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A FUNCTION PARAMETER
IN CONNECTION WITH INTERPOLATION
OF BANACH SPACES

JAN GUSTAVSSON

0. Introduction.
T. F. Kalugina has in [5] used the function norm

_ ([ Tu@Tpdr\»
et = ([ (5 [5)" e

and the K- and J-functionals due to J. Peetre [7]. Kalugina constructs
interpolation spaces and proves the equivalence theorem (the K- and J-
methods coincide) and the reiteration theorem. However, the two proofs are
incomplete. Kalugina uses the inequality

K(t,a) £ c(JoO [min(1,£>J(rt,u(tt))]pﬁ>l/p
o T T

based on the inequality

n=-00

(1) K(t,a) < c( i K(t,u,,)”)l/p.

where a= Y _ _ u, with convergence in X(4). However, this second inequality
is false for p>1. In fact, if a € 4(4) we may choose

i [ % n=1,2,...,N
Un = 0, otherwise
Then the inequality (1) would imply

K(t,a) £ cK(t,a)NV/P~ 1,

As N — oo the inequality is false (if p>1).
We will show that the equivalence theorem follows from Peetre [7]. The
reiteration theorem of Kalugina is more general than the corresponding
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theorem in [7]. We give a proof of a reiteration theorem with somewhat
weaker assumptions than Kalugina.
We also study the function classes Bx and B, introduced by Kalugina. We
give a simplified definition of Bx and show that B, and By essentially coincide.
In the last section we apply the machinery to interpolation between some
Orlicz spaces.

1. The function classes Bx and B,.

DeFINITION 1.1. The function ffrom R, into R, belongs to the function class
By if and only if

) [ is continuous and non-decreasing

B fis) = sup-g,—((sT) < oo for every s>0

“) on mm( 1)](t)— < 00 .
0 t

We give some properties of functions in By.

ProrosiTiON 1.1. For f e Bk holds

r>0 f (®
6) 0<f()f(®) S f(st) STG)f() (fis quasi-homogeneous)
(7)  Jand fare non-decreasing and f(1)=f(1) = 1
8) f(st) S ) (fis submultiplicative)
9  f(s) = o(max(l,s)), s— 0 or oc
(10)  for sufficiently small >0

) f(s)fe) — 1, where f(s) = inf L)

f(s) = o(max (s%5* %), s— 0 or oc

Proor. We start with (5).

(5

1\ _ s)_ g0 11
7 (s) WO e INITNICK
l>0 f(t)

The assertions (6), (7) and (8) are quite trivial.
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Now to the proof of (9). From (1), (4) and (7) we get
fs) J f@)de
= 0

N t t

-0, s—> oc.
Moreover,

_ es _ dt

f@s) £ j f(t)—;—> 0, s—0.

The proof of (9) is complete.
For the proof of (10) we can now refer to [4, p. 2447 (cf. [3, p. 35]).

Remark 1.1. Combining

(11) Joo [min(l,%)]‘(t)]pf? < oo for any p>0,
0
1 (T ¢ (rde\» (j"“[]’(t)]"dr)""
12 — <!¥ L EACN ol
. [/};S s (Jo[f(t)] t) Lt ]
and '

oo 1 PA\1/p ) o 1 Pdr\l/p 1__ pg 1/p
o (7wl 5) "= l] L))" = ([ mers)

with Proposition 1.1 we obtain that our class Bk coincides with the Bk given
by Kalugina. (11) is an immediate consequence of (10). The inequalities (12)
and (13) follow from (2), (5) and (11). As an illustration, let us prove the second
inequality in (12).

([ [y 22, [Ty

s [f(t) t s Uolseso ]t
< (J‘l [L]pﬂ)l/p 3 (jco 1:; ]pdt)l/p _ <J‘rx [ﬂ_)]pdt>1/p
=\Jolfol ) \J: Lyam] ot A d)

ExampLE 1.1. (Kalugina). If 0<a <1, then f(f)=t* belongs to Bg.

IIA

ExampLE 1.2. If O<a<f <1, then
I

0 = i+,

belongs to Bg. f(t)=max (t#7%t%). (log denotes the natural logarithm
function.)
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Quite as Kalugina we make the following definition.

DeFiNiTioN 1.2, The function class B, consists of all continuously
differentiable functions f such that

i
9 S P
)
(15) tlilg————f(t) =o>0.

ExampLE 1.3. If O0<a<1, 0 € R, then
f @ = t*(log 1+

belongs to By, if y is small enough. In fact,

'@
?Eom = max (o, o+ 6y)
S A1) I
tlilgm‘— = min (a,oz+0y) .

ProrosiTion 1.2. B, < Bg.

Proor. We have to check (2)-(4). However, (2) is trivial. To prove (3) we
define (following Kalugina)

_ St
g(s) = 0.
Then
<9 <5 Ly=1.
T ogle —

Thus g(s)<s%, if s=1, and g(s) <% if 0<s< 1. Consequently f(s)< max (s% s)
and (4) is also proved.

DerinITION 1.3. Two positive functions f and g are called equivalent if there
are two positive constants ¢, and ¢, such that
g = f(0) = c8(0), 1>0.

ProrosiTION 1.3. If f € By then there is a function g € B, such that f and g are
equivalent.
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g(s) = J min<1,5>f(t)£1—£.
o t t
Then holds

19 < f 0™ < g9 = f ) min(1,1>f(st)‘-i£
s 1 t 0 t t
< /) j “min(11 )70
0 t t

The equivalence is proved. Since f is continuous and

g5 = f 7%+ r fodt
0 s

rt

Proor. Put

we get

Z(s) = ff(t)dt

which is continuous. Consequently
sg'(s) f@) dt)
g J /G oy j C

o) = sr@5‘t—t= fwf(—St?gf(s)rmgf——-ﬂsrcl
s 1 1

t t t t

But

and

J(s)ey = f(S)J f(t — = f f(t)— <f()j f(t)— =f(s)cs.
The convergences of the integrals follow from (4). Finally we obtain

0 < 1 - f(s) < sg'(s) < ¢ f(s) — €y <1.
3+l 3 f(5)+f(s) g(s) o f+e fls) eyt

The proof is complete.

REMARK 1.2. It is obvious that By, is contained in the function class B-(1)
in [3, p. 37]. On the other hand, using the proof of Proposition 1.2 we achieve -
that every function in P* (1) is equivalent to a function in Bg and thus
equivalent to a function in B,
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2. Construction of interpolation spaces.

Let A, and A, be Banach spaces continuously embedded in a Hausdorff
topological linear space /. Put X(4)=A,+ A, equipped with the norm
K(1,a), where

K(t,a) = K(t,a; Ap,A)) = inf (llaollq, +tllayla,) -

a=ag+a

Evidently

(16) K(t,a; Ay, A)) = tK(1/t,a; A}, Ay) .

Furthermore, we put 4(4)=A,N A, equipped with the norm J(1,a), where
J(t,a) = J(t,a; Ag, Ay) = max ([lal 4, tlall4) -

(Cf. [7, p. 8] and [2, p. 38])

DEerINITION 2.1. Let f'e B and let u be a non-negative function. Set
* [u(r) "dt)”"
b, [u] = — ] — ,
sol4] (Jo [/(t):l t

where p=1. @, , will be a function norm. See [7, p. 10].

DEeFINITION 2.2. We say that a function norm @ is of genus =g if and only if
olu(in)] = g(APLu()]

for all A>0 and all non-negative functions u, which is measurable on R, with
respect to the measure dt/t.

PROPOSITION 2.1. @ , is of genus <f.

Proor. It follows immediately from (5) and (6).

DEFINITION 2.3. We denote by (4o, 4,);, ,. k the set of elements a € X(A) such
that the norm

o, [K(ta] < oc.
ReMark 2.1. Kalugina uses the notation S, ,. x for (4o, 4,);, p: k-
ReMark 2.2. If f is equivalent to g then (Ao, 41)s p; k= (Ao, A1), ; k With

equivalent norms. From Proposition 1.3 follows that we may suppose that fis
in By, which is done below.
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PROPOSITION 2.2. (Ag, A});, p: k = (A1, Ao)g, p; kK Where g(t)=tf (1/t). The norms
are equal.

Proor. If we use (16) and make a simple substitution, then the proof is
complete. Notice that g belongs to B,,.

The following lemma is a consequence of (2), (5), (11) and the elementary
inequalities (17) and (18) below.

a7 min (1,s/t)K(t,a) < K(s,a)
(18) K(s,a) £ min(1,s/t)J(t,a) if a e A(A)
(Cf. [7, pp. 9, 16].)

LEmMMmA 2.1.

K(t,a) = Cf(t)||a||(Ao,A,),,,,;K

lall 4, 4,),,: —f J(t a) if ae A(A) .
The proof of the following proposition is standard. See e.g. [2, p. 47].

PROPOSITION 2.3. (Aq, 4});, p; k s complete.

Tueorem 2.1. (Interpolation theorem). Let T be a bounded linear operator
from A; to B; with norm M,, i=0,1. Then T operates from (Ao, Ay)s p.k tO
(Bos By)s, p; k With norm M, where

M s o7 (3.
0

Proor. Since ¢, , is of genus <f the theorem follows from [7, p. 17-18].

DEFINITION 2.4. We denote by (4g, 4,);, ,; s the set of elements a € 2 (A) such
that there is a piecewise-constant function u(t) € 4(A) with

a= J. 1,4(t)—‘-i';E (convergence in X(A))
0
and

o, [J(tu@)] < <.

We equip (A¢, Ay);,,. ; With the norm inf, @, [J(z, u(1))].
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RemMark 2.3. We call u a representation of a.

LEMMA 2.2. Let a € Z(A) be such that

(19) min (1, 1/)K(t,a) > 0, t— 0 or oo

Then there exists a representation u for a such that J(t,u(t)) £cK(t,a).
Proor. See [7, pp. 26-27].

We can now give the equivalence theorem.

THEOREM 2.2. (Ao, A)y, p; k = (Ao, A1)y, p, 4 With equivalence of norms.

Proor. If we use Proposition 2.1, (4) and (9) we get a proof from [7, pp. 29,
13].

REMARK 2.4. In the sequel we write (Ao, 4,),,, instead of (Ag, A;)s »; k OF
(AOsAl)f,g;J-

Before stating the reiteration theorem we need a definition.
DEFINITION 2.5. Let X be a Banach space such that 4(4) = X < 2(A4). Then X
is said to be of class Cg(/, A), if
‘ K(t,a; A Ay) < of Ollally, aeX.

Moreover, X is said to be of class C,(f, A), if

laly < f—%m,a; Ap Ay, aeA(d).

REMARk 2.5. It follows from Lemma 2.1 and Theorem 2.2. that (4o, 4,),, , is
of class Cx(f, A)NCy(f, A).

THEOREM 2.3, (The reiteration theorem). Let Ay, 4;,X, and X, be Banach
spaces with A(A)< X;=Z(A), i=0,1. Suppose that f, and f; belong to B, and
that t(t)=f, (t)/fo(t) fulfils the condition
t7'(¢)

(1)
Then the following statements hold for ¢ € B,

=a>0.

(20)
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a) if X, is of class Ck(f;, A), i=0,1, then (X, X,),, ,< (Ao, Ay),, ,, where g(t)
=fo0e(z(1)) )

b) if X, is of class C,;(f;, A), i=0,1, then (X, X,), ,> (4o, A
above.

1)g, p» With g as

Proor. It is sufficent to prove the theorem when

k 7’ (t)

) =

In fact, the case when tt(t)/t(t)< —a<O0 then follows from (16) and
Proposition 2.2.

Before proving a) we prove that g € B,. However, a simple derivation and
usage of (14), (15) and (21) gives

(21) =2a>0.

< g0
<20 <y,
where
50) G
% = infr 2 Auo=suen

Now to the proof of a). Let a € (X,, X,),, ,- Furthermore, let a=a,+a, with
a;€ X,,i=0,1. Since X, is of class Cg(f;, A) we get

K(t,a; Ay, 4y) £ K(t,ay; Ag, 41)+K(t,a,; Ay, Ay)
c(fo®laolx, +fi@®layllx,) -

A

Consequently

K(t,a; Ap, 4y) S cfo()K(r(0),a; Xo, X,) .

. * [K(z(t),a; Xo, X,) |Pdr\"/?
Fa K05 Ao AT 2 Cq [ 9(z(0) L‘) ‘

From (21) follows that t has an inverse function # and that t(tf) — 0,as ¢t — 0
and that t(tf) — oo as t — oo. If we make the substitution t=x(s), we get

( r [ms,a; Xo, X),"51(5) 4_)
‘\Jo 00 n(s) s

(I” [K(s,a; X, Xl):l"ds>”"
¢ —e Tt —
0 @(s) s

Then

d54;,11[1((1" a; AO, Al)]

IIA

A
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The last inequality depends on the inequality

sn'(s) 1
e

(22)

We have proved a).
b) Let a € (Ao, 4y),,,- According to Lemma 2.1 we have

(23) K(t,a; A, A7) < cfoD@(T(D)lallq, a,,, -
Using (9) and (21) we see -that

K(t,a; Ag,A))— 0, t—0.
If we write (23) as

1 ®) o)
—t‘K(t,a; AOa l) =] lt %” “(ADA)g,,

and use (9) and (21) again we get that
%K(t,a; Ag,A)— 0, t—> 00.
Summing up we have proved that
min<1,%>K(t,a; ApA)— 0, t—>0or oc.

Then Lemma 2.2 gives us a representation u(t) with
(24) J(tu(t); Ag,4,) < cK(t,a; A, A)) .
Put

v(s) = u(n(s )) n (s)

where 7 is the inverse function of 7. Then holds

a= Joo v(s)d—s.
° s

(oo

K(ésa; XO’XX) (é,U(S), XO’ 1)%{

v

We get

< mm( ) (s,v(s); Xo, X )d:
£

- mm(l v ))J(t(l),u(t); Xo,Xx)itt'
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But X; is of class C,(f; A), i=0,1. Thus

. . &\ (G u(t); Ao, Ay dt
K(é,a, X09X1) é CJ‘() mln(l,r(t))‘—“—]o(T)——t—

o & \K(t,a; Ay, A,) dt
“ L m"‘<l’?(7)) RO

where the last inequality follows from (24). We get
¢(p,p[K(§’ a; XO’ Xl)]

c Jm[rc min(l ¢ )Mﬂ]pﬁé e
o Lo 1)) fo@e@) 1| €

* * K(n(¢o),a; Ay, A 1)_d_‘_7_ pqé 1p
c(f U “""(1 a) foE)e(® a] é) ’

IIA

IIA

lIA

299

where we have made the substitution t =#(¢0) and used the inequality (22).

According to Minkowski’s inequality we have

?, [K( a; X0, X,)]

I\

But using (4)-(6) we achieve
¢q).p[K(éa a, XO’ Xl)]

< 1 dU K(n(x),a; A, Ay) pi{)””
=C3f m‘“( o) [ fome | x

c r f‘” [min(l 1) (n(e0), a5 A, A )]Pdc>‘"'da
*Jo o 6)  foln(Eo)e(®) ¢

© 1 * ['K(n(x),a; Ay, A;) P dx\'/? do
C3Jo m‘“(l’a‘)(f [fo(n(X) x/a)] ) '

Again, making the substitution x=1(y) and observing that yt'(y)/t(y)<1, we

get

qj(p,p[K(é’ a; XO, Xl)]

IIA

4 0 fo(Y)(P(T(,V)) y
= C4¢g,p[K(y’a; A09Al)] .

The proof is complete.
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3. Interpolation between some Orlicz spaces.

In this section we shall interpolate between Orlicz spaces of the type
LP(log* LY.
We denote by L?=L?(I,du,R) the space of all y-measurable real-valued

functions such that
, ' 1/p
f e = (j l/(s)l"dy) < .
I

Before stating the following lemma we refer to [2, pp. 6-7] for a definition of
the decreasing rearrangement function a* of a.

LEMMA 3.1. Let f€ B,. Then the function a belongs to (L',L™), , if and only if
® ta*(t)]” dt
25 — <
29 J 0 [ f@ ] ¢

Proor. First we observe that

a*(s)ds = Jl ta*(ts)ds .

0o

t

(26) K(t,a; L, L®) = J

0

See [2, p. 109]. Since obviously K(t,a; L!, L) = ta*(t) we achieve that (25) is
true if a € (L, L®) ;. p- Conversely, we now assume that a fulfils (25). In view of
4), (5), (6), (26) and Minkowski’s inequality, we obtain

(Joo [K(t,a)]"ﬁ)”"= (J‘oo[ 1 ta*(ts) ds:rﬁ)”p
o L S t o LJo (O t
1 o0 ,ta*(ts) p_‘_l_t 1/p B 1<J‘oo [aa*(a)}"ﬂc_)”"
= f(f [f(t) ] r) “- J o L] o) ©
31 ‘_lf_ 00 aa*(a) pd_g)llp
s [ot( 5] e)"

The proof is complete.

DerinTioN 3.1. A Banach space X of real-valued Lebesque measurable
functions on an interval I is said to be a Banach function space if

(27) gl = |If] ae. and fe X implies that ge X and |gllx < IIfllx

28) f,eX,|fuilx £ M and 0 £ f, » fimplies that fe X
and |fllx S M.
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ExampLE 3.1. The Lebesgue L? spaces, Lorentz spaces and Orlicz spaces are
Banach function spaces.

REMARK 3.1. When we omit condition (28) in Definition 3.1, then we talk
about X as a quasi-Banach function space.

Lemma 3.2, If g, v=1,2,..., are non-negative functions in a quasi-Banach
function space X and Y%, g, is convergent in X with the sum g, then

(29) g.(x) = g(x) ae, n=12,....
Proor. (We owe the argument to J. Bergh.) Since

0 < g,x= Zl g,(x)

(29) follows if we prove >_, g,(x)=g(x) a.e. Consider therefore the set
E, = {x ) gu(X)>g(X)}-
v=1 :

Suppose now that E, has positive measure. Put

r(x) = g,(x), if xekE,
Y10, otherwise

and
_jgx), if xekE,
rix) = 0 , otherwise
Then
(30) Y rx)-rx)| £ Zl gy (x)—g(x)| .
v=1 v=

Combining (27) and (30) we get that Y22, r,(x) is convergent in X with the
sum r(x). But for n=n,

0< {2 r,(x)—r(x) £ i r,(x)-r(x), if xekE, .

v=1 v=1

Then (27) gives that

ny n

Y or-r Y r-r
v=1 v=1

which contradicts that E, has positive measure. The proof is complete.

-0, n—> o
X

s
X
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ProposiTioN 3.1. If X and Y are two quasi-Banach function spaces, which
coincide algebraically, then they have equivalent norms.

Proor. Since |f||=|f], (27) yields that |||f]|lx=|fllx. Consequently, it is
sufficient to prove the equivalence of norms for non-negative functions. Let us
assume that we cannot find a positive constant C such that | f||x=C| f|y for
all non-negative functions in X =Y. Then we could find non-negative functions
/. such that

(31) fillx < n=21filys  n=1,2,....
Put
o,
&=y

From (31) follows that |g,||x <n~2. Since X is complete we get that

is convergent in X. But g,=0. Thus Lemma 3.2 gives

(32) g.(x) £ g(x) ae
But X =Y algebraically. Combining (27) and (32) we get

n=|gly < lglly, n=12,...

which is a contradiction. The proof is complete.
Remark 3.2. In [6, p. 128] we have found ideas similar to the proof above.

In the sequel we shall only use I = (0, 1) and the Lebesgue-measure dx. Then
e.g. condition (25) reads

Mta*(e) P dt

The following lemma may be compared to [1, p. 218].

Lemma 3.3. Let 020, y>0 and p=1. Then the following statements are
equivalent.

(@) aeLP(log* L)?

1
(b) J \ La(®)l(log* la®))°1Pdt < oo
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!

© La*(n(log* a*(1)*)?dt < oo
0

1

@ | [a*(n)(og(1+a*(©))Pdt < oo
0

) [a*()(log (1 +¢t™7)"1Pdt < oo .
0

Proor. That (a) and (b) are equivalent follows from the definition. Since a
and a* are equimeasurable (See [2, p. 7]), then (b) and (c) are equivalent. The
equivalence between (c) and (d) depends on the limit

log* 1
lim—28 5 _ 2.
s—oo lOg (145"
and elementary comparison tests for integrals. It remains to prove that (d) is
equivalent to (e). Let us assume that () is true. Then a € L! and we get that

ta*(t) is bounded. Remembering (e) we get the convergence of (d). To prove
that (d) implies (¢) we define g

E = {t: a*(t)>t7%
F=1t: a*(t)st™?)

where 0<dp<1. Then holds

1 =7
'[ [a*(H)(log (1 + M) ]Pdt < J [lﬁg—“t—j—’—)]pdw
0 F

+J La*(t)(log (1 +a*(1)"%)*]P dt .
E

But dp<1. Then the integral over F is convergent. The convergence of (d)
implies the convergence of the last integral. The proof is complete.

PrOPOSITION 3.2. Let p>1 and f(t)=t*(log (1+¢t7) "% witha=1-1/p, 620
and 0<y<(1—a)/0. Then holds

(L', L™);,, = L?(log* L)’
with equivalent norms.

Proor. First we notice that f € B,. See Example 1.3. From (33) follows that
ae (L‘,L°°),‘p if and only if
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J : [t; :‘()l)T? - J :) 19710 g*(p)(log (1 +¢ )17 dt

= jl [a*(t)(log 1+t~ )?]Pdt < oo .
4]

But according to Lemma 3.3 this is equivalent to a € L?(log* L)?”. We have
proved that the@interpolation space and the Orlicz space coincide algebraically.
If we can prove that (L',L), , is a quasi-Banach function space, then the
equivalence of norms follows from Proposition 3.1. However, Proposition 2.3
yields the completeness. Since |g|<|f| implies that g*(t)<f*(t), then (26)
implies that condition (27) is fulfilled. The proof is complete.

Finally we shall use the reiteration theorem to prove the following
proposition.

ProposiTioN 3.3. Up to equivalence of norms we have
(L (log* Ly, L?(log* L)), , = L"(log™ Ly’
with (t)=t% O0<a<l1, po*p,, p;>1 for i=0,1. Furthermore

1 l—-a « a s 1—-a o
p Po 1 21 14 Po D1

Proor. Put
fit) = ¥(log (1+¢77)7%,

where y is positive and sufficiently small, o;=1—1/p, and s;=6,p,, i=0, 1. From
Proposition 3.2 we obtain that

(L', L), , = L(log* Ly, i=0,1.

If we choose y small enough, then f| (t)/f, (¢) fulfils condition (20). (Cf. Example
1.3). In view of the reiteration theorem we achieve

(L™ (log™ Ly*, L™ (log* L)*),,, = (L',L®),,

where

(1)) (log (141 7)d-®bo+abs ”
If we use Proposition 3.2 again we get

(L',L%),,, = LP(log* L)

(1 —a)ap + any
) =fo(c)<p<j’“’) -t
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with

1 l—a o s 1—a o
- = +— and - =
14 Do D1 14 121 D1

The proof is complete.

REMARK 3.3. The same result can be found in [3, p. 49]. However, the
restrictions po*p,, p;>1 for i=0,1 do not appear in [3].
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