{λ} is a bounded increasing family of elements of J. Hence $(a \circ u_{\lambda})$ converges strongly in \widetilde{J} , the enveloping algebra of J. Here \widetilde{J} denotes the strong closure of J in $\widetilde{\mathscr{A}}$. Thus M(J) can also be viewed as the idealizer of J in \widetilde{J} . In particular we see, $\mathscr{A} \subset M(J) \subset \widetilde{J} = \mathscr{C}(\Omega) \otimes M_3^8$ [6]. This can be used to improve theorem 2 slightly. (The authors thank the referee for providing a proof of this result).

COROLLARY. Let $\mathscr A$ be an essentially exceptional JB algebra. Then $\mathscr A$ is of type $I_{\leq 3}$ and every factor representation maps $\mathscr A$ onto a subfactor of M_3^8 .

PROOF. We may consider \mathscr{A} a subalgebra of $\mathscr{B} = \tilde{J} = \mathscr{C}(\Omega) \otimes M_3^8$. Let ϱ be any pure state of \mathscr{A} and let $\bar{\varrho}$ be an arbitrary pure state extension of ϱ to \mathscr{B} . By $c(\varrho)$ respective $c(\bar{\varrho})$ denote the central support ϱ , $\bar{\varrho}$ in \mathscr{A}^{**} respectively \mathscr{B}^{**} . Considering \mathscr{A}^{**} as a subalgebra of \mathscr{B}^{**} the map $x \to xc(\varrho)$ defined an embedding of $\mathscr{A}^{**}c(\varrho)$ into $\mathscr{B}^{**}c(\bar{\varrho}) \cong M_3^8$.

Conversely any subfactor \mathscr{D} of M_3^8 can be obtained from a factor representation of a suitable essentially exceptional JB algebra. To see this choose a canonical basis of M_3^8 b_1,\ldots,b_{27} such that b_1,\ldots,b_r is a basis of \mathscr{D} . Now let \mathscr{A} be the algebra of all sequence (a_n) with $a_n \in M_3^8$ and $a_n = \sum \alpha_{n,k} b_k$ where we assume $\alpha_{n,k} \to 0$ for $27 \ge k \ge r+1$ and $\alpha_{n,k} \to \alpha_k \in \mathbb{R}$ for $1 \le k \le r$. Then $J = c_0 \otimes M_3^8$, $J^0 = (0)$ and $\mathscr{A}/J \cong \mathscr{D}$.

REFERENCES

- E. M. Alfsen, F. W. Shultz and E. Størmer, A Gelfand-Neumark Theorem for Jordan Algebras, Preprint series: University of Oslo, 1975.
- H. Braun und K. Koecher, Jordan-Algebren, (Grundlehren Math. Wissensch. 128), Springer-Verlag, Berlin - Heidelberg - New York, 1966.
- C. Chevalley and R. D. Schaefer, The exceptional simple Lie algebras F₄ and E₆, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 137-141.
- N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Providence, Rhode Island, 1968.
- I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.
- 6. F. W. Shultz, On normed algebras which are Banach dual spaces, Preprint.

- 7. R. R. Smith, On non-unital Jordan-Banach Algebras, Math. Proc. Cambridge Philos. Soc. 82 (1977), 375-380.
- M. Takesaki and J. Tomiyama, Applications of fibre bundles to the certain class of C*-algebras, Tôhoku Math. J. 13 (1961), 498-522.

UNIVERSITÄT OSNABRÜCK FACHBEREICH 5 D-4500 OSNABRÜCK FEDERAL REPUBLIC OF GERMANY