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ON A THEOREM OF FROBENIUS

KATE FENCHEL

Let G be a finite group of order |G|. By Frobenius’ famous theorem [2] the
number of solutions of the equation x"=1, x € G, n||G|, is an integral
multiplum of n. Frobenius conjectured that

L,=L(G) = {xeG| x"=1}

is a subgroup (of course characteristic), if |L,|=#n. In the following we consider
the case (n,|G|/n)%1. (This condition does not play a rdle in Lemma 1—
Corollary 4).

NoTATIONs. P, is a subgroup of order p?, Rg(P,)=N,, |G|/IN,|=h,, €;(P,)
= CY’ PJ € Sylp (G)’ my:: (lN)rl’ n)’ cy= (ICyI9 n)'
Let n=n'p?, (n,p)=1, |L,|=ns, |L,,|= (n/p)s,_ with integral sz,s;_;. Then

(0 L,=L,UL",
where
L = {z=xy| IxI=p’, y e €G(x)NL,} .

Since L,,,NL' =, we get
n ’
(2) nsﬂ = ;sﬁ—1+|L‘ .

Notice that for a subgroup H<=G, HNL,(G)= L, u,(H) so that
(3) L = {z=xy| IxI=p’, y € L;,(Cp)} ,

where
cg = e’ (cpp) = 1.

Lemma 1. ¢(pf) divides |L/|.
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The proof is immediate, since by (3) every cyclic subgroup {x) of order p*
contributes ¢(pf) elements to L.
Hence we have

4) L = o(@"){<xdy | yeLy(Chll,

where {x) runs through the cyclic subgroups of order p? in G. In the case |L,|
=n, that is, s;=1 we get by (2) and (4)

n(p—sg_1)

) —

= [{<xdy | v e Ly(Cpll
with the same range of {x) as in (4). The right hand side can be interpreted in
two ways:

(A) It equals the number of cosets of the form (x)y, where |x|=p*,
y € Lg, (Cp).

(B) It equals the number of cosets of the form {x)y, where y € L, (G),
(x> =Cs(y), IxI=p.

Frobenius’ conjecture is valid for n=p? and for solvable groups [4, Theorem
9; 4,1]. Let |G|+n be minimal so that the conjecture is false. It follows
immediately that n+|G| and that L, is not contained in a proper subgroup of
G. We assume this minimal condition throughout the following.

LeMMA 2. Suppose |L,|=n, where L, satisfies the minimal condition. Then no
normal subgroup of G is contained in L,,.

Proor. Suppose H<G, HcL,. Let n=n,d, |H|=h,d, (n;,h;)=1 so that
n,||G/H|. By Frobenius’ theorem x™ =1 has n,t solutions in G=G/H with
integral t. If x — x in the natural homomorphism G — G, then x™ € H. For
g € Hc L, we have g"=gHl=1, hence g=1 and consequently x"¢=x"=1 for
n,t|H| elements of G. Since |L,|=n, n,t|H|<n. Thus |H|=d and t=1. By the
minimal condition L, (G)=K is a group of order n, and the inverse image K of
K in G has order n,d=n. Then K=L, is a group, a contradiction.

LeMMA 3. Let |L,|=n, n=n'p?, (W',p)=1 where L, satisfies the minimal
condition. If (p—1,n")=1, L, contains the Sylow p-subgroups of G.

Proor. Let P, € Syl, (G), |P,|=p®. Suppose P,¢ L,. Then P, must contain an
element of order p*!, hence also an element of order p® so that |[L'|>0. If
(p—1,n)=1, (5) implies s;_, =1, hence |L,,|=n/p. By the minimal condition
L,, is a normal subgroup of G, and it is contained in L,, which contradicts
Lemma 2.
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CoRrOLLARY 4. If |L,|=n, where L, satisfies the minimal condition, the Sylow
subgroups belonging to the minimal prime divisor of n are contained in L,.

Proor. For odd p, this is a direct consequence of Lemma 3. For p=2 and
Syl, subgroups P,¢L,, we have L,,=3%ns,_, and L,, %L, so that Sg_1<2.
Hence s;_; =1 which again contradicts Lemma 2.

THEOREM 5. Let again L, satisfy the minimal condition. Suppose (n,|G|/n)*1,
p| (n,|Gl/n). Then the Sylow p-subgroups of G are cyclic.

ProOF. Let n=p’n’, (n',p)=1, P, € Syl, (G), p*> p”. Suppose exponent P,
<p’. Then P,cL,. But np||G| by p*>p® so that |L, |=npsg.,>n, sz,
integral, while |L,,|=|L,|=n for P,cL,. Hence exponent P,>p*, and there
exists an element of order p*! in G. Similarly to (5), we obtain
n(psg+1—

1
) = Jcudy | Tl=pP*Y, ye Ly (Coanl)

(6) p—1 ’

where c¢p. 3 =cp4 10" =(Cp44l,n); (ch+y,p)=1. Using interpretation (B) and
observing that the number of cyclic subgroups of order p#*! in €g(y) is
constant for the elements in the class (y) of conjugates to y, we get

) T =D 5 hagy.
p-1 i

where y; € L, is a representative of its class (y,), h;=|(y;)|, and A(y,) the number
of cyclic subgroups of order pf*! in €;(y,). Since the left hand side of (7) is
coprime with p, there exists an i such that (h;4(y;), p)=1. It follows from (h;, p)
=1 that €;(y;) contains a Sylow p-subgroup P, of G. By a result of P. Hall
[5], the number of cyclic subgroups of order p#*! in a group €¢(y;) with Sylow
p-subgroup P, is for §>0 a multiplum of p*~#. Here, according to P. Hall:

“(i) If P, is regular, we may take k,=g; where g, is the order of Q(P,).

(ii) If P, is irregular and the elements of order less than or equal to pPinP,
form a subgroup £4(P,), we may take k;=min {ep B(p—1)}.

(i) If P, is irregular and the elements of order less than or equal to p in P,
do not form a subgroup, we may take k;=f(p—1).”

Since (A(y;), p)=1, we must have p* ¢ =1, hence k;=p. By Corollary 4, p+2,
thus f(p— 1)> B. Therefore only (i) and (ii) are possible, and we obtain [Q(P,)|
=p”. Since there exists an element of order p* in P, Q,(P,) is the only
subgroup of that order in P,, and P, is cyclic, since p is odd.
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REMARk. Theorem 5 was proved by Richard Zemlin [7] in a different way in
an unpublished PhD dissertation, Ohio State University 1954. He also proved
that, under the condition (n,|G|/n)#+1, G must be simple, if the conjecture is
false. We do not use this last fact in the following.

COROLLARY 6. Let H be a subgroup of G, H in L, (satisfying the minimal
condition). Then |H||n.

ProoF. Let |H|=h,q°% (hy,q)=1, Q, € Syl, (G). Either (q,|G|/n)=*1, so that Q,
is cyclic by Theorem 5, and there exists an element of order ¢° in H = L,. Hence
4’| n. Or (q,|G|/n)=1. Then certainly ¢°|n.

Let now p be the minimal prime divisor of (n,|G|/n). By Coroilary 4, p+2,
and by Theorem S5, the Sylow p-subgroups P, are cyclic. Hence all subgroups
Py ={x) of order p’ are conjugate and IL,(Cg)l is constant (interpretation (4)).
The number of cyclic subgroups of order p” in G is |G|/|N ;| =h,, where Py is a
fixed pP-subgroup in L,. By (5)

n(p—sg-1) _

(8) | p.._l - hﬁ‘LC',(Cﬂ)ls P>Sﬂ_1>l .

Similarly to (8) we get with respect to N,

my(pty—ts_
o) T Lyl = 6T,

Where ILm, (Nﬂ)l = mﬂtﬂ? |Lmu/p(Nﬂ)‘ = tﬁ— lmﬁ/p’ mﬂ = mlﬂpﬂ’ (mE% p) = 1, tﬁ, tﬂ -1 and
T, integral 21 and '

IALc,, = cﬂTﬂ = pﬁc;iTﬁ = pﬂch',(Cﬂ)l s
since L,,(Cg)= Py x L, (Pp).

LeMMA 7. pty—ty_, divides p—s;_,.

Proor. By (8) and (9)
(10) n(p—sg_1) = mghg(ptyg—t,_,)
or

|Gl (ptg—ts_1)
11 INg| = —my—E—L——
h g n’ pP—Sp-1

Using (INgl,n)=mg as well as (10) and (11), we get
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|G| ptg—tg_, hp(Ptﬁ_tp—1)
1 = (|N4l/mg,n/my) = | — , ,
Wby = (5 e, e —ts

which proves the Lemma.

Set |L,,,(Ng)l=mgpty,,, tg,, integer, tz,, = 1. Then, corresponding to (8)
and (9), we have (see (6)) for ¢z, =cp, p’=(Cpsyln), (c4+y,p)=1 and
|Lc;,“(c,9+1)|=cb+1Tﬁ+1a Ty, 121 integral,

",(Psﬂﬂ -1) _ |G|

(12) p—1 N ||Lc;,+,(cp+1)| = hgs1¢ps1Tpey in G,

p+1
mp(ptyy 1 —tg) - INgl L _ hges T in Ng;.

13) p—1 le+1|| c,,,,( ,9+1)| hﬂ Cp+1 B+1 B

Combining (12) and (13), we get

(14 n(psge—1) = hﬂm;i'(ptﬂ+1_tﬂ) ,

and by (10) '

(15) PSp+1—1 _ P51 )
DPlgry—tg  plg—tg_y

Hence

(16) tg—1 = Sp_4ty  (modulop).

Let now P,= N, be fixed. Since P, is cyclic and p#2, N,/C, is a cyclic group of
an order r|p—1 so that

N,=C,UCyU...UCy ™!, yeC,.
By Herzog [6]
INo/Col = INy/Cyl

and the coset representatives of N, modulo C, can also be taken as coset
representatives of Ny modulo Cy so that also

(17) Ny =CaUCpU...UCy ™ .

Further y® has no fixed point on P, b=1,...,r—1.

Since p is the minimal divisor of (n,|G|/n) and r/p— 1, no prime divisor q of r
divides (n,|G|/n). Consequently the Sylow g-subgroups of G are either
contained in L, or in Ligyn Thus for r=rr,, r;=(n,r), we have r,= (IGl/n,r)
and (ry,r))=1.
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LemMMa 8. my/cy=r,.

Proor. By taking the greatest common divisor with m; on both sides of |N |
=|Cylr we get

my = cglmg/cg,r) = cglmg/cg,1y) ,

since (mg/cg,r;)=1, such that my/cy|r,.

On the other hand, let ¢° be the highest power of the prime g dividing r,, and
let Q, € Syl, (Ny), @,=Q,N C; € Syl, (Cp). Then q°= |Q.1/1Q,. Let Q be a Sylow
g-subgroup of G containing Q,. By the remark above, Q = L,, since (q, |G|/n)=1
so that Q,<L,NNy=L,,. Then

Qul | (0, INgD,  (n,INg) = my,

by Corollary 6. In the same way we get |Q,|| ¢z, and hence |Q,//|Q,| =¢q° divides
myg/cg. Since this is valid for all prime divisors of r,, the Lemma is proved.

THEOREM 9. Suppose |L,|=n||G|, (n,|G|/n)%1. Then the assumption that the
Frobenius conjecture is valid for all pairs {n,|G,|} with n, +|G,|<n+|G| and is
false for the pair {n,|G|} leads to a contradiction.

Proor. (i) Suppose first mg/cy=mp/cy=r,=1. Then we get by (9) and
Lemma 8

ri(pty—tg—1) _ plg—ls—;
p—1 T op-1
where T, is an integer 2 1. This is impossible, since by Lemma 7, ptg—t5_ <
p— Sz, which is less than p—1, if the Frobenius conjecture is false for the pair
{n,|G|}. For, by the same argument as in Lemma 3, p—s;_, =p—1 gives a
contradiction to Lemma 2.

=Tﬁ’

(i) Hence we must assume r, +1. By (17)
(18) L,, = NyNL,, = (CsNL,)U (CeyNL,)U ... U (Cpy 1 NnL,,)
such that
(19) mptﬂ = ILC,|+‘Cﬂyan‘l+ v +|Cﬂy'“1 an,l .

Since N4/C, is cyclic, [Ny, Ng]SCp, and the cosets C ,,y" consist of whole
classes of (in Nj) conjugate elements as does L,, such that also Cpy’NL,,
consists of whole classes of N The number of elements in a class (xy"), x € Cy,
is INj: €y, (x)")|. Now no subgroup of p-power order can be centralized by xy®.
For if this were the case, xy® would also centralize 2, (P,) which equals ©, (Py)
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for all P,= N,. But xy® is a p'-element, since all p-irregular elements of L,, are
contained in L. Since xy® normalizes Py, it would consequently centralize P,
[3, Theorem 5; 3,10] which is not the case for b<r. Hence (iNﬂ(xy") contains no
p-clement so that

(€, ("p) =1 and [Ny €y (xy)] = 0 (modulop?).

Since this is valid for all classes in Cpy*NL,,
ICp*NL,,| =0 (modulop®) for all b=1,...,r—1.
(For b%0 (modulor,) even Cp)* NL,,=, as is easily seen). With

mg(ptg—1tg_1)

(20) Lol = Ty = =21

we then have by (19)

tg—1tp_
myty, = ﬁ&E_—l‘i—i) (modulo p%
D .
or

mg(ptg—ts_q)

o1 (modulo p*~#),

where a—f=1
which implies

(21) tg_y =ty (modulop*”F),

since (mj,p)=1. By (16)
(22) tg_1 = Sg_4ty  (modulop).
Combining (21) and (22), we get

tg_1(55-,—1) =0 (modulop).

Now sz_,<p, because |L,,|=(n/p)ss_;<|L,=n so that Sp-1— 1=0
(modulo p) implies s;_; =1 which contradicts the minimal condition, as we
saw above. Hence t5_, =t5=0 (modulo p) by (21) and thus
T, = 1Pty —ty-1) =0
p—1
But T;<r,<p-—1, since pt;—t;_, <p—1 so that we would have T;=0 which
is absurd. Hence the Frobenius conjecture is proved in the case (n,|G|/n)#* 1.

(modulo p) .
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ADDENDUM. If |L,|=n=p?n’ and p| (n,|G|/n), all elements of L,, that normalize
Py, centralize Py, ie. ry=1.

Proor. By R. Brauer’s definition [1], N is a group of metacyclic type which
means the following: N, has a cyclic Sylow p-subgroup P, and a normal
subgroup K(=0,,(N)) of index p*r such that N;= N /K is a metacyclic group
of order p°r defined by

Ny =&, X =1, 7 =1, j7'%5,5 = x>,

where j belongs to exponent r modulo p*. Here O, (Ng) < Cy, N/Cy is cyclic of
order r and C;=0,(NyP, by Burnside’s theorem, since P,=C; and P, is
contained in the center of its normalizer R, (P,)=N,N C; which equals C, by
Herzog [6].

By Theorem 9, L, is a group. Then also L,N N, and L,,a
=L,,,0,,(Ng)/0, (Ng) are groups. g € I:mﬂ satisfies the conditions g™ =1 and
g7 =1, hence

L, ={geN,| g”=1}.

Ifry#1, f.,,,, contains an element y, of an order dividing r,, and consequently
I:m, contains the whole class (7,) of conjugate elements in N, which consists of
all elements x%y,, b=0,...,p*—1. Since I‘m, is a group and y, and Xx,y, are
contained in L,, , also X, would be contained in L,,, which is not the case, since
|X,| =p*>pP. Hence r, =1.
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