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AMENABILITY AND
LOCALLY COMPACT SEMIGROUPS

ALAN L. T. PATERSON

1. Introduction.

Much of the success of the theory of amenable locally compact groups stems
from the fact that (roughly) the existence of a right invariant mean (RIM) on
any “reasonable” space associated with a locally compact group G is
equivalent to the existence of a RIM on any other reasonable space associated
with G, i.e. amenability is independent of the choice of space (see [6, p. 26]).

In contrast, the theory of amenable locally compact topological semigroups
seems to have made limited progress, despite the existence of a well-developed
theory for discrete semigroups. (See [4].) Part of the reason for this is surely
that it is not clear that amenability for such"semigroups is (in the sense of the
preceding paragraph) independent of the choice of space. This is reflected in the
variety of definitions of amenability which have been suggested: left
amenability has been defined as the existence of a left invariant mean (LIM) on
(1) LUC(S) ([11], [9]), (2) MB(S) ([10]) and (3) M (S)* ([5]). (For the
definition of these spaces, see section 2.) When S is a locally compact group,
these three definitions are equivalent. (The equivalence of (1) and (2) is proved
by a simple argument using [6, Theorem 2.2.1]; that (3) is equivalent to (1)is a
corollary of [17, Theorem 5.2].) Lau ([10]) proves that (1) and (2) are
equivalent when § is a non-locally-null measurable subsemigroup of a locally
compact group. Other candidates for the choice of space are UC (S), RUC (S)
and C (S).

It seems worthwhile investigating this theme for a class of semigroups
which, while being much wider than the class of locally compact non-locally-
null subsemigroups of locally compact groups, nonetheless preserves a vestige
of structure which allows a chance of adapting the locally compact group
approach resulting in [6, Theorem 2.2.1]. As L (G) plays a pivotal role in this
approach, it is natural to look for semigroups which have associated Banach
spaces of measures analogous to the pre-dual L, (G) of L. (G). Now a measure
# € L,(G) if and only if the maps g — J,*p, g — p*4, are continuous from G
into M(G), where M(G) has a suitable (e.g. the weak) topology.
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In the sequence of papers [1], [2], [3], A. C. and J. W. Baker used measures
with such continuity properties to construct for a locally compact semigroup S
an analogue (called L(S) in [14]) of L,(G), obtaining many of its basic
properties. In his excellent thesis [14], G. L. G. Sleijpen proves a number of
new results in this field, in particular giving an illuminating intrinsic
characterisation of a large class of those semigroups which admit “many” such
continuous measures ([14, p. 83]). Such semigroups are called foundation
semigroups.

The class of foundation semigroups is extensive, and includes all discrete
semigroups, all locally compact non-locally-null subsemigroups of locally
compact groups and semigroups related to those considered by Rothman [13].
For many other examples, see [14, Appendix B].

Throughout the paper we shall be concerned with RIM-results: the
corresponding LIM-results are proved similarly.

The two theorems of the paper are in section 6. The first theorem shows that
the existence of one positive measure for which the maps s — d,xpu, s > pu*d,
are weakly continuous implies that the existence of a RIM on any one of the
spaces C (S), MB (S), M (S)* is equivalent to the existence of a RIM on any of
the others.

A complete generalisation of [6, Theorem 2.2.1] is given by the second
theorem: in particular, this theorem applies to all foundation semigroups.

These theorems also show the equivalence of various types of topological
RIM which occur in the literature. (In particular the type of mean (involving
PM (S)) which has been used by Wong [16], [17] and Day [5] is discussed). In
this connection, the present writer finds it helpful to unify these types of RIM
by considering each as a mean invariant under a suitable semigroup action.

Section 2 introduces notations, while section 3 summarises the information
used in the sequel concerning measures with continuous properties. Semigroup
actions and convolution functions are studied in section 4, and the latter theme
is continued in section 5, which builds up analogues of results in [6, pp. 22-24]
and [8, § 20], without the technical complications involved in Haar measures,
the modular function and the involution of M (G). We also show that the
spaces on which we wish to study invariant means admit natural semigroup
actions, and are connected by natural “morphisms”.

An important task in the proving of our theorems is that of providing an
analogue of what Greenleaf calls “the key lemma” ([6, p. 101]). Much of section
6 is devoted to this end.

I am indebted to Mr. Henry Dzinotyiweyi and Dr. A.J. White for useful
discussions, and to Dr. G. L. G. Sleijpen for a most helpful communication.
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2. Notations.
Let S be a semigroup. If A, B are subsets of S, then

AB = {ab: ac A, beB}, A 'B={xeS: axe B for some ac A}
and
AB™! = {xeS: xbe A for some b e B} .

A non-void subset I of S is called an ideal whenever SIUIS<I. A non-void
subset T of S is a subsemigroup if T>cT. The set

{ceS: cs=sc for all se S}

is called the centre of S. m(S) is the set of bounded complex-valued functions on
S. m(S) is a Banach algebra under pointwise operations and the sup-norm. For
fSem(S) and s € S, elements ,f and f; of m(S) are defined by:

SO = fs0),  f(t) =fts) fortes.

Now let S be a locally compact topologlcal (i.e. jointly continuous)
Hausdorff semigroup.
We shall be concerned with means on the followmg closed subspace of m(S):

MB (S) = {fe m(S) : fis a Borel function}
C(S) = {fem(S): fis continuous}
LUC(S) = {fe C(S): the map s — f (s € §) is (norm) continuous}
RUC(S) = {fe C(S) : the map s — f, (s € §) is (norm) continuous}
UC (S) = LUC(S) N RUC(S) .

LUC (S)(RUC (8)) is the set of left (right) uniformly continuous bounded
functions on S. UC (S) is the set of uniformly continuous bounded functions,
while C (S) (MB (S)) consists of the bounded continuous (Borel measurable)
functions on S.

Each of these spaces is translation invariant in the sense that ;fand f, are in
a space whenever f is.

If M is a complex normed space, then M* is the continuous dual of M.

Co(S) is the family of continuous functions in C(S) vanishing at infinity.
Co(S)* can be identified with M(S), the set of all bounded, complex-valued,
regular Borel measures on S. M(S) is a Banach algebra with convolution
multiplication given by:

O (u*v)(f) = I f(st)ydu(s)dv(r)

Math. Scand. 42 — 18
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where p,v e M(S) and fe Cy(S). PM(S) is the convolution semigroup of
probability measures on §, i.e.

PM(S) = {ne M(S): u>0, Jul=1}.
If s € S, then 4 is the point mass at s. For u € M(S), S, is the support of y, ie.

S, = {s€S: |ul(U)>0 whenever U is an open neighbourhood of s} .

It is well-known that §,,,=5,S,. We shall often write sy (us) instead of
O xp (p*dy).
Using (1), it is easily proved that if fe MB (S), s € S and u € M(S), then:

@) Jf d(us) = ff (ts)du(e), J.f d(sp) = Jf (st) du(r) .

Throughout the remainder of this paper, S will stand for a locally compact
topological Hausdorff semigroup unless otherwise explicitly specified.

3. Properties of L(S) and L*(S).
In general, we follow the notation of [14]. L(S) and L"(S) are defined ([14],
p. 36, 55):

L(S) = {ue M(S) : the maps s — slul, s — |u|s (s € S) are
weakly continuous}

L"(S) = {u € L(S) : the maps s — sy, s — us (s € §) are norm
continuous} .

If L(S)# (0), #(S), the foundation of S, is defined:
S8 =U{S,: ueLl®)}.
If #(S)=S, then S is called a foundation semigroup.

We now list a number of properties of these sets.

3.1. L(S) in an L-ideal of M (S). In particular, if v<<|u| where v € M (S) and
u € L(S), then v € L(S). ([14], p. 37).
3.2. [M(F(S)*L(S)JULL(S)*M (£ (S)]=L"(S)<=L(S). ([14], p. 55).

3.3. If u € L(S), then sp, ps<<|u|* for all s € S,. ([14, p. 36]. This is a very
useful substitute for the lack (in general) of a measure g, on S such that L(S)

=L, (1))
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3.4. If S is a foundation semigroup, x € S and O is a non-void open subset of S,
then O~'(Ox) and (x0)O~! are neighbourhoods of x. ([14, p. 76]. The
assumption that S contains an identity is not required for this result.)

3.5. L*(S) is a two-sided ideal of M(#(S)) and so of L(S). (Use (3.2).
3.6. SL*(S)UL(S)S<L"(S). (Cf. [2], 3.6. If s,t,t, € S and pu € L*(S), then
(st — (st |l < |lut—pty]l and
lt(sw) =t sl = [l(ts)u— (t,9)pll
It follows that su € L"(S).)

3.7. If L(S)#(0), then F(S) is a closed two-sided ideal in S, and is a
foundation semigroup. ([14, p. 43].)

We introduce the convolution semigroups P(S) and P"(S):
P(S) = {peL(S): u>0, [ul=1}
P'(S) = {peL™(S) : p>0, |jul=1}.

3.8. If L(S) = (0), then P(S)(P"(S)) is an ideal in PM (S) (P(S)). (Use (3.1) and
(3.5))

4. Semigroup actions on normed spaces and convolutions.

If X is a non-void set, then T (X) is the semigroup of transformations of X
with composition multiplication. If S is a semigroup, then a homomorphism
(anti-homomorphism) ¢: § — T(X) is said to be a left (right) action of S on X.
When the left (right) action ¢ involved is obvious, we shall write sx (xs) instead
of p(s)x for x € X, s € S. Note that for a left action ¢, s(tx)=(st)x for all
s,t €S, x e X. We shall refer to the left action ¢ as “given by the maps
x — sx”. Similar considerations apply to right actions.

A pair (¢, ) where @ () is a left (right) action of S on X is said to be a (two-
sided) action if (sx)t=s(xt) (s,t € S, x € X) in an obvious notation. We say that
S acts on X (through (¢,y)). We often write sxt rather than (sx)t.

A non-void subset Y of X is said to be invariant if SYUYScY.

Now let M be a normed space with typical elements u,v. Throughout this
paper, a left action of S on M will always have the properties:

(1) the map p — su is linear for each s
) lsull < lull forall se S, peM.

Right actions will have similar properties.
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A left (right) action of S on M induces as follows a dual right (left) action on
M*:

@) (@s)(u) = alsp)  (s)(w) = o(ps)

where « € M*, uye M and s € S.

A (two-sided) action of S on M induces the obvious (two-sided) action on
M*.In order to bring out a useful analogy between M* and spaces of functions
on S, we define: a,=sa, ;o =oas for such an action. (Note that the natural action
of S on m(S) is given by: sf=f,, fs=f(f € m(S), s € S), where f, and ,f are as in
section 2.)

Given an action on M and a € M*, u € M, the functions a*u and u*a in
m(S) are given by the well-known convolution formulae (cf. [12], p. 431, [14],
p. 23):

O] axp(s) = alus) pxals) = alsy) .

We list the following formulae which are well-known in one form or another
and whose verifications are trivial.

4.1, PrOPOSITION. Let S act on M and a € M*, uye M and s € S. Then:

slowp) = axps  (axp)y = agxp  okp = axsp

I

slura) = pro (pxo), = spxa  ps*o = p*a;.

(As a useful mnemonic, each of these can be “deduced” using a simple
associative law, e.g. (0% u)= (a0 *p)s=a*pus.)

Now suppose that § is a locally compact semigroup. An action of S on the
normed space M is said to be weakly (norm) continuous if, for each u € M, the
maps s — su and s — us are continuous from § into M when M has the weak

(norm) topology.

4.2. PrOPOSITION. Let S be a topological semigroup acting on a normed space
M. Let o € M* and pe M.

(i) axpu(uxa) e m(S) and [loxp| (llp*ofl) < ol Il el
(i) If the action is weakly continuous, then o u(uxa) belongs to C(S).
(iii) If the action is norm continuous, then oxue LUC(S) and
uxo € RUC ().

Proor. (i) ([3, p. 686]) Let t € S. Then
[axm)@ = lo(ue)l = lofl lptll = lell Nl
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So flooxpll = fleef| f|pll-
(i) ([3, 2.2, p. 686]) If s; — s in S, then

(axp)(sy) = alusy) — a(us) = (axp)(s)

since us; — us weakly. So using (i), a*xu € C(S).
(ii1) (cf. [11, p. 68]) If s; — s in S, then

sy (xp) = s@xp)| = llax(uss—ps)ll = loll lus;—psl| — 0
(using (4.1)). So using (ii), a*u € LUC (S). Similarly, uxa € RUC (S).

If S is a semigroup with a left action on M, then u, € M is said to be an
identity for the action if ||uol|=1 and spy=p, for all s € S. An element m e M*
is said to be an S-right invariant mean (S-RIM) (with respect to u,) if |m| =1
=m(uy) and m(su)=m(p) for all y € M, s € S. In most normal circumstances,
there is a natural identity for the action.

If S has a left action on the normed space M (N) with identity u, (v,), then a
continuous linear map @: M — N is said to be a (left) S-morphism if ||@| =1,
@(Uo)=v, and @(su)=se(u) for all u e M, s e S.

The obvious analogues for right and two-sided actions apply.

The following three simple results have often been used (implicitly) in the
literature. The writer has been unable to find explicit statements.

4.3. PROPOSITION. In the above notation let ¢: M — N be a left S-morphism. If
m is a RIM on N, then mog is an RIM on M.

Proor. Trivial.

4.4, PROPOSITION. Let 'S have a left action on M. Suppose T, and T, are
subsemigroups of S and that T, T,<T,. Then the existence of a T;-RIM on M
implies the existence of a T,-RIM on M.

Proor. If m is a T,-RIM on M, ue M and t, € Ty, t, € T,, then m(t,u)
=m((t,t,)u) =m(u), so that m is a T,-RIM on .M.

4.5. CorROLLARY. If T is a right ideal in S, then there exists an S-RIM on M if
and only if there exists a T-RIM on M.

ProoF. Since TS T, ST<S, the result follows by applying (4.4), firstly with
T,=T, T,=S and secondly with T, =S, T,=T.
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5. Convolutions, actions and morphisms.

We specialise the considerations of section 4 by studying natural actions and
morphisms on the subspaces of m(S) listed in section 2. We shall also be
concerned with the duals of certain spaces of measures. The semigroups
involved will be S, P"(S), P(S) and PM (S).

The spaces we are concerned with are linked up as follows:

(5) UC() C() — MB(S) —5—>L(©O* -

/-LUC(S)\ / ‘}R
\RUC(S)/ \\ R

Q !
L"(S)*

Each of the unnamed arrows signifies the obvious inclusion map. The. map
Q: MB (S) —» M (S)* is defined by:

(6) Q)W) = Lf O du(t) (e M(S).

The other maps Q are defined similarly. (Cf. [16, p. 618].)

Each R is the obvious restriction map. It is trivial that (5) commutes.

We shall show that these maps have pleasant morphism properties. For all
morphisms concerned, the identity will be the constant function 1 for the
function spaces in (5) and the linear functional 1 given by 1(u)=u(S) for the
dual spaces in (5).

If fe MB(S) and u € M(S), then uxf(f*pu) is defined to be uxQf (Qf*p).
Using (4) and (2),

U] (uxf)(s) = L fdu@®  (f*w)(s) = L Sts)du(®) .

(See [12, p. 434].) By (5.1), u=f and f*u belong to MB (S).

If @ € M (S)*, the functions pu*a and a*u are of little use since there is no
guarantee that they are measurable. We therefore resort to an “Arens-type”
definition: the elements p*a and a*u of M (S)* are defined by:

8) (axp)(v) = a(uxv) (u*a)(v) = a(vxp) (veM(S).
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Similar definitions apply to convolutions for L(S)* and L"(S)*.

When a=Qf for some fe MB(S), there is no danger in the two
interpretations of, for example, Qf xpu, since Q(Qf *u) (according to (4)) is the
same as Qf xu according to (8). (For interpreting Qf *u as a function, if
v e M(S),

QLOf *ul(v) = ~[(Qf*#)(t)d\’(t) = jdV(t) ff(st)d/t(S)

= ij(st) du(s)dv(t)

= Qf (uxv)
= (@f*w()

where Qf = at the end is interpreted as a member of M (S)*.) The context will
always make clear whether axpu is to be regarded as a function or a linear
functional.

5.1. ProposiTION. PM (8) has a two-sided action given by the maps f — uxf
and f— f*u on each of the spaces in (9) and the connecting maps are PM (S)-
morphisms.

M (S)*

0 sl

C(S) —> MB (S) —>L(5)*

Proor. Using (3.1), the maps v — u*v, v — vxpu define a two-sided action of
PM (S) on each of M (S) and L(S). As the maps given in the Proposition are the
duals of these maps, PM (S) acts on M (S)* and L(S)*. Trivially, R is a PM (8)-
morphism.

If fe C(S) and u € PM(S), the fact that u*f(f*pu) € C(S) follows easily (as
Sleijpen observes ([14, p. 22])) from [1, Lemma (2.1)]. (See also [12, 3.2].) The
verifications that we do have an action on C(S) are easy; for example, that
pux(vef)=(uxv)xf (fe C(S), u,ve PM(S)) follows by a familiar Fubini-
type argument.

Similar considerations apply to MB (S) once we have shown that f*u and
uxf are in MB(S) for fe MB(S), u € PM (S). Extending [2, Lemma 3.1],
Sleijpen [14, p. 24] shows that x,*u is upper semi-continuous (and so Borel
measurable) for every closed subset A4 of S. Now if {4,} is an increasing
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(decreasing) sequence of Borel sets with y Ry measurable for each n, then for
each s,

Xa,*p(s) = j Xa,(ts)du(t) = x *p(s), where A = |J 4,(N 4,).

So x4*p € MB (S). Using the monotone class lemma and the fact that the
closed subsets of S generate the Borel sets, x4 *u € MB (S) for every Borel set
A. Finally if fe MB(S) and {f,} is a bounded sequence of simple Borel
functions converging pointwise to f, f,*u — f*u pointwise, so that
S*u e MB (S). A similar argument applies to ux*f.

It is easily verified that the connecting maps in (9) are PM (S)-morphisms.

The following result is easily proved.

5.2. ProposITION. R: L(S)* — L*(S)* is a P(S)-morphism.

Proor. Trivial using (3.5).

In the next proposition, u*a*v is to be interpreted as a linear functional (as
in (8)). m(u*a*v) is that element of m(S) defined by: 7 (u*a *v)(s)= (u*a*v)(d,)
(s € S).

5.3. PROPOSITION. Let L(S)# (0). If « € L"(S)* and v € P"(S) then the map
u— w(uxaxv) from L"(S) into UC(S) is a linear, continuous mapping which
preserves the left S-action and has norm < |af.

Proor. If f=axve L"(S)*, then m(uxaxv)=pxf where the latter is
interpreted according to (4). By (4.2), uxp € RUC(S). Applying a similar
argument to yxv where y=ux*a € L"(S)*, n(u*axv) e UC(S). The other
verifications are routine.

5.4. PrOPOSITION. Suppose L(S)# (0). Under the maps f— uxf, f— fxpu,
P"(S)(S) has a two-sided action on each of the spaces in (5), and the connecting
maps are P"(S)(S)-morphisms.

Proor. Note that P"(S)+ & by (3.8). Since P*(S) and S can be regarded as
subsemigroups of PM (S) and P"(S)< P(S), application of (5.1) and (5.2) shows
that we need only consider that part of (5) to the left of MB (S). The only non-
trivial verification is that P"(S) acts on LUC (S) and RUC (S).

If fe LUC(S), u € P"(S), then f*u € LUC (S) by (4.2) (iii), while for s,t € S,

lsef)=ux Nl = llux(f= NN = lullf=ef 1 =0
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as s — t using (4.1) and (4.2) (i). Since pxfe C(S) ((4.2)(ii)), u*f e LUC (S).
The fact that the given maps give rise to an action on LUC (S) follows from
(5.1) since LUC (S)=C(S). The corresponding result for RUC (S) is proved
similarly, and the result for UC (S) follows using UC (S)=LUC (S)NRUC (S).

6. The main results.

In the proof of [6, Lemma 2.2.2], a crucial step involves the inferring (by a
simple argument involving Haar measure) that if « € L, (G)* is left invariant,
then a is constant on P(G). We require an analogous result ((6.4)).

Let S be a locally compact semigroup and t € S. Define recursively a
sequence {S,(¢)} of subsets of S as follows:

Si() = {t},  Spui() = STHSE,0)  (=1,2,...).
We set S (t)=US,(t). (CE. [7, pp. 585-586].)

6.1. LEMMA. Let s,t € S.
(1) Su(?) is a left ideal of S and S~ (S, (1) =S4 (1).
(i) Either S (t)=S(s) or S ()NS,(5)=T.
(iii) S is a pairwise-disjoint union of sets of the form S (¢).
(iv) If S is a foundation semigroup, then S (t) is clopen in S.
Proor. (i) If x € S,(t) for some n, then
SX € x~1((xs)Sn(t)) < Sn+l(t) < Soo(t) ’
so that S (¢) is a left ideal. Since
STHS.@) = ()7 (tS,(1) = Sprs (D),
571 (S (1) = Su(0) .

(ii) Suppose x € S, ()N S, (s). Then x € S,(¢)N S,,(s) for some n,m. Since
x € §,(t), we can find s,,t,u, in S such that

(10) 5,_1X = ty Uy 1, Sp—aly—q = bp_gly_2s. .. Salls = bally, SiUy = [4L .

We can rewrite this as t € t{ !s,t; 's,t5 sy ... t,%5,-,x where brackets are
omitted without risk of confusion. Similarly, since x € S, (s), we can find
0,7, € S such that

(11 X€EO Tm1Om sTmr ... 07 TS .
Combining (11) with the above expression for ¢,

-1 - - -1
tetitsy oty S 10ty O TS E S em-1(5) © S, (9).
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It follows that S (t) =S (s) and conversely. So S, (s)=S.(¢). This proves the
result.

(iti) This is a trivial consequence of (ii) and the fact that t e t 7 (tt)= S (t)
for all t € S.

(iv) If x € S, (t), then S™!(Sx)<= S, (¢) which is therefore a neighbourhood of
x by (3.4). So S (t) is open. Using (iii), S, (t) is also closed.

We can define an equivalence relation “~” on S as follows: t ~s means S (t)
=5,(5). (This relation is vaguely akin to the “left '-equivalence relation” in [4,
(7A)].) S is defined to be left connected if t ~s for all t,s € S, i.e. S (t)=S for all
t € S. The next lemma gives information about when S is left connected.

6.2. LEMMA. Let S be a locally compact semigroup. Then S is left connected if
any one of the conditions (a), (b), (c) holds:

(@) S is a foundation semigroup and UC (S) has an S-RIM.

(b) S is a foundation semigroup and the clopen left ideals of S have the finite
intersection property.

() The centre of S is not empty.

Proor. (a) (cf. [4, 3L"].) Suppose t € S and S_(¢t)+S. Let E=S_(t), F=S
N\ E. By (6.1), (i), (iii), (iv), E and F are clopen left ideals of S and S"'EcE,
S™'FcF. So yg € C(S); we show yz € UC (S).

If s € S, it is readily verified that:

(12) wo={y Cip 0=
If s; — s, then {s;} is eventually in E(F) if s € E(F). Using (12), yz € UC(S).
Finally, if m is an S-RIM on UC (S), a contradiction results by applying m to
(xg)s for some s € E and some s € F.

So S, (t)=S for all t € S.

(b) This is a trivial consequence of (6.1).

() IfteS, cet (ct)eS,(t) for any c in the centre of S. The result now
follows from (6.1), (iii).

ExampLE. If S is the discrete free semigroup on two generators x, y, then S is
the disjoint union of S, (x) and S_ ().

6.3. LEMMA. Let S be a foundation semigroup and M be an L-subalgebra of
L(S)i.e. M is a closed subalgebra ofL(S) and if v<<|u| with p € M, v € L(S) then
v € M. Suppose also that

= U{Su:”EM}'
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Let 0 € M* be such that 0(sp)=0(u) for all s € S, u € M. Suppose_further that S
=U{Z, : B € B} where {Z,} is a pairwise-disjoint family of subsets of S each of
the form S, (x) ((6.1), (iii)). Then for each f there exists c; € C such that for all
ueM,

O(p) = ;Cpﬂ(zﬁ) .

Proor. Let
P(M) = {peM: p>0, u|=1}.

It is clearly enough to prove the result for the semigroup P(M). The proof falls
into three stages. We show, firstly, that for each ue P(M), 0|, can be
represented as an element of L (¢) by the (continuous, bounded) function 6 * .
We then prove that this function is the same for each u € P(M) and finally
deduce the result by showing that 0*pu is constant on each Z,.

(i) Let u € P(M) and choose ¢ € P(M) such that p, sy and us are absolutely
continuous with respect to ¢ for all s € §,. (For example, using (3.3), we could
take ¢ =4(u+ u?).) For ¢ € L, (p), U, is the-measure associated with ¢. Clearly,
sp, <&, ps<& for all s € S,. Note that L, (§)c M using (3.1). Let 0|, be
given by a bounded Borel function 6, € L (£). Let s € S,. Then for ¢ € L, (u),

jgg(t)¢(t) du(t) = 0(u,) = O(su,) = Ieg(St)¢(t)dﬂ(t)

so that given se S,
(13) Oc(st) = 0,() ae p.
By (4.2)(ii), O xu € C(S). Now for ¢ € L,(p),

r

s (60 (ut) du()

v Ou

L @ ()8 p)(1)du()

= | o@®)du(@® I O(st) du(s)
s, s,

LY

(ut<éfortes)

= | duls) L O (st)p(t)du(z)
sl‘ M
(by Fubini’s theorem)

r

= S 0D (t)du()
o (use (13) and p(S)=1).
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So
(14) Oxp = 0, ae. p. So 0|, is given by O*p .

(ii) Using (14) with ¢ in place of y, (13) is true with 6+ in place of 6,. Since
0x¢& is continuous, (13) simplifies to:

(15) O+8)(st) = (0x9() (s,teS).
Let puy, 4, € P(M) and take p>>3(u, + ), p € P(M). If t € S,,, we have, by (15),
Oxpy(6) = 6(uyt) = j

s (0% &) (st) dpy (5)

= J(o*z)(t)dpl(s) = (0+)() .

So for u>>4(u, +uy), 0%py =0%p, on S,. It now follows that O*u, =60*pu, on
U{S, : u € P(M)} and, by continuity and a hypothesis of the lemma, 0y,
=0xu, on S.

(iii) Let g=0xpufor any u € P(M).If s,t € U{S, : u € P(M)}, choose y such
that s,t € S,. By (15), g(st)=g(t), and using the continuity of g,
(16) glst) = g(t) (s,tes).

Let B e B, Z5=5,(t) and s € S, (t). Using (10), there exist s,, ¢, and u, in §
such that

Sp—18 = Ly qUp—1,8Sp—2Up—y = Ly_glly_2,. ..., 83Uz = LUy, 5 U; = I3l
for some n. Applying (16)
g(s) = glu,—y) = glup-2) = ... = gluy)) = g(®

so that g is constant on Z;. As 9(p)=j g(t)du(t) for all u € P(M), we have, using
(6.1),

0w = ) cpu(Zp) (ue€ P(M))
where {c,} =g{Z,} for each .

6.4. COROLLARY. If S is left connected, then 0 is constant on P(M).

6.5. LEMMA. Let S be a locally compact semigroup with L(S)# (0).

(i) If UC (S) has an S-RIM and #(S) is left connected then L(S)* has a P(S)-
RIM.
(ii) If C(S) has an S-RIM then L(S)* has a P(S)-RIM.
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Proor. (i) Suppose UC(S) has an S-RIM m and that I=4(S) is left
connected. Let v € P*(S), u € L(S) and a € L*(S)*. If s € I, then su € L"(S) by
(3.2). Using (5.3), define h: I — C by:

h(s) = m(n(suxaxv)) (sel).

By (5.4) and the invariance of m, h(st)=h(t) (s,t € I). Since I is left connected, h
is constant on I by an argument similar to that used in (6.3) to show that g was
constant.

Now fix o and v and define 6, € L(S)* by:

0,() = m(m(turaxv)) (€ L(S))

for any t € 1. (By the above, 0, is independent of the choice of t.) Then 6,(sp)
=0,(p) for all s € I, u € L(S).

All the conditions of (6.3) and (6.4) are satisfied with I, L(S) and 8, in place
of S, M, 6. So 6, has a constant value m’(«) on P(S). Using (5.3) and the fact that
0,=1, it readily follows that m' e L(S)* and |m'|=1=m(l). Now if
U, 1, € P(S) and a € L*(S)*, then

m (uy*o) = m(m(t(pxpg)*xoxv) = m' ()
since uxp, € P(S). So m' is a P(S)-RIM on L"(S)*.

Using the natural P(S)-morphism from L(S)* into L"(S)* ((5.2)) and (4.3),
there is a P(S)-RIM on L(S)*.

(ii) Let C(S) have an S-RIM. Since UC (S)=C(S), UC(S) has an S-RIM.
Using (i), it suffices to show that I=.#(S) is left connected. Fix t € I. Define
@: UC () —» C(S) by: @(f)=,f where ,f(s)=f(ts) for fe UC(I), s € S. (This
definition makes sense by (3.7).) ¢ is a left I-morphism, and so by (4.3), UC (I)
has an I-RIM. I is therefore left connected by (6.2)(a).

6.6. THEOREM. Suppose L(S)= (0). If P, P, belong to {S, P"(S), P(S),PM (S)}
and M, M, belong to {M (S)*, L(S)*, MB (S), C(S)}, then the existence of a
P-RIM on M is equivalent to the existence of a P{-RIM on M.

ProOF. The phrase “P-RIM on M” will mean: “the existence of a P-RIM on
M”. For any P € {8, P"(S), P(S),PM (5)},
17 P-RIM on L(S)* = P-RIM on MB(S) = P-RIM on C(§)
¥ 7
P-RIM on M (S)*

using (5.1) and (4.3). (Note that P<PM (S).)
Also, for any M € {M (5)*,L(S)*, MB(S),C(S)},
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(18) PM (S)-RIM on M < P(S)-RIM on M < P"(S)-RIM
on M = S-RIM on M

using (4.5) and (4.4). (Note that P(S) (P"(S)) is a right ideal in PM (S) (P(S))
and that P"(S)S < P"(S) by (3.8) and (3.6).)
From (17) it is enough to prove:

(19) P-RIM on C(S) = P-RIM on L(S)* (for all P)
and:
(20) the conditions “P-RIM on C(S)” are all equivalent .

Using the two equivalences in (18) with M =C(S) and M =L(S)*, (19) will
follow from:

(21) P(S)-RIM on C(S) = P(S)-RIM on L(S)*
and

(22) S-RIM on C(§) = S-RIM on L(S)*
while using (18) again with M =C(S), (20) will follow from
(23) S-RIM on C(S) = P(S)-RIM on C(S)

(21), (22) and (23) will follow from:

S-RIM on L(S)*

"(d)
(c)

(24) P(S)}-RIM on C(S) «==  P(S)-RIM on L(S)*

@\ / ®)

S-RIM on C(S)

(18) implies (a) and (d); (17) implies (c). (b) follows from (6.5)(ii).

6.7. THEoREM.  Suppose L(S)*£(0). Let Pe{S,P"(S)} and
M e {M(S)*,L(S)*, MB(S),C(S), LUC(S)}. Then the following are equivalent:

(A) there exists a P-RIM on M;

(B) there exists an S-RIM on UC(S) and #(S) is left connected,

(C) there exists a P*(S)-RIM on UC(S) and #(S) is left connected.
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Proor. By (5.4), each M admits the canonical P-action. Suppose LUC(S)
has a P-RIM. Since PS< P (by (3.6)), LUC(S) has an S-RIM. Fix t € I =.#(S),
u € P*(S). Define a: UC(I) — C(S) by: a(f)(s)=f(ts) (s € S). Using (3.7), (5.4),
(4.2)(iii), f — o(f)*p is a left I-morphism into LUC (S). By (4.3), UC (/) has an
I-RIM and so I is left connected by (6.2)(a). Restricting the relevant RIM’s on
LUC(S) to UC(S), we deduce:

(25) S-RIM (P"(S)-RIM) on LUC(S) = (B) ((C)).

Using (6.6), a simple argument shows that the theorem will be proved once we
have shown:

(e}
P"(S)-RIM on LUC(S) <=P"(S)}-RIM on L(S)*

(d)
AN
(C)f\ ® S-RIM Olﬁ L(S)*
()
(a)
B <=—==5-RIM on LUC(S)

B) m

(26)

(a) and (d) follow from (4.4). (c) and (e) result by applying (4.3) to the
morphism Q: LUC(S) — L(S)* ((6)). (b) and (f) follow from (25). (g) follows
from (6.5)(i) since P"(S)< P(S).

6.8. CoroLLARY. Let L(S)+(0) and P,P, € {S,P"(S)},
M, M, € {M(S)*,L(S)*, MB(S),C(S), LUC(S), RUC(S), UC(S)} .

Then the existence of a P-RIM on M is equivalent to the existence of a P;-RIM
on M if S satisfies either of the two conditions:

(i) S is a foundation semigroup.
(ii) the centre of #(S) is not empty.

Proor. If either (i) or (ii) is satisfied, the condition “.# (S) is left connected”
can be deleted in (B) and (C) of (6.7) using (6.2). The result follows from (6.7),
an easy argument coping with RUC(S).

6.9. CoNcLUsION. (6.8) says roughly that for a semigroup S satisfying (i) or
(i), the right invariant means associated with S behave as well as could
possibly be expected. The class of such semi-groups is wide and includes the
main class of semigroups studied in [14], viz. foundation semigroups with
identity.
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I do not know if the conclusion of (6.7) is true for a locally compact
semigroup for which L(S)# (0). Using (6.2)(a), this would follow if we could
show that when L(S)= (0), there is a left .#(S)-morphism from UC (#(S)) into
UC(S).

What happens if L(S)=(0) remains obscure. It may be possible to make
some progress by replacing L(S) by a normed space admitting a weakly
(norm) continuous action as in (4.2).
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