ON A THEOREM OF FROBENIUS

KÄTE FENCHEL

Let G be a finite group of order |G|. By Frobenius' famous theorem [2] the number of solutions of the equation $x^n = 1$, $x \in G$, $n \mid |G|$, is an integral multiplum of n. Frobenius conjectured that

$$L_n = L_n(G) = \{x \in G \mid x^n = 1\}$$

is a subgroup (of course characteristic), if $|L_n| = n$. In the following we consider the case $(n, |G|/n) \neq 1$. (This condition does not play a rôle in Lemma 1— Corollary 4).

Notations. P_{γ} is a subgroup of order p^{γ} , $\mathfrak{N}_{G}(P_{\gamma}) = N_{\gamma}$, $|G|/|N_{\gamma}| = h_{\gamma}$, $\mathfrak{C}_{G}(P_{\gamma})$ $=C_{\nu}, P_{\alpha} \in \text{Syl}_{p}(G), m_{\nu} = (|N_{\nu}|, n), c_{\nu} = (|C_{\nu}|, n).$

Let $n = n'p^{\beta}$, (n', p) = 1, $|L_n| = ns_{\beta}$, $|L_{n/p}| = (n/p)s_{\beta-1}$ with integral s_{β} , $s_{\beta-1}$. Then $L_n = L_{n/n} \cup L',$

where

(1)

$$L' = \{z = xy \mid |x| = p^{\beta}, y \in \mathfrak{C}_G(x) \cap L_{n'}\}$$
.

Since $L_{n/p} \cap L' = \emptyset$, we get

(2)
$$ns_{\beta} = \frac{n}{p} s_{\beta-1} + |L'|.$$

Notice that for a subgroup $H \subset G$, $H \cap L_n(G) = L_{(n,|H|)}(H)$ so that

(3)
$$L' = \{z = xy \mid |x| = p^{\beta}, y \in L_{c'_{\beta}}(C_{\beta})\},$$

where

$$c_{\beta} = c'_{\beta} p^{\beta}, \quad (c'_{\beta}, p) = 1.$$

LEMMA 1. $\varphi(p^{\beta})$ divides |L'|.

Received August 8, 1977.

The proof is immediate, since by (3) every cyclic subgroup $\langle x \rangle$ of order p^{β} contributes $\varphi(p^{\beta})$ elements to L'.

Hence we have

$$(4) L' = \varphi(p^{\beta})|\{\langle x \rangle y \mid y \in L_{c'_{\bullet}}(C_{\beta})\}|,$$

where $\langle x \rangle$ runs through the cyclic subgroups of order p^{β} in G. In the case $|L_n|$ = n, that is, $s_{\beta} = 1$ we get by (2) and (4)

(5)
$$\frac{n'(p-s_{\beta-1})}{p-1} = |\{\langle x \rangle y \mid y \in L_{c_{\beta}}(C_{\beta})\}|$$

with the same range of $\langle x \rangle$ as in (4). The right hand side can be interpreted in two ways:

- (A) It equals the number of cosets of the form $\langle x \rangle y$, where $|x| = p^{\beta}$, $y \in L_{c'_{\beta}}(C_{\beta})$.
- (B) It equals the number of cosets of the form $\langle x \rangle y$, where $y \in L_{n'}(G)$, $\langle x \rangle \subset \mathfrak{C}_G(y)$, $|x| = p^{\beta}$.

Frobenius' conjecture is valid for $n = p^{\beta}$ and for solvable groups [4, Theorem 9; 4,1]. Let |G| + n be minimal so that the conjecture is false. It follows immediately that $n \neq |G|$ and that L_n is not contained in a proper subgroup of G. We assume this minimal condition throughout the following.

LEMMA 2. Suppose $|L_n| = n$, where L_n satisfies the minimal condition. Then no normal subgroup of G is contained in L_n .

PROOF. Suppose $H \triangleleft G$, $H \subseteq L_n$. Let $n = n_1 d$, $|H| = h_1 d$, $(n_1, h_1) = 1$ so that $n_1 \mid |G/H|$. By Frobenius' theorem $\bar{x}^{n_1} = \bar{1}$ has $n_1 t$ solutions in $\bar{G} = G/H$ with integral t. If $x \to \bar{x}$ in the natural homomorphism $G \to \bar{G}$, then $x^{n_1} \in H$. For $g \in H \subset L_n$ we have $g^n = g^{|H|} = 1$, hence $g^d = 1$ and consequently $x^{n_1 d} = x^n = 1$ for $n_1 t \mid H \mid$ elements of G. Since $|L_n| = n$, $n_1 t \mid H \mid \leq n$. Thus |H| = d and t = 1. By the minimal condition $L_{n_1}(\bar{G}) = \bar{K}$ is a group of order n_1 and the inverse image K of K in G has order $n_1 d = n$. Then $K = L_n$ is a group, a contradiction.

LEMMA 3. Let $|L_n| = n$, $n = n'p^{\beta}$, (n', p) = 1 where L_n satisfies the minimal condition. If (p-1, n') = 1, L_n contains the Sylow p-subgroups of G.

PROOF. Let $P_{\alpha} \in \operatorname{Syl}_{p}(G)$, $|P_{\alpha}| = p^{\alpha}$. Suppose $P_{\alpha} \neq L_{n}$. Then P_{α} must contain an element of order $p^{\beta+1}$, hence also an element of order p^{β} so that |L'| > 0. If (p-1, n') = 1, (5) implies $s_{\beta-1} = 1$, hence $|L_{n/p}| = n/p$. By the minimal condition $L_{n/p}$ is a normal subgroup of G, and it is contained in L_{n} , which contradicts Lemma 2.

Corollary 4. If $|L_n| = n$, where L_n satisfies the minimal condition, the Sylow subgroups belonging to the minimal prime divisor of n are contained in L_n .

PROOF. For odd p, this is a direct consequence of Lemma 3. For p=2 and Syl₂ subgroups $P_{\alpha} \not = L_n$, we have $L_{n/2} = \frac{1}{2} n s_{\beta-1}$ and $L_{n/2} \not \equiv L_n$ so that $s_{\beta-1} < 2$. Hence $s_{\beta-1} = 1$ which again contradicts Lemma 2.

THEOREM 5. Let again L_n satisfy the minimal condition. Suppose $(n, |G|/n) \neq 1$, $p \mid (n, |G|/n)$. Then the Sylow p-subgroups of G are cyclic.

PROOF. Let $n=p^{\beta}n'$, (n',p)=1, $P_{\alpha} \in \operatorname{Syl}_{p}(G)$, $p^{\alpha} > p^{\beta}$. Suppose exponent $P_{\alpha} \leq p^{\beta}$. Then $P_{\alpha} \subset L_{n}$. But $np \mid |G|$ by $p^{\alpha} > p^{\beta}$ so that $|L_{np}| = nps_{\beta+1} > n$, $s_{\beta+1}$ integral, while $|L_{np}| = |L_{n}| = n$ for $P_{\alpha} \subset L_{n}$. Hence exponent $P_{\alpha} > p^{\beta}$, and there exists an element of order $p^{\beta+1}$ in G. Similarly to (5), we obtain

(6)
$$\frac{n'(ps_{\beta+1}-1)}{p-1} = |\{\langle u \rangle y \mid |u| = p_{\cdot}^{\beta+1}, \ y \in L_{c'_{\beta+1}}(C_{\beta+1})\}|$$

where $c_{\beta+1} = c'_{\beta+1}p^{\beta} = (|C_{\beta+1}|, n); \ (c'_{\beta+1}, p) = 1$. Using interpretation (B) and observing that the number of cyclic subgroups of order $p^{\beta+1}$ in $\mathfrak{C}_G(y)$ is constant for the elements in the class (y) of conjugates to y, we get

(7)
$$\frac{n'(ps_{\beta+1}-1)}{p-1} = \sum_{i} h_i A(y_i) ,$$

where $y_i \in L_{n'}$ is a representative of its class (y_i) , $h_i = |(y_i)|$, and $A(y_i)$ the number of cyclic subgroups of order $p^{\beta+1}$ in $\mathfrak{C}_G(y_i)$. Since the left hand side of (7) is coprime with p, there exists an i such that $(h_i A(y_i), p) = 1$. It follows from $(h_i, p) = 1$ that $\mathfrak{C}_G(y_i)$ contains a Sylow p-subgroup P_{α} of G. By a result of P. Hall [5], the number of cyclic subgroups of order $p^{\beta+1}$ in a group $\mathfrak{C}_G(y_i)$ with Sylow p-subgroup P_{α} is for $\beta > 0$ a multiplum of $p^{k_{\beta}-\beta}$. Here, according to P. Hall:

- "(i) If P_{α} is regular, we may take $k_{\beta} = \varrho_{\beta}$ where ϱ_{β} is the order of $\Omega_{\beta}(P_{\alpha})$.
- (ii) If P_{α} is irregular and the elements of order less than or equal to p^{β} in P_{α} form a subgroup $\Omega_{\beta}(P_{\alpha})$, we may take $k_{\beta} = \min \{ \varrho_{\beta}, \beta(p-1) \}$.
- (iii) If P_{α} is irregular and the elements of order less than or equal to p^{β} in P_{α} do not form a subgroup, we may take $k_{\beta} = \beta (p-1)$."

Since $(A(y_i), p) = 1$, we must have $p^{k_{\beta} - \beta} = 1$, hence $k_{\beta} = \beta$. By Corollary 4, $p \neq 2$, thus $\beta(p-1) > \beta$. Therefore only (i) and (ii) are possible, and we obtain $|\Omega_{\beta}(P_{\alpha})| = p^{\beta}$. Since there exists an element of order p^{β} in P_{α} , $\Omega_{\beta}(P_{\alpha})$ is the only subgroup of that order in P_{α} , and P_{α} is cyclic, since p is odd.

REMARK. Theorem 5 was proved by Richard Zemlin [7] in a different way in an unpublished PhD dissertation, Ohio State University 1954. He also proved that, under the condition $(n, |G|/n) \neq 1$, G must be simple, if the conjecture is false. We do not use this last fact in the following.

Corollary 6. Let H be a subgroup of G, H in L_n (satisfying the minimal condition). Then |H| |n.

PROOF. Let $|H| = h_1 q^{\delta}$, $(h_1, q) = 1$, $Q_{\alpha} \in \operatorname{Syl}_q(G)$. Either $(q, |G|/n) \neq 1$, so that Q_{α} is cyclic by Theorem 5, and there exists an element of order q^{δ} in $H \subset L_n$. Hence $q^{\delta} \mid n$. Or (q, |G|/n) = 1. Then certainly $q^{\delta} \mid n$.

Let now p be the minimal prime divisor of (n, |G|/n). By Corollary 4, $p \neq 2$, and by Theorem 5, the Sylow p-subgroups P_{α} are cyclic. Hence all subgroups $P_{\beta} = \langle x \rangle$ of order p^{β} are conjugate and $|L_{C_{\beta}'}(C_{\beta})|$ is constant (interpretation (A)). The number of cyclic subgroups of order p^{β} in G is $|G|/|N_{\beta}| = h_{\beta}$, where P_{β} is a fixed p^{β} -subgroup in L_n . By (5)

(8)
$$\frac{n'(p-s_{\beta-1})}{p-1} = h_{\beta}|L_{c'_{\beta}}(C_{\beta})|, \quad p>s_{\beta-1}>1.$$

Similarly to (8) we get with respect to N_{θ}

(9)
$$\frac{m'_{\beta}(pt_{\beta}-t_{\beta-1})}{p-1}=|L_{c'_{\beta}}(C_{\beta})|=c'_{\beta}T_{\beta},$$

where $|L_{m_{\beta}}(N_{\beta})| = m_{\beta}t_{\beta}$, $|L_{m_{\beta}/p}(N_{\beta})| = t_{\beta-1}m_{\beta}/p$, $m_{\beta} = m'_{\beta}p^{\beta}$, $(m'_{\beta}, p) = 1$, t_{β} , $t_{\beta-1}$ and T_{β} integral ≥ 1 and

$$|L_{c_{\theta}}| = c_{\theta}T_{\theta} = p^{\theta}c'_{\theta}T_{\theta} = p^{\theta}|L_{c'_{\theta}}(C_{\theta})|$$

since $L_{c_{\delta}}(C_{\beta}) = P_{\beta} \times L_{c_{\delta}}(P_{\beta})$.

LEMMA 7. $pt_{\beta} - t_{\beta-1}$ divides $p - s_{\beta-1}$.

PROOF. By (8) and (9)

(10)
$$n'(p-s_{\beta-1}) = m'_{\beta}h_{\beta}(pt_{\beta}-t_{\beta-1})$$

or

(11)
$$|N_{\beta}| = \frac{|G|}{n} m_{\beta} \frac{(pt_{\beta} - t_{\beta-1})}{p - s_{\beta-1}}.$$

Using $(|N_{\beta}|, n) = m_{\beta}$ as well as (10) and (11), we get

$$1 = (|N_{\beta}|/m_{\beta}, n/m_{\beta}) = \left(\frac{|G|}{n} \frac{pt_{\beta} - t_{\beta-1}}{p - s_{\beta-1}}, \frac{h_{\beta}(pt_{\beta} - t_{\beta-1})}{p - s_{\beta-1}}\right),$$

which proves the Lemma.

Set $|L_{m_{\beta}p}(N_{\beta})| = m_{\beta}pt_{\beta+1}$, $t_{\beta+1}$ integer, $t_{\beta+1} \ge 1$. Then, corresponding to (8) and (9), we have (see (6)) for $c_{\beta+1} = c'_{\beta+1}p^{\beta} = (|C_{\beta+1}|, n)$, $(c'_{\beta+1}, p) = 1$ and $|L_{c'_{\beta+1}}(C_{\beta+1})| = c'_{\beta+1}T_{\beta+1}$, $T_{\beta+1} \ge 1$ integral,

(12)
$$\frac{n'(ps_{\beta+1}-1)}{p-1} = \frac{|G|}{|N_{\beta+1}|} |L_{c'_{\beta+1}}(C_{\beta+1})| = h_{\beta+1}c'_{\beta+1}T_{\beta+1} \text{ in } G,$$

$$(13) \quad \frac{m_{\beta}'(pt_{\beta+1}-t_{\beta})}{p-1} = \frac{|N_{\beta}|}{|N_{\beta+1}|} |L_{c_{\beta+1}'}(C_{\beta+1})| = \frac{h_{\beta+1}}{h_{\beta}} c_{\beta+1}' T_{\beta+1} \text{ in } N_{\beta}.$$

Combining (12) and (13), we get

(14)
$$n'(ps_{\beta+1}-1) = h_{\beta}m'_{\beta}(pt_{\beta+1}-t_{\beta}),$$

and by (10)

(15)
$$\frac{ps_{\beta+1}-1}{pt_{\beta+1}-t_{\beta}} = \frac{p-s_{\beta-1}}{pt_{\beta}-t_{\beta-1}}.$$

Hence

$$(16) t_{R-1} \equiv s_{R-1}t_R \quad (\text{modulo } p) .$$

Let now $P_{\alpha} \subset N_{\beta}$ be fixed. Since P_{α} is cyclic and $p \neq 2$, N_{α}/C_{α} is a cyclic group of an order $r \mid p-1$ so that

$$N_{\alpha} = C_{\alpha} \cup C_{\alpha} y \cup \ldots \cup C_{\alpha} y^{r-1}, \quad y^r \in C_{\alpha}.$$

By Herzog [6]

$$|N_{\alpha}/C_{\alpha}| = |N_{\beta}/C_{\beta}|$$

and the coset representatives of N_{α} modulo C_{α} can also be taken as coset representatives of N_{β} modulo C_{β} so that also

$$(17) N_{\beta} = C_{\beta} \cup C_{\beta} y \cup \ldots \cup C_{\beta} y^{r-1}.$$

Further y^b has no fixed point on P_a , $b=1,\ldots,r-1$.

Since p is the minimal divisor of (n, |G|/n) and r/p-1, no prime divisor q of r divides (n, |G|/n). Consequently the Sylow q-subgroups of G are either contained in L_n or in $L_{|G|/n}$. Thus for $r = r_1 r_2$, $r_1 = (n, r)$, we have $r_2 = (|G|/n, r)$ and $(r_1, r_2) = 1$.

LEMMA 8. $m_{\beta}/c_{\beta} = r_1$.

PROOF. By taking the greatest common divisor with m_{β} on both sides of $|N_{\beta}|$ = $|C_{\beta}|r$ we get

$$m_{\beta} = c_{\beta}(m_{\beta}/c_{\beta}, r) = c_{\beta}(m_{\beta}/c_{\beta}, r_{1}),$$

since $(m_{\beta}/c_{\beta}, r_2) = 1$, such that $m_{\beta}/c_{\beta} | r_1$.

On the other hand, let q^{δ} be the highest power of the prime q dividing r_1 , and let $Q_{\alpha} \in \operatorname{Syl}_q(N_{\beta})$, $Q_{\gamma} = Q_{\alpha} \cap C_{\beta} \in \operatorname{Syl}_q(C_{\beta})$. Then $q^{\delta} = |Q_{\alpha}|/|Q_{\gamma}|$. Let Q be a Sylow q-subgroup of G containing Q_{α} . By the remark above, $Q \subset L_n$, since (q, |G|/n) = 1 so that $Q_{\alpha} \subset L_n \cap N_{\beta} = L_{ms}$. Then

$$|Q_{\alpha}| |(n, |N_{\beta}|), \quad (n, |N_{\beta}|) = m_{\beta},$$

by Corollary 6. In the same way we get $|Q_{\gamma}| |c_{\beta}$, and hence $|Q_{\alpha}|/|Q_{\gamma}| = q^{\delta}$ divides m_{β}/c_{β} . Since this is valid for all prime divisors of r_{1} , the Lemma is proved.

THEOREM 9. Suppose $|L_n| = n ||G|$, $(n, |G|/n) \neq 1$. Then the assumption that the Frobenius conjecture is valid for all pairs $\{n_1, |G_1|\}$ with $n_1 + |G_1| < n + |G|$ and is false for the pair $\{n, |G|\}$ leads to a contradiction.

PROOF. (i) Suppose first $m_{\beta}/c_{\beta} = m'_{\beta}/c'_{\beta} = r_1 = 1$. Then we get by (9) and Lemma 8

$$\frac{r_1(pt_{\beta}-t_{\beta-1})}{p-1}=\frac{pt_{\beta}-t_{\beta-1}}{p-1}=T_{\beta},$$

where T_{β} is an integer ≥ 1 . This is impossible, since by Lemma 7, $pt_{\beta} - t_{\beta-1} \leq p - s_{\beta-1}$ which is less than p-1, if the Frobenius conjecture is false for the pair $\{n, |G|\}$. For, by the same argument as in Lemma 3, $p-s_{\beta-1}=p-1$ gives a contradiction to Lemma 2.

(ii) Hence we must assume $r_1 \neq 1$. By (17)

$$(18) L_{m_{\beta}} = N_{\beta} \cap L_{m_{\beta}} = (C_{\beta} \cap L_{m_{\beta}}) \cup (C_{\beta} y \cap L_{m_{\beta}}) \cup \ldots \cup (C_{\beta} y^{r-1} \cap L_{m_{\beta}})$$

such that

(19)
$$m_{\beta}t_{\beta} = |L_{c_{\beta}}| + |C_{\beta}y \cap L_{m_{\beta}}| + \ldots + |C_{\beta}y^{r-1} \cap L_{m_{\beta}}|.$$

Since N_{β}/C_{β} is cyclic, $[N_{\beta}, N_{\beta}] \subseteq C_{\beta}$, and the cosets $C_{\beta}y^{b}$ consist of whole classes of (in N_{β}) conjugate elements as does $L_{m_{\beta}}$ such that also $C_{\beta}y^{b} \cap L_{m_{\beta}}$ consists of whole classes of N_{β} . The number of elements in a class (xy^{b}) , $x \in C_{\beta}$, is $|N_{\beta}: \mathfrak{C}_{N_{\beta}}(xy^{b})|$. Now no subgroup of p-power order can be centralized by xy^{b} . For if this were the case, xy^{b} would also centralize $\Omega_{1}(P_{\gamma})$ which equals $\Omega_{1}(P_{\beta})$

for all $P_{\gamma} \subset N_{\beta}$. But xy^b is a p'-element, since all p-irregular elements of $L_{m_{\beta}}$ are contained in $L_{c_{\beta}}$. Since xy^b normalizes P_{β} , it would consequently centralize P_{β} [3, Theorem 5; 3,10] which is not the case for b < r. Hence $\mathfrak{C}_{N_{\beta}}(xy^b)$ contains no p-element so that

$$(|\mathfrak{C}_{N_{\beta}}(xy^b)|, p) = 1$$
 and $|N_{\beta}: \mathfrak{C}_{N_{\beta}}(xy^b)| \equiv 0 \pmod{p^{\alpha}}$.

Since this is valid for all classes in $C_{\theta}y^b \cap L_{m_{\theta}}$

$$|C_{\beta}y^b \cap L_{m_{\delta}}| \equiv 0 \pmod{p^{\alpha}}$$
 for all $b=1,\ldots,r-1$.

(For $b \not\equiv 0 \pmod{r_2}$ even $C_{\beta}y^b \cap L_{m_{\beta}} = \emptyset$, as is easily seen). With

(20)
$$|L_{c_{\beta}}| = c_{\beta}T_{\beta} = \frac{m_{\beta}(pt_{\beta} - t_{\beta-1})}{p-1}$$

we then have by (19)

$$m_{\beta}t_{\beta} \equiv \frac{m_{\beta}(pt_{\beta}-t_{\beta-1})}{p-1}$$
 (modulo p^{α})

or

$$m'_{\beta}t_{\beta} \equiv \frac{m'_{\beta}(pt_{\beta}-t_{\beta-1})}{p-1} \pmod{p^{\alpha-\beta}},$$

where $\alpha - \beta \ge 1$

which implies

$$(21) t_{\beta-1} \equiv t_{\beta} \quad (\text{modulo } p^{\alpha-\beta}) ,$$

since $(m'_{\beta}, p) = 1$. By (16)

$$(22) t_{\beta-1} \equiv s_{\beta-1}t_{\beta} \quad (\text{modulo } p) .$$

Combining (21) and (22), we get

$$t_{\beta-1}(s_{\beta-1}-1) \equiv 0 \quad (\text{modulo } p) .$$

Now $s_{\beta-1} < p$, because $|L_{n/p}| = (n/p)s_{\beta-1} < |L_n| = n$ so that $s_{\beta-1} - 1 \equiv 0$ (modulo p) implies $s_{\beta-1} = 1$ which contradicts the minimal condition, as we saw above. Hence $t_{\beta-1} \equiv t_{\beta} \equiv 0$ (modulo p) by (21) and thus

$$T_{\beta} = \frac{r_1(pt_{\beta} - t_{\beta-1})}{p-1} \equiv 0 \quad (\text{modulo } p) .$$

But $T_{\beta} < r_1 \le p-1$, since $pt_{\beta} - t_{\beta-1} < p-1$ so that we would have $T_{\beta} = 0$ which is absurd. Hence the Frobenius conjecture is proved in the case $(n, |G|/n) \ne 1$.

250 KÄTE FENCHEL

ADDENDUM. If $|L_n| = n = p^{\beta}n'$ and $p \mid (n, |G|/n)$, all elements of L_n , that normalize P_{β} , centralize P_{β} , i.e. $r_1 = 1$.

PROOF. By R. Brauer's definition [1], N_{β} is a group of metacyclic type which means the following: N_{β} has a cyclic Sylow p-subgroup P_{α} and a normal subgroup $K(=O_{p'}(N_{\beta}))$ of index $p^{\alpha}r$ such that $\bar{N}_{\beta} = N_{\beta}/K$ is a metacyclic group of order $p^{\alpha}r$ defined by

$$\bar{N}_{\beta} = \langle \bar{x}_{\alpha}, \bar{y}, \ \bar{x}_{\alpha}^{p^{z}} = \bar{1}, \ \bar{y}^{r} = \bar{1}, \ \bar{y}^{-1} \bar{x}_{\alpha} \bar{y} = \bar{x}_{\alpha}^{j} \rangle$$

where j belongs to exponent r modulo p^{α} . Here $O_{p'}(N_{\beta}) \subset C_{\beta}$, N_{β}/C_{β} is cyclic of order r and $C_{\beta} = O_{p'}(N_{\beta})P_{\alpha}$ by Burnside's theorem, since $P_{\alpha} \subset C_{\beta}$ and P_{α} is contained in the center of its normalizer $\mathfrak{N}_{C_{\beta}}(P_{\alpha}) = N_{\alpha} \cap C_{\beta}$ which equals C_{α} by Herzog [6].

By Theorem 9, L_n is a group. Then also $L_n \cap N_\beta$ and $\bar{L}_{m_\beta} = L_{m_\beta} O_{p'}(N_\beta)/O_{p'}(N_\beta)$ are groups. $\bar{g} \in \bar{L}_{m_\beta}$ satisfies the conditions $\bar{g}^{m_\beta} = \bar{1}$ and $\bar{g}^{p^rr} = \bar{1}$, hence

$$\bar{L}_{m_{\beta}} = \{ \bar{g} \in \bar{N}_{\beta} \mid \bar{g}^{r_1 p^{\beta}} = \bar{1} \} .$$

If $r_1 \neq 1$, $\bar{L}_{m_{\beta}}$ contains an element \bar{y}_1 of an order dividing r_1 , and consequently $\bar{L}_{m_{\beta}}$ contains the whole class (\bar{y}_1) of conjugate elements in N_{β} which consists of all elements $\bar{x}_{\alpha}^b \bar{y}_1$, $b = 0, \ldots, p^{\alpha} - 1$. Since $\bar{L}_{m_{\beta}}$ is a group and \bar{y}_1 and $\bar{x}_{\alpha} \bar{y}_1$ are contained in $\bar{L}_{m_{\beta}}$, also \bar{x}_{α} would be contained in $\bar{L}_{m_{\beta}}$ which is not the case, since $|\bar{x}_{\alpha}| = p^{\alpha} > p^{\beta}$. Hence $r_1 = 1$.

REFERENCES

- 1. R. Brauer, On finite groups with cyclic subgroups. I. J. Algebra 40 (1976), 556-584.
- F. G. Frobenius, Über einen Fundamentalsatz der Gruppentheorie, I., II. Gesammelte Abhandlungen, III, 330-334, 394-403. Springer-Verlag, Berlin - Heidelberg - New York, 1968.
- 3. D. Gorenstein, Finite groups, Harper and Row, New York Evanston London, 1968.
- 4. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959.
- 5. P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. (2) 40 (1936), 468-501.
- 6. M. Herzog, On finite groups with cyclic Sylow subgroups, Israel J. Math. 6 (1968), 206-216.
- R. A. Zemlin, On a conjecture arising from a theorem of Frobenius, Unpublished PhD Dissertation, Ohio State University, 1954.