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ALGEBRAIC TUBULAR NEIGHBORHOODS II

DAVID A. COX

Let Y be a closed subscheme of a Noetherian scheme X. This paper
introduces a geometric model for an algebraic tubular neighborhood (nbd) of
Yin X which has the same homotopy properties as the usual tubular nbds one
encounters in differential topology. We replace X by hypercoverings U. of X in
the étale topology, take nbds V. of U. x Y in U., and then our tubular nbd is
the system of these Vs (see Definition 1.1 and the remarks following it). Since
the inclusion U. x y YE U. is “equivalent” to YS X, V. really is a “nbd” of Y in
X, and we show that these V.’s really closely approximate Y (see Theorems 1.3
and 2.2). We call this model geometric because it “sits” inside X (in that
V.eU. and we can “remove” Y from it (by considering the system
V.x x Y—see Definition 2.1). This last fact enables us to construct spherical
fibrations similar to the ones in differential topology (see Definition 2.1,
Proposition 3.1 and Theorem 3.2). We also compare this model to the
henselization X* defined in [4] (see Proposition 4.1). Finally, we give an
application of our theory to the construction of an algebraic exponential map
(Theorem 5.1).

This paper makes frequent use of the theory of simplicial schemes developed
in [5]. One simplification is that all of our simplicial schemes V. lie in
simpl (X,), so that we can work in the category Et(V.) rather than C(V.) (see
[5, Introduction]), and we need only consider sheaves on X, rather than Xg
(see [5, § 1.2]). All of the results of [5] apply in this case (see [5, Theorem
I11.10] and [7, Chapter 1]). We will also draw heavily on the proofs of the main
theorems in [6] (also notation —see section 2).

The author would like to thank Eric Friedlander for many useful
conversations. This paper is based in part on the author’s Princeton Ph.D.
thesis, and the writing of the paper was supported by NSF grant MC76-06382.

1.

Let Y be a closed subscheme of a Noetherian scheme X. These wil_l be fixed
for the rest of this section. The “tubular neighborhood” of Y in X, written ty/y,
is defined as follows:
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DEFINITION 1.1. ty/y is the full subcategory of simpl (X,;) whose objects are
those simplicial schemes V. which satisfy:

1. Each V, is a Noetherian and separated over X.
2. V.x x Y is a hypercovering of Y (see [2, § 8]).

As pointed out in [2, § 8], each V. in ty,y has a unique splitting.

Before discussing the properties of ty,y let us give some motivation for
Definition 1.1. Let V. be a simplicial scheme satisfying the first condition of
Definition 1.1. Then V. is in ty,y iff there is a simplicial map ¢.: V. — U. for
which the following conditions hold:

1. ¢. induces an isomorphism V.x y Y = U.x x Y.
2. Each ¢,: V, — U, is an open immersion.
3. U. is a hypercovering of X.

This is proved using the techniques of [2, § 8] (see [7, Chapter 1, Lemma
II1.1] for details). Thus, to get our tubular nbd, we replace X by
hypercoverings U., and then take “Zariski” nbds V. of U.x x Y (which is a
hypercovering of Y).

tx;y has the following properties:

LEMMA 1.2. 1. Let I be the homotopy category of tyy (see [2, § 8]). Then I° is
filtering.

2. Given V. in ty)y and a separated étale map @: W — V, of finite type such
that Wx x Y — V,x x Y is onto, there is a map ¢.: W. — Y. in tyy such that ¢,
factors through ¢.

Proor 1. We first note that if V. and W. are in tyy, then so is V. x x W. (for
VoxxW)xxY=(V.xyY)x y(W.x xY.) is a hypercovering of Y by [1, V.
7.34.2]). And given f,g: V. > W. in ty,y, we want to find h:Z. — V. in tyy
such that foh is homotopic to geh.

To do this, set Z.=Hom (4[1], W)) x . , . V.. Since each Z,, is calculated by
finite inverse limits in X, (see [1, V 7.3.7]), the first condition of Definition 1.1
is satisfied. The construction of Z. commutes with x x Y, so that by [1, V 7.3.7],
Z.x x Y is a hypercovering of Y. Thus Z. is in ty,y and has the desired property
(see [1, V 7.3.7)).

2. Given V.in ty,y and a separated étale map ¢: W — V,, set W.=B,(¢) (B,
is the right adjoint to the functor (W. — V) —» (W, — V,) — see [5, Appendix
B] for details). Adjointness gives us a map ¢.: W. — V. where ¢, factors
through ¢. The formula for B, ([5]) shows that condition 1 of Definition 1.1 is
satisfied. This formula also shows that W.x y Y=8,(Wx y Y — V, x x Y). Since
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Wx xyY— V,xx Y is onto, the proof of Proposition II.7 in [5] shows that
W.x x Y is a hypercovering of Y.

We next want to study ty,y from a cohomological point of view. Let F be an
abelian sheaf on X,. Then.we get a sheaf ¢*F on each V.in tyy (¢*F isin fact a
local system on V. — see [5, § 1.6]), and cohomology groups H4(V.,e*F) (see
[5, § I1.2]). Since homotopic maps in ty,y induce the same map on cohomology
(see [5, Corollary 1V.7]), the functor V. — H4(V.,e*F) factors through I, and
so we can form lim;- HY(V,,e*F). Also, each V. in ty,y gives us a cochain
complex F(V), and one sees easily that the functor V. — H4(F(V.)) also factors
through I. Thus, we can form lim;- HY(F (V.)).

THeOREM 1.3. For X, Y and F as above, there are canonical isomorphisms:
li_ry,eH“(V.,s*F) >~ lgploH‘l(F(V.)) =~ HYY,Fly)

(where F|, is the “brutal restriction” of F to Y).

Proor. We actually need a slightly more general result, which we formulate
as follows. Let F. be a local system (see [5, § 1.6]) on a fixed W.in tyy. Let J
=I/W., the category of maps V. — W. in 1. Then we have:

1. lim, HY(V.,F.)

2. li_ry o HY(F.(V.)), where F.(V.) is the obvious cochain complex one gets by
regarding F. as a (V) sheaf (see [5, § 1.1 and § I1.2]).

3. F.w v is a local system on W.x x Y and thus gives descent data by [35, §
1.6]. Since W.x x Y is a hypercovering of Y, we get a sheaf G on Y.

We will give canonical isomorphisms:
limye HY(V.,,F.) = lim;- H*(F.(V))) = H%(Y,G).

The first isomorphism is easy: regarding F. as a (W.), sheaf (see [5, I1.2]), we
have a spectral sequence for a: V. — W.in tyy:

E3%(a) = HY(V,,F,) = H?*4(V,F)

which is functorial with respect to J from E, on. Thus we have a spectral
sequence lim,- EZ (o) = lim; H?*4(V., F.).

Let an element y in E%9(x) be represented by a cocycle x in Ef%(a.)
=H!(V,,F,), and assume that ¢>0. Then we can find a surjective étale map
¢: Z — V,, where ¢ is separated of finite type, such that x goes to zero in
HY(Z,F ). Applying Lemma 1.2, we get a map ¢.: Z. — V. in tyy such that x
goes to zero in H%Z,F,), and then y goes to zero in E}%(a.cp). Thus
limy. E8%(.) =0 for ¢>0, so that

limyo H?(V, F) = limys E§°(e) = limp H?(F.(V)) .
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Let i: W.xxY— W. and j: W.—W.x xY — W. be the natural inclusions.
Then we have an exact sequence:

0— jj*F. > F. - i i*F. —» 0.

Let G.=j j*F. and note that i*G.=0, that is for every p, G,lw,xxy=0. Then we
get the long exact sequence:

. = limye HY(V.,G) — limj HY(V.,F.) — lim;- HY(V,,i,i*F) — ...

Note that HY(V.i *F.)~HY(V.x yY,i*F)=HY,G) since VxyY is a
hypercovering of Y and i*F. determines G (see the proof of Theoremy IV.2 of
[5]). Thus, we need only show that lim;- H4(V.,G.)=0 to prove the theorem.

By what we have already proved, this reduces to showing that
lim;- H*(G.(V))=0 for all g. Let y in H%(G.(V.)) be represented by a cocycle x in
G,(V,). Since Glv,x ,v=0, in particular x vanishes in every fiber of G over
V,x x Y. Thus every point u of ¥, x x Y has an affine étale nbd Z(u) of u in V,
where x goes to zero in G,(Z(u)). Since V, x x Y is quasi-compact, we can find
Z(uy),. . ., Z(u,) whose images cover V, x x Y. If we set Z=U7_, Z(u;), the map
©:Z — V, satisfies the conditions of 2. of Lemma 1.2. Thus, we have a map
@.: Z. — V.in tyy so that x goes to zero in G,(Z,), and hence y goes to zero in
H*(G.(Z.). This shows that lim; H*(G.(V.))=0.

This theorem will be used in the proofs of Theorems 2.2 and 3.2 below, and it
has already been used in [11, § 5].

We now turn to the homotopy theory of our tubular neighborhood. We fix a
closed connected subscheme Y of a connected noetherian scheme X. We also
assume that X — Y has a point & which specializes to a point n of Y. Then, by
abuse of notation, we let ty,y be the category whose objects are triples
(V.,,€,n'), where V. satisfies 1. and 2. of Definition 1.1, and ¢’ and #’ are points
of V, lying above ¢ and # respectively. An the morphism are point-preserving.
Note that Theorem 1.3 still holds for tyy.

We will use the notations and conventions of [6] with one exception. If 5,
is the pointed homotopy category, then we will work in the category
(Pro-o¢ )y, obtained by inverting all # isomorphisms in Pro-3#, (see [2, § 4]
and [7, Appendix C)).

From [5, § II1.2 and § II1.5] we have a functor which assigns to a pointed
object V. in simpl (X,) it’s étale homotopy type {V.},, in (Pro-3#,);. Note that
by [5, Theorem IV.6], homotopic maps in simpl (X,,) go to the same map in
(Pro-o,);. Since I° is filtering (see Lemma 1.2) and (Pro-¢,); has filtering
inverse limits (see [2, § A.4]), we can define:
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DEeFiNITION 2.1. 1. The homotopy of the tubular nbd is { Ty }or =lim; {V.}er-

2. The homotopy fiber of Y in X is the homotpy fiber of the map {Ty,y
—Y} — {Tyyy}, where =~ means profinite completion and {Tyy— Y}y
=lim; (V.= V. X x Y}

More precisely we define { Ty} using either the points above ¢ or the
points above 7. In any given context, it is clear which one we use. And, of
course, there is no ambiguity for {Ty,y— Y}, We have the following natural
maps:

Every V.in ty,y gives us a pointed map {V. x y Y} = {V.}¢. Since V. x y Yis
a hypercovering of Y, {V.x x Y}, is canonically isomorphic to {Y}. (see [5,
Theorem IV.2]). Thus, we have a map i: {Y} — {Txy}e-

Every V. in tyy gives us a pointed map {V.—V.x x Y}, — {V.}¢, which
gives us the map j: {Ty,y— Y} — {Tx,y}e referred to above.

And every V.in ty,y gives us amap {V.},, — {X}, (see [5,1V.1]),s0 we get a
map u: {Tx/y}er = {X}er-

This constrution is quite functorial. Let ¢: X' — X be a morphism, where
X' is noetherian and has points &, 5’ lying above the points &,1 of X. Set Y'=
Yx xX'. Then we get a morphism of fibrations in (Pro-#);:

F = {Tyyy =Y} > (T}
(1) ! b b
F — {TX/Y_Y} - {TX/Y} .

THEOREM 2.2. The map i: {Y}oy — {Txy}e is an isomorphism in (Pro-# ).

Proor. First, note that {Ty,y} is connected. For
H°({Ty)y}er Z2) = limp H°({V.}e, Z) = limp HO(V.,, 2)

(where Z is now a constant sheaf on V. — see [2, Corollary 10.8]). By Theorem
1.3,

lj_lllloHo(V.,Z) ~ HYY,Zly) = Z
(because Y is connected).

We next show that we have an isomorphism on fundamental groups. So we
must show that the map

Hom (7'[1 (TX/Y)’ G) — Hom (nl (Y)a G)

is an isomorphism for every group G. We know that Hom (m,(Y),G)
= H'(Y, G), the set of pointed G torseurs (in the étale topology) over Y (see [6,
Appendix 1]). We also have

Hom (n,(Ty),G) = lim- Hom (m, (V),G) = lim- H'(V.,G).
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The map lim;- H' (V.,G) — H'(Y,G) sends the G torseur Z. over V. in tyy to
the G torseur Z.x y Y over V. x x Y, which descends to a G torseur Z over Y
(because V. x x Y is a hypercovering of Y).

We will construct an inverse to this map. Let Z be a G torseur over Y. For
every geometric point y of Y, we have an inclusion of strict henselizations
Y,=X,. Z gives us a G torsuer Z, over Y,, which extends uniquely to a G
torseur over X,. Then usual descent (see [9, IV. § 8]) gives us an affine étale
nbd V(y) of y in X and a G torseur Z(y) over V(y) such that Z(y)x y Y
Z x y(V(y)x x Y). We can find V(y,),. . ., V(y,) whose images cover Y, and then
we set Vo=U?_, V(7). The map V, — X is separated, étale, of finite type, and
induces a surjection Vox xY — Y (so that V.=cosk, V, is in ty,y). And we
have a G torseur Z, over V, such that Z,x y Y=Z x (Vo x x Y).

Then we have G torseurs pfZ, and p¥Z, over V, =V, x x V,. Restricting to
Vi x x Y, we also have an isomorphism ¢: p¥Z, x y Y3 p¥Z, x x Y. Arguing as
we did in the above paragraph gives us a separated, étale map of finite type W
— V¥, which induces a surjection Wx y Y — V| x Y, and an isomorphism

O ptZoxy WSptZoxy W

compatible with ¢. Then Lemma 1.2 gives us a map W. — V. in ty,y with the
following property:

(*) There is a G-torseur Z, on W, (with Z,x yY=Z x y(W, x xY)) and an
isomorphism ¢: d§Z,~d¥Z, on W, compatible with the obvious
isomorphism @: d§Z,x y Yd}Z,x x Y on W, x y Y.

Finally, the cocycle condition df$ =d¥p-d¥® holds on W, x x Y, and hence
on some nbd W’ of W, x x Y in W,. Applying Lemma 1.2 to W' — W,, we get
W in ty,y which satisfies both (*) and the cocycle condition. But then, by
Proposition 1.8 of [5], this gives us a G torseur Z: on W:.

This gives us a map H'(Y,G) — lim;- H 1(V., G) which is easily checked to be
well defined. The fact that it is the desired inverse is then immediate.

We next compare cohomology. If I' is a twisted coefficient system on
{Tx/y}er, we want to show that the map on cohomology

Hq({TX/Y}ehr) - Hq({Y}ehi*r)

is an isomorphism. I' is determined by a locally constant abelian sheaf I". on
some W.in tx/y (see [2, § 10]), and by [5, Proposition 1.9], I'. is a local system
on W.. The locally constant sheaf I'.|y, .,y on W.x x Y descends to a locally
constant sheaf G on Y (since W.x xY is a hypercovering of Y) and this
corresponds to i*I'. And the map on cohomology becomes the map
hmJH“(V r)— HY(Y,G), where J=I/W.. By Theorem 1.3, this map is an
1somorphxsm
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Then, by the Artin-Mazur-Whitehead Theorem [2, § 4], the map i: {Y],
— {Tx,y}et is an isomorphism in (Pro-s#),.

3

We next want to study the homotopy fiber F of Y in X (see Definition 2.1).
We will use the techniques of [6], but here we are dealing with {Ty,y — Y},
— {Tx,y}e rather than {X—Y}, — {X},. The arguments of [6] were
completely formal (and hence will apply immediately to the case at hand)
once we knew certain facts about the local cohomology sheaves
H% (X, F) for all F a locally constant sheaf on X (see [6, Appendix 2]). But the
corresponding facts for E‘{,.x <r(V,F.) are easy to derive (the main tool is
Proposition A.1 of the Appendix).

We now turn to the theorems. As usual, Y is a closed subscheme of a
noetherian scheme X. They both are connected and have points as explained in
section 2. F is the homotopy fiber of the map {Tx,y— Y} — {Tx;y} .

THEOREM 3.1. Let X be smodth over a scheme S and assume that Y has relative
codimension =c (over S).

If L is a set of primes invertible on X, then nq((F)2)=0 for q<2c-2.
Furthermore, if ¢>1, then n,,_,((F).)=Z.(c).

Proor. First, let’s show that Theorems 2.3 and 2.4 of [6] apply to the
fibration F — {Ty,y— Y} — {Txy} .

The proofs of these theorems use Propositions 2.1 and 2.2 of [6] and the
vanishing of local cohomology. But Proposition 2.1 of [6] generalizes easily to
the inclusion V.—V.x yY — V. for V. in simpl (X,) (one studies the map
H'(V.,G) —» H(V.—V.x x Y,G), using [1, XVI 3.2.1 and 3.3] and the fact that
a G torseur F. on V. is determined by the G torseurs F, on V,). Proposition 2.2
of [6] certainly generalizes. Finally, we have to show that

HY . ,y(V,Z/nZ) = 0 for g<2c.

This is equivalent to showing HY ,,y(V.,Z/nZ)=0 for q<2c, which by
Proposition A.1 is equivalent to HY, ., y(V,, Z/nZ)=0 for all n20 and g<2c.
Since V, is étale over X, we are done by Proposition A4 of [6].

Then n,((F )Z)=0, g<2c—2, follows from the proof of TlleoreAm 2.3 of [6]
(where K ={all primes}), and the isomorphism =, _,((F).)=Z(c) follows
from the proof of 2 = 1 of Theorem 2.4 of [6] (and the fact that =, (Y)
— n,(Ty,y) is a isomorphism — see Theorem 2.2).
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When ¢ =1, it is also true that 7, ((F).) = Z, (1), but the proof is more difficult
(it uses Theorem 1.3 and the techniques of [6, Theorem 2.107]) and therefore is
omitted.

And now, the main theorem of the paper:

THEOREM 3.2. Let X and Y be smooth over a base scheme S, and assume that Y
has relative codimension ¢ in X.
If L is a set of primes invertible on X, then (F) = (S**"!), in (Pro-o);.

Proor. Let V. be in simpl (X,). Then V, x y YS V,, are both smooth over §
and the relative codimension is ¢, so that

HY o y(Vo ZInZ(0) = Z/nZly,x v

and HY ., y(V,.Z/nZ(c))=0 for gq+2c and n invertible on X (see [6,
Proposition A.5]). Then Proposition A.1 and the functoriality of Proposition
A.5 of [6] gives us a canonical isomorphism

Hi  y(V,.Z/nZ(c) = Z/nZly « gy

(and HY,,,y(V.,Z/nZ(c))=0 for q+2c). Then, as in [6, Appendix 2], we get
various Thom isomorphism theorems.

Thus, when ¢ > 1, the proof of 2 = 1 of Theorem 2.5 of [6] can be applied to
the fibration F — {Tx,y—Y} — {Tx;y}  (with K={all primes}). The
isomorphism {Y}¢ = {Tx/y}e of Theorem 2.2 shows that condition 2. of
Theorem 2.5 of [6] is satisfied.

When ¢ =1, we must show that the results used in Theorem 2.10 of [6] apply
to V. in simpl (X,,). We first need some notation. Take V. in simpl (X,,), and set
Vi=V.xxY. A geometric point y: Spec (£2) — V, gives us a map Spec (R2)
x A[n] — V.. y is called a “point” of V', and V.’ (respectively V.”) is the
henselization of V. (respectively V') at Spec(Q)x A[n] (ie. V, is the
henselization of V,, at the points (Spec () x 4[n]),,). A “specialization” y — 7'
of “points” of V. means one of the following:

1. y and y' are geometric points of ¥V, and y specializes to y’ in the usual
sense.

2. ' is a geometric point of V), and there is a map f: [m] — [n] in 4 such
that y=V"(f)(y).

Note that a “specialization” y — 7' gives us a map V. —» V.”. And V! is
connected iff any two “points” lying in ¥ can be connected by a sequence of
specializations lying in Vj, or V).

The construction of Lemma 2.6 of [6] is quite functorial, so that a G torseur
Z. over V.— V' extends to Z. over V., where each Z, is flat and finite over V,,
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and smooth over S (assuming that #G is invertible on X). Now, suppose that
T, (V'-V") > a,(V.-V)—> G

is onto, where 7 is our chosen point of V7, (see section 2). Since V7 — V" consists
of V1—V'=X,—Y,. in dimension n,

n(VI-V") = n(X,—Y,) = n,(Vi-V]).
Thus, for each n,
n(Vi=vhH - nV,—V)— G

is also onto, so that Z, x x Y — V,, is radicial and has a section (which is easily
seen to be canonical). Thus Z.x y Y — V. has a section. So the analogue of
Lemma 2.6 of [6] is true for V..

Our discussion of “points” and “specialization” shows that Lemma 2.7 of [6]
generalizes easily to V., and Lemma 2.9 of [6] also follows easily. Note also
that if F. is a local system on V.— V., then j F. is a local system on V.. Thus, the
second condition of Lemma 2.9 of [6] is true for {Y}¢, — {Ty,y}, by Theorem
1.3.

The proof of Theorem 2.10 of [6] applies only to the homotopy fiber of
{Tx;y— Y} — {Tx,y}L, which is not what we’re dealing with. However, a close
scrutiny of that proof shows that there is only one extra ingredient needed: we
must show that any finite covering space of { Ty /Y}Ahas the property of Lemma
2.9 of [6] (this is used twice; first, to show =, (E) is abelian, and then again in
the second paragraph after (9) of [6]).

A finite covering space of {TX/Y}A is described by a G-torseur (G finite)
f1Z.—> W. where W. is in tyy (lim, {V.x wZ.) is the desired covering
space, where J is the category of maps V. — W. in I). If F. is a local system
on Z.—Z.x xY, then we must show that the map

lim: H(V. x y Z j&F)) > limp HI((V. x . Z)) x x Y, i*j  F.)
is an isomorphism. Since each f, is finite, this map reduces to the map
li_IPJ" Hq(Vaf*]*F) - ]_i_IPJ" (Vox X Y,l*f*J*F)

(see [6, Lemma 2.97) which is an isomorphism by Theorem 1.3. )
Thus, we can apply the proof of Theorem 2.10 of [6] to F — {Ty,y— Y}
— {TX/Y}A, and we see that (F), = (S'), because n;(Y)=m, (Tx/y).

Let us mention (without proof) two further results which have a bearing on
Theorem 3.2. ‘

1. There is a very explicit description of the action of =, (Txy)=n,(Y) on
75— 1 ((F)z) involving u; (Y,c) — see [6, Theorem 2.5].
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2. If L is a set of primes invertible on X then the homotopy fiber of
{Tx;y— Y} — {Txy}risa (S* " NLiff py(Y,c)is Cp complete (see [6, Theorem
2.5 and Theorem 2.10]).

We next study naturality. Given X, Y and S as in Theorem 3.2, let ¢: S’ — S.
be any morphism and assume that S’ is noetherian. Let X'=X x xS, Y'=
Y x x§'. Then Y' € X’ are both smooth over §' and Y’ has relative codimension ¢
in X’. We will assume that Y’ is connected and that X' has points &, n’ lying
over the points &, 1 of X (see section 2). Then (1) of section 2 gives us a natural
map F' — F.

PROPOSITION 3.3. The map F' — F induces an isomorphism (F'), — (F)L for
any set L of primes invertible on X.

Proor. In (8) of [6] we have a canonical isomorphism
Hom (s, _,((F)), Z/nZ) = Hom (Zy(c), Z/nZ)

which comes from the isomorphism (7) of [6]. To see if this is functorial under
base change, we need to study the isomorphism

H¥, y(V,Z/nZ) = H(V.x x Y,Z/nZ(—c))

(which follows from the proof of Theorem 3.2) for V. in simpl (X,,). Let W.=
V.x x X', and let @: W. — V. be the projection map. Then, using Proposition
A.1 and the functoriality of [6, Proposition A.5], we see that

HY v (W.Z/nZ) = @*Hf ,y(V., Z/nZ),

and this gives us the desired functoriality.
Thus, for n invertible on X,

Hom (n;, -, ((F)1), Z/nZ) = Hom (ny -1 ((F)). Z/nZ) ,
which implies 7,._, ((F')L) 2 5. ((F)L). Since (F'); and (F);, are isomorphic

to (S2¢~1);, this shows (F'), = (F)L.
We will use this in section 5.

4,
To see how our tubular nbd relates to global henselization [4] we have:

PRrOPOSITION 4.1. Let S be a noetherian scheme, and let YS X,, YS X, be two
closed embeddings (over S), where X, and X, are of finite type over S. Assume
that Y is connected and the henselizations X" and X% (see [4]) are isomorphic
over S. Then:
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1. There is a simplicial scheme V. which lies in both tyx v and ty, y such that
V.xx Y=V.xx, Y. Thus, there is an equivalence of categories (tx ;v)/V.
= (tx,v)/V.. A )

2. In (Pro-#,), the two fibrations F; — {Ty,y—Y} — {Tx,y}, i=1,2,
are isomorphic.

Proor. Note that 2 follows immediately from 1. Thus, all we have to do is
find V.

From the isomorphism ¢: X% = X% (which is assumed to be the identity on
Y), we get a map ¢": X* — X,. Then the proof of Theorem 3 of [4] gives us
the following “incomplete” descent data:

1. Affine opens U, in X, (which cover Y), affine étale nbds V, of U,NY in
U,, and maps ¢,: ¥, = X, such that ¢} Vi=U} — X, is just ¢"y ny (it
follows that ¢, is étale — see [4, Proposition 3]). We can assume that the
number of Us is finite.

2. For each « and B, there is a nbd V5 of (V,xx V) xxY=U,NUNY
such that p,-¢,=p,°@, (Where the p; are the projection maps). Note that V,,
=V,

Then set Vo=11,V, and ¥, =11, ; V,5 We have obvious maps so: Vo, — V,
and d;: V; - V,for i=0,1. So V, and V, form a truncated simplicial scheme
V./1. Set V.=cosk, (V./1). Then one checks easily that V. is in tx y.

We also have an étale map ¢o: Vo, — X, such that dyopy=d;°q,,
which shows that V. lies in simpl((X,),). By construction V.xy Y
=V.xx, Y, so that V. lies in ty .

5.

If we have X, Y and S as in Theorem 3.2, there is another spherical fibration
to consider. Let a: N — Y be the normal bundle of the embedding Y= X, a
vector bundle of rank ¢, where c is the codimension of Y in X. We will use Y to
denote the zero section of N.

Let F be the homotopy fiber of the map {N—Y} — {N}  in (Pro-3#,).
Then Theorem 2.14 of [6] shows that (F), = (S*~'), where L is any set of
primes invertible on X. So we can ask how this spherical fibration compares to
the one of Theorem 3.2. Here is one case when we know the answer:

THEOREM 5.1. Let YS X be connected schemes which are smooth over an
algebraically closed field k. If Lis a set of primes invertible on X, then there is an
isomorphism of fibrations in (Pro-i# ,)s:
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(AL— {N-Y};—> {N}_
2 |5A ,a A |= X
(F),— {Tx)y=Y}L— {TxviL-

Proor. Because k is algebraically closed, y; (Z, ¢) is trivial for any connected
scheme Z over k (see [6, Proposition A 14]). Thus, by 2. of [6, Theorem 2.14],
the first line of (2) is a fibration, and the second line is a fibration by 2. of the
remarks following the proof of Theorem 3.2.

The first thing is to note that we have a map of fibrations:

($>* Y — {TNiY“ Y} — {’IlN/Y}IA,
{
(S* = {N-Y}p—> {N}..

The map {Ty,y}. — {N}. is an isomorphism because both are isomorphic to
{Y}7. And the vertical map on the left is also an isomorphism (this is similar to
the proof of Proposition 3.3). Then the long exact sequence of homotopy
groups and the 5-lemma show that the arrow in the middle is an isomorphism
in (Pro-o,);.

We next recall a construction used in [3, Chapter 1, Proposition 5.1]. There
we find a smooth variety D over k which has an embedding Y x A — D and a
smooth map n: D — A! such that the diagram:

YxA' - D
projection n
Al
commutes. Furthermore, if D, is the fiber of n over the point s € A, then:

1. If s=0, the embedding Y= D, we get from (2) is isomorphic to the

embedding YS N.
2. If s%0, the embedding Y< D, is isomorphic to the embedding Y< X.

Thus, if we start with ¥ x A* =D smooth over the base A' and base change
to the point 0, we get YS N. And if we base change to a point +0, we get
Y< X. Thus, we get morphisms of fibrations (see (1) and Proposition 3.3):

(52‘;1)1: - {TN/‘Y— Y — {TyyviL

N
(sh—l)z — {TD/YxA’—Yx Al}z — {TD/YxAl}Z
f P

(S>> {Txy— Y} = {TxviL

where the vertical maps on the left are isomorphisms by Proposition 3.3.
And the vertical maps on the right are the same as the maps {Y}; —
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{Yx A'}; « {Y}. by Theorem 2.2 and some obvious functoriality. These
are isomorphisms too, so that by the argument we used above, the vertical
maps in the middle are isomorphism in (Pro-# ).

There is good reason to compare these two fibrations. Working with the
fiber of {N— Y}, — {N}, is easier, in some ways it is more natural (it mimics
what one usually does in differential geometry), and it suffices for many
applications (see [8, §§ 5-6]). However, it lacks a natural map to X, i.c. a map
{N-Y}, - {X—Y}, (which in differential geometry is provided by the
exponential map). However, there is a completely natural map {Ty,y— Y}
— {X — Y}, (see section 2). Thus, Theorem 5.1 gives us a map in (Pro-# ),

(N=Yp = {Tyxy—Y} - (XY}

which we call an “algebraic exponential map”.

Theorem 5.1 also shows that two embeddings of a scheme can have the same
spherical fibrations yet have distinct henselizations (see Proposition 4.1). For
in Example 1 of [4, § 4 and § 6], we have smooth varieties YS X over C where
X" and N* (N is the normal bundle) are not isomorphic, yet the spherical
fibrations given by the tubular neighborhoods of Y X and YSN are
isomorphic by the above theorem.

Appendix. Local cohomology of simplical schemes.

Let Y be a closed subscheme of a scheme X, and let ¥, be in simpl (X). We
set V.=V.x x Y. For an abelian Et (V.) sheaf F. (see [5, § 1.5]), the inclusion
V.— V. — V. gives us local cohomology sheaves HY, , XY‘(V.,F .) on Et(V.) (see
1, v. 6.3]).

ProposITION A.1. For every n, H.(V.,F.),=H%.(V,, F,), and for f: [n] — [m]
in A, the map
HY, (Vo Fr) > HY, (Vo V()*F,) = V()*HY, (V. F)
3) induced by base change
F(f): Fp— V(f)*F,

is the transition map for HY.(V.,F.) (see [5, § 1.5]— and the base change map is
an isomorphism because V(f) is étale).

Proor. Define functors $? from Et (V) to itself by setting S*(F.), = HY. (V,, F,)
and using (3) to define the transition maps S?(F.)(f). This gives us a connected
sequence of functors {S%},>.

Math. Scand. 42 — 16
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By [10, VI 6.14, 3rd paragraph] every Et (V. sheaf G. has an injective
resolution I* in Et (V) such that each I} is an injective resolution of G, for
every n. Since S?(I?)=0 for ¢>0, it follows easily that the S? are the derived
functors of S°. So we need only show S°(F.)=HY (V. F.).

Let U — V, be étale. By 1 of Corollary 1.6 of [5], it follows that

HY.(V.,F),(U) = HY.(V.,F)(U x A[n])
= ker (H*(U x 4[n],F.) > H°((U—U x x Y) x 4[n],F.)),
and this, by the same corollary, is
ker (H(U,F,) > H'(U~U xxY,F,)) = H}.(V,,F,)(U).

The transition maps are easy to check, and then we have HY.(V., F)=S°(F.).

Note that if F. is a local system, then H}.(V,, F.) is also a local system. In this
case, one can regard F. as a (V.), sheaf, or one gets the same local cohomology
sheaves (see [7, Chapter 1, Theorem 1.17]).
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