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PICARD SCHEMES OF QUOTIENTS BY
FINITE COMMUTATIVE GROUP SCHEMES

SVEN TOFT JENSEN

0. Introduction.

Let N be a finite commutative group scheme acting freely on a variety X,
proper over a field k. Assume the quotient Y exists. This paper mainly deals
with relating the Picard scheme of Y with the Picard scheme of X and the
Cartier dual D(N) of N.

We have divided the material in 2 sections:

1. Linearized invertible sheaves and Picard groups
2. Picard schemes of quotients.

In Section 1 we discuss the G-linearized Picard group Pic® (X) and the natural
map
p: Pic% (X) - Pic(X).

G is an arbitrary k-group scheme, acting on a variety X, proper over k. We
obtain an exact sequence

(1.3) 0 — %(G) — Pic% (X) » (Pic (X))° » H*G,G,),

where x(G) is the character group of G, (Pic (X))° is the group of universally
G-fixed invertible sheaves on X and HZ?(G,G,) is thé second Hochschild
cohomology group. The above map q and the cohomology group is studied.
Section 2 is devoted to a functorial study of the results from Section 1,
especially the sequence (1.3). For some finite group schemes N, acting freely on
X, we obtain the desirable exact sequence of commutative group schemes

2.1) 0 — D(N) - Picy, - (Picy, )Y - 0,

where the latter scheme is the fixed point scheme of the action of N on Picy .
The sequence (2.1) determines the Picard schémes of the counter examples by
Igusa [6] and Serre [11] to the “comipleteness of the characteristic linear
system of curves on an algebraic surface”. Our investigations moreover show
that if N acts with a fixed point on X, then the “N-linearized Picard functor of
X over k” is representable (2.13).
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For definition and properties of the Picard scheme we refer to [3, V, VI]. For
the notion of Cartier dual and other concepts from the theory of commutative
group schemes, we refer to Oort’s notes [10]. Finally we refer to [1] for
definition and properties of Hochschild cohomology.

A word about words. We use “variety X proper over k” synonymous with
“scheme X, proper over k and I'(Ox)=k”. We mainly choose the latter
expression, because it is functorial: it base extends to “scheme X x S, proper
over S and I'(Ox , 5)=T"(0s)".

The main part of this work was done while visiting Mathematisch Instituut,
Universiteit van Amsterdam. I gratefully thank for hospitality.

1. Linearized invertible sheaves and Picard groups.

Let k be a field. Throughout this section X is a scheme, proper over k and
I'(Ox)=H°(X,0x)=k. Assume X is equipped with an action of a k-group
scheme G, 06: Gx X — X.

Recall the following definition:

DEFINITION 1.1. [7, § 3]. An invertible sheaf & e Pic (X) is called G-linearized
if

1.1.1: There exists an isomorphism ¢: 6*¥ — p,*%, wherep,: Gx X —» X
is the projection onto X.

1.1.2: ¢ satisfies the following cocycle condition: If mi Gx G — G is the
group law, p,3, mx 1y, 15x 0 all map G x G x X — G x X, then the following
diagram of morphisms between invertible sheaves on GxGxX is
commutative:

(0o (1o x 0)* £ —U=D8 (p)o (16 x 0)* &L
(6 xp)*& ~bu'e, (P2oP23)* &

(0o (mx 1y)*L xl'e — (po(mx1y)* & .

The isomorphism ¢ of 1.1.1, satisfying 1.1.2, is called a G-linearization of Z.

ReMArk. The G-linearized invertible sheaves on X, modulo isomorphisms,
form an abelian group, which we denote Pic®(X). Note that we have a
canonical group homomorphism p: Pic® (X) — Pic (X), namely the one that
to an invertible sheaf .#, equipped with a G-linearization ¢, simply assigns the
invertible sheaf ¥ € Pic (X).
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PROPOSITION 1.2. The kernel of p: Pic® (X) — Pic (X) is naturally isomorphic

to
x(G) = Hom, 4, (G,G,) ,

the character group of G.

Proor. Clearly ker (p) may be identified with the group of G-linearizations of
Ox. Since the line bundle associated to Oy is X x A;, we have to study
morphisms 6: G x X x A, — X x A, such that p;c6=g0p,,, where p;,: GX X
xA; = Gx X (respectively p,: X xA; — X) is the projection onto G x X
(respectively X). In terms of S-valued points g € G(S), x € X(S), a € 4,(S) we
then have

6(g,x,a) = (o(g,x),2(g,x,0) .

Since the action is linear on A,, we know x(g, x,a)=ax(g, x, 1). Hence we have
a morphism y=y(—, —,1): Gx X — A,, which factors through a morphism
x: G — Ay, since I'(Og, x)=I'(0g). The cocycle condition 1.1.2 implies that y
is in fact a group homomorphism from G to G,,.

ReMARrk. The image of p is contained in
{& € Pic(X)| o*2®pr¥ ! is isomorphic to Og x} -
This group is denoted (Pic (X))C.

PROPOSITION 1.3. There exists a homomorphism q: (Pic (X))° — H*(G,G,),
such that

0 — %(G) — PicC (X) » (Pic(X))° 3 H*(G,G,)

is an exact sequence of abelian groups.

Proor. H*(G,G,,) is the 2nd Hochschild cohomology group with trivial
action of G on G,

If # e (Pic (X))° there exists an isomorphism ¢: ¢*¥ — p*%. ¢ induces
two isomorphisms between the same invertible sheaves on Gx G x X :

(0 (1g x O)* & LEZEHE (pyo (mx 1)* 2

cf. 1.1.2.
These isomorphisms differ only by a unit d, € I'(Ugxgxx)=T(0gxc)
Therefore we may consider d, as a morphism of schemes d,: Gx G — G,
We claim that d,, is a 2-cocycle [1, II, § 3]. In other words, for any k-scheme
S, and any g,g,g" € G(S), we have
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d(g,g") d(g+g.,g") " d(gg +¢)d(g.g)"" = 1eGn(S),

writing d=d,, for brevity.
First some notation: Let S be any k-scheme. Base extend the action ¢ of G
on X to an action g5 of Gx S on X x S over S:

(aS:(GxS)>S<(XxS)—+ Xx8) = (6xlg:GxXx8—> Xx8§).

Define Ls=p}¥ where p;: X xS — X is the projection onto X. The
isomorphism ¢ base extends to an isomorphism @g: 6¥ ¥g — p¥ZLs, where p,
denotes the projection

(GxS)>S<(XxS)—> XxS.

The isomorphism ¢@g induces two isomorphisms between the same invertible
sheaves on Gx X x X x §:

(P3395)° (16 x s X 05)*@s
(1.3.1) (0s°(16xs>s<as))*3’s 3 (pro(Mx 1y s))* Ls .

(mx lxxs)*os

These isomorphisms must differ by the unit

dye = dyopy; € I'(Ogxgxs) = F(@(Gx3)§(ch)) ,

where p,;,: GxG xS — G x G is the projection onto G xG.
For any g € G(S), let gg denote the corresponding S-morphism. (g, 1g):
§ — G x S. The composite

aso(gs>s<1Xxs):XxS = S>S<(XxS)—» (GxS)>S<(XxS)—> (X x8)

is denoted by T, and the pull back of ¢g along (gsf; 1y s) is denoted by
(pa: T;.?s - gs.

Now let g,g’ € G(S). If we pull back the sheaves and morphisms of (1.3.1)
along

(8s,8's)>s<IXxs¢X><S = S>s<(XxS)—> (GxS)>s<(GxS)>S<(XxS)
=GxGxXxS§,

we obtain that the two isomorphisms

@y T30,
(1.3.2) Ty g Ls—3ZLs

Pg+g

only differ by d,se (g5, 85)=d,(8:8) € Gn(S).
Let g,g',g” € G, (S). We are now able to prove that d=d,, is a 2-cocycle:

(Pg+(g'+g") = (P(g+g')+g" = d(g+g,’g")(pg”°’r:'<pg+g’
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d(g+g,8")dg,g)p, T (@, T,
d(g+g.8")dg gy Ty T, 0,

= d(g+g.8")d(@.g) d(Eg.8")  Py+y o THeq 0,
= d(g+g.,g")d(g.g)d(g,g) " d(g.g +8) ' Pgrigrg -
Hence d=d,, is a 2-cocycle.

If ': 6*& — pf¥L is another isomorphism, then ¢’ =cq, where c is a unit
in I'(Og x)=T(0¢). Consider ¢ as a morphism G — G,,. If § is any k-scheme
and g,g' € G(8), then ¢, , =c(g+g)o,., differs from

PoTro, = c(g)c(@)py T,

by d,(g,g) c(g) ' clg+g) c(g)™" € G,(S), that is, d, and d, are cohomo-
logous. Hence to any % € (Pic (X))° we may assign a class q(£) € H*(G,G,,).
q is obviously a group homomorphism.

To prove exactness of the sequence, we only need to see that & admits a G-
linearization if and only if ¢(#)=0. Only if follows immediately from the
construction of q. Conversely, if ¢(£)=0, then the 2-cocycle d, associated with
any isomorphism ¢:o¢*¥ — pf¥% is a coboundary. Hence there is a
morphism c,: G — G, such that

dy(8,8) = c,(8) c,(g+8) ' c,(g) for g,g' € G,(5).
Change ¢ to ¢'=c, '¢ and check that ¢' is a G-linearization of %.

We next raise the following question: Is the above 2-cocycle d,, in fact a
symmetric cocycle?

Recall that a cocycle d is symmetric if for any k-scheme S and any g, g’ € G(S)
then d(g,g')=d(g’,g). The cohomology classes of symmetric cocycles form a
subgroup H?(G,G,)s H*(G,G,).

Now let d € Z*(G, G,,) be any 2-cocycle. Consider

e(g,g) = d(g,g)d(g.,g) "' € G,(S).

e defines a morphism of schemes G x G — G,, and it is easily checked that eis a
skew-symmetric bihomomorphism:

(i) e(g.g+g")=e(gg) elgg")
(i) e(g+g,g")=elg,g") e(g,g")
(i) e(g,g)=1.

LEMMA 1.4. Assume the k-group scheme G is commutative. If G acts on X with
a fixed point x € X, then q: (Pic (X))° — H?(G, G,,) factors through H}(G, G,,).
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ProOF. Let # € (Pic (X)) and let d=d, be an associated cocycle. Notice
that if d is a non-symmetric cocycle, then after base extension to k(x), d is still
non-symmetric. We may therefore assume x is a k-rational point.

To d we have associated a skew-symmetric bihomomorphism e. We prove
that for any k-scheme S and any g,g’' € G(S) then e(g,g’)=1. In the notation
from (1.3):

e(ga g')(pg’oT;"Pg = (Pg° T;(Pa': T;.‘.g'gs — gs .

G x S acts on X x S with fixed point x=x x 15: § — X x S. Therefore x*T )L
=x*%g, and hence

(14.1) e(g,8)x*@ o x*Trp, = x*@ox*Trp,: x*Ls — x*Ls

is an automorphism of the sheaf x*#5 on S. Moreover x*¢, and x*T ¢,
=x*p, are automorphisms of the same sheaf x*.£; Hence they are
multiplications by units from I'(05). We therefore may rewrite (1.4.1) as
multiplication in G,,(S):

e(g’ g,) . (x *(pp’) ' (X*(pg) = (x *(pg) : (X*(Pg‘) .
Consequently e(g,g)=1.

LemMMAa 1.5. Assume G=N is a finite commutative k-group scheme. Let
& e (Pic (X))V. Then q(£"™Y) € H%(N, G,,) for some power £ of £.

Proor. Set [N|=rank N =dim, (E), where E is the affine coordinate ring of
N.1fd=d, is a cocycle associated to &, then d is associated to #'N. We may
assume d(0,0)=1, whence

d(0,n) = d(n,0) = 1.
In fact,
d(n,0)-d(—n+n,0)"*-d(—n,n+0)-d(—n,n)?
=1
= d(n, —n)-d0+n,—n)"*-d0,n—n)-d(0,n)" .

It now follows that d™! is a symmetric cocycle:

dn, )N = (e(n,n)d(n', )N
e(N|n,n): (d(n',m))N = dN(n',n),

dN(n,n')

since e(|Nin,n')=e(0,n’)=1.
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Let N be a finite commutative k-group scheme. Let d € Z*(N, G,,) be any 2-
cocycle. The skew-symmetric bihomomorphism e: N x N — G,, gives rise to a
homomorphism of k-group schemes y: N — D(N) such that e(n,n')={n,y(n)),
cf. [8, p. 223]. D(N) is the Cartier dual of N and {-,*>: N x D(N) — G,, is the
universal pairing.

For the remaining part of this section we assume k is an algebraically closed
field.

LeEMMA 1.6. Let N be a finite commutative k-group scheme. Then

1.61. H2(N,G,)=0
162. If N is

(a) reduced and N (k) is a finite cyclic group, or
(b) reduced, but D(N) is a local group scheme and vice versa, or
(c) a local group scheme of height <1, (see [1 II, § 7 No. 4]),

then H*(N, G,)=0.
Proor. In case 1.62 (b), Hom,,y, (N,D(N)=0 whence Z*(N,G,)
=Z2(N,G,). The remaining statements are straightforward consequence of

(the proof of) [8, Lemma 1, p. 223} and the fact that H3(N, G,)=Ext! (N, G,),
[1, 11, § 3, No. 2].

LeMMA 1.7. Let G be a smooth, connected algebraic group. Then H*(G,G,,)
=0.

Proor. Let d € Z2(G, G,,). We may assume d(0,0)= 1, whence d(g, 0)=d(0,g)
=1, too. By a result of Rosenlicht (e.g. [2, 2.2]) d is a group homomorphism
from Gx G to G,, Therefore

d(g+g,g") = d(g,g")d(g,0) = d(g,g")
is independent of g’. Especially
d(g,g) = dg—sgg) =d0,g) =1,

ie. d is a coboundary.
Let us collect the results obtained until now:

THEOREM 1.8. Let a smooth connected linear algebraic group G act on a normal
algebraic variety X, proper over k. Then there exists an exact sequence

0 — x(G) — Pic® (X) » Pic (X) — Pic(G) .
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Proor. (1.3) implies
0 — x(G) — Pic’ (X) - (Pic(X))° —» 0

is exact. As a consequence of X being normal, G acts trivially on Pic (X). Hence
the Seesaw principle [8, p. 54] applied to 6*Z®p¥¥ ~! proves the following:
The pull back £, of ¥ along o-(15,x): G=GxSpec (k) > GxX — X is
independent of x € X. Moreover

o*L@pFL ™! = Ugxx
if and only if &, is trivial in Pic (G).

THEOREM 1.9. Let a finite commutative group scheme N act on an algebraic
variety X, proper over k.
1.9.1. If N acts with fixed points, then we have an exact sequence

0 — %(N) = PicV (X) 5 (Pic(X)¥ - 0.

1.9.2. If N acts freely on X such that the quotient Y exists, then we have an
exact sequence

0 — x(N) - Pic(Y) 5 (Pic(X)".
If H*(N,G,)=0, then p is surjective.

Proor. Follows from (1.3), (1.4), (1.6) and the following facts about
quotients (see [8, p. 113] or [1, III, § 2, No. 6]):

Let a finite group scheme G act on a k-scheme Z by 6: GxZ — Z. Assume
that the orbit of any point is contained in an open affine subset of Z.

i) There exist a k-scheme Z’ and a morphism n: Z — Z’ such that (Z',n)is a
categorial quotient [7, definition 0.5] and = is integral and surjective.

ii) If moreover G acts freely on Z [7, definition 0.8], then = is finite and flat
and the natural morphism (0,p,): GxZ — Z ;Z is an isomorphism, i.e.
n: Z — Z' is a principal G-bundle.

iii) If n: Z — Z’ is a principal G-bundle, then n induces an isomorphism
n*: Pic (Z') — Pic® (Z). (This follows from descent theory [4, VIII], cf. [8, p.
11511.]).

2. Picard schemes of quotients.

In this section k denotes a field, not necessarily algebraically closed, X is a
scheme, proper over k, and I'(Ox)=k. N is a finite commutative group scheme



PICARD SCHEMES OF QUOTIENTS ... 205

acting on X by g: N x X — X, such that the orbit of any point is contained in
an open affine subset of X. Let (Y, 7n) denote the quotient.

We want to compare the Picard scheme of Y with that of X, and the main
result in this section is:

THEOREM 2.1. If N acts freely on X, and if the group scheme N is

(a) reduced and N (k) is a cyclic group (k is an algebraic closure of k), or

(b) reduced, but D(N) is local and vice versa, or

(c) local of height <1,

then m*: Picy, — Picy, induces an exact sequence of commutative group
schemes:

0— D(N) e PicY/k g (PicX/k)N -0 B

where (Picx/k)N is the fixed point scheme under the action of N on Picy .

The above theorem enables us to compute the Picard scheme of the Igusa
example [6] and of the Serre example [11].

ExampLE 2.2 (Igusa). Let k be an algebraically closed field of characteristic 2.
~ Eis an ordinary elliptic curve (t denotes the non-zero point of order 2), and F

is any elliptic curve. The constant group scheme Z/2Z acts freely on E x F by
(x,y) = (x+1t, —y). Let Y be the quotient.

Y is a non-singular surface and its Albanese variety is Alb (Y)=E/{t), which
is the quotient of E under the free Z/2Z action x — x+t. If we look on the
torsion part of the Picard scheme of Y, then

0 — D(Z/2Z) — Picy, — ((Ex F))??% = E xker (2p) = 0

is exact. A denotes the dual of an abelian variety 4, and 2, is multiplication by
2 on A.
We therefore have determined Picy,:

Pic. — (E/{tY) x uy x Z/2Z  if F is ordinary
Yk T V(B x M, if F is supersingular .

pa=D(Z/2Z)=Spec (k[T]/T?— 1) with comultiplication T — T®T, and M,
=Spec (k[ T]/T*) with coaddition T — 1@ T+ T®1 + T>*®T?, cf. Oort [10].

ExampLE 2.3 (Serre). There exists a non-singular surface X in P;, defined
over a field of characteristic p (assume the field to be algebraically closed), such
that the group scheme Z/pZ (p=5) acts freely on X. Let Y be the quotient.

We first prove that Picy, =0. Remark that X is simply connected and that
H°(X,Q%)=0, where QY is the sheaf of 1-forms on X. For any prime number /,
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the first etale cohomology group with coefficients in the constant sheaf Z/IZ is
0. Take cohomology of the Kummer sequence

0-Z7Z/Z—- G,— G,— 0

(1 is prime to p) to see that there is no I-torsion in Pic (X). But there is no p-
torsion"either, because the p-torsion in Pic (X) is a subgroup of H°(X,Q}%)=0
(cf. [11, 11]). We next claim that H!(X,0x)=0. Consider the Frobenius
endomorphism

F: H\(X, 05) —» H'(X, 0y) .

By [11, 10], the kernel of F can be injected into H°(X,Q%)=0. Hence F is
injective. On the other hand 0=HX(X,Z/pZ)=the semi simple part of
H'(X, Ox). Therefore F is nilpotent. Since F is both nilpotent and injective,
H'(X,0x) must be 0.

Now Theorem 2.1 determines Picy,=D(Z/pZ)=p,.

The proof of 2.1 is based on a functorial study of the results from Section 1.
Let X, N, ¢ be as in the beginning of this section (but we do not assume N acts
freely on X).

If S is any k-scheme, we let N xS act on X x S via

os = 0Xxlg: (NxS)>s<(X><S)=NxX><S—+XxS.

Define the following two contravariant functors from the category of k-
schemes (Sch/k) to the category of abelian groups (Ab), Pic¥ and [Pic]}:

DEerINITION 2.4. Picy (S)=Pic¥ *S (X x §) =the group of N x S-linearized
invertible sheaves on X x S.

[Pic1¥ (S) = (Pic (X x S)N*S
= {Z e Pic(Xx5)| a¥L®ptL ! is isomorphic to Oy} .

PROPOSITION 2.5. There is a natural morphism of functors p: Pic} — [Picl¥,
such that the kernel of p is the functor S — Homg g;(N x S, G,, X S).

Proor. For any S € Sch/k, p(S) is simply the map that to an N x S-linearized
invertible sheaf ¥ on X xS assigns Z € Pic (X x §). The proof is now a
straightforward consequence of (1.2).

DEerniTION 2.6. For any S € Sch/k, let the commutative S-group scheme N
xS act trivialy on G, xS. Define H\(S)=H'(N xS,G,, x S)=the ith
Hochschild cohomology group relative to S, (see [1, II, § 3]). Hjy is obviously a
contravariant abelian group valued functor on Sch/k.
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Note that H'y(S)=Homg (N x S, G,, x S).
PrOPOSITON 2.7. There is a natural morphism q: [Picly — H% such that
0 Hi — PicY  [Picly » H
is an exact sequence of functors.

The proof is an easy generalization of (1.3).

We next want to sheafify the above functors with respect to the faithfully flat,
finite presentation (fppf) topology on Sch/k. If F is a functor from Sch/k to Ab,
we let # denote the associatéd fppf sheaf.

PROPOSITION 2.8 The functor Hy is representable. H}, is represented by the
Cartier dual of N, D(N). (Cf. [10, 1.2-5, 1I1.16-1].)

PrOPOSITION 29. If N acts freely on X with quotient Y, then Pic is
represented by Picy,.

ProOF. n: X — Y=X/N is a principal N-bundle, whence n x 1g: X xS — Y
x § is a principal N x S-bundle. By descent theory [4, VIII],

Pic¥(S) = PicV*S(X x §) = Pic(YxS).

Hence 2.cY is the Picard functor on Y relative to Spec (k), cf. [9]. Since Y is
proper over k, this functor is representable by [9].

ProposiTION 2.10. The fppf sheaf [Pic]Y is represented by (Picy,)".
Proor. It suffices to prove that [Pic]¥(S) is isomorphic to

{ZePic(XxS)| V§' = 8, Vne N(S), T*Ls@Ls! = 0},

since the fppf sheaf associated the latter functor is represented by (Picy)".

If # e [Pic]¥(S) we know that there is an isomorphism ¢g: 6% — p} %,
which for any base extension §' — § and any ne N(S') induces an
isomorphism ¢,: T*¥s — L. Conversely, let & be fixed by all n € N(S"), for
each §'. Especially for §'=N x S and n: N xS — N the projection onto N we
have an isomorphism T*%y,s — Lnxs- Such an isomorphism is just an
isomorphism @g: 0¥ — p,#. Namely, under the identification Nx X x§
=X xNxS we have Xy, s = pF&L and T} Ly,s = 0§ <.

We have an interesting subfunctor of H%, namely
H% .S — H}(NxS,G,x8),

the classes of symmetric cocycles.
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LemMaA 2.11. The natural map q: [Pic]¥ — H} factors through H3 ; in the
following cases:

a) N is a reduced group scheme and N (k) is a cyclic group,

b) N is reduced, but D(N) is a local group scheme, and vice versa,
¢) N is a local group scheme of height <1.

d) The action of N on X has a fixed point x € X.

Proor. For any k-scheme S, q(S) factors through H2(N x S,G,, x S): If N is
of type (a), (b) or (c), then
H*(N xS,G,,xS) = H}(NxS§,G,, xS),

as seen by generalizing the proof of [8, lemma 1 (ii), p. 223] to group schemes
over an arbitrary base.
Let & € [Pic]¥ (S). Note that if g(S)(#) € H%(S) is not in H}; ,(S), then, after
a faithfully flat extension ¢t: §' — S,
H{ ()(@(8)(2)) = 4(5)(Zs)

is not in H ,(S"). Therefore, to prove (d), we may assume N x S acts on X x S
with a S-rational fixed point x € X x S. A proof similar to that of (1.4) carries
over.

Finally remark, that if & e [Pic]¥(S), then q(8)(#N) € H (S), where |N|
=rank N, cf. (1.5).

In Section 1 we insisted that the map g: (Pic (X)) — H?(N,G,,) should
factor through H?(N, G,,), simply because that group is 0. In this section, too,
we want q: [Pic]¥ — H} to factor through H} ,, because of

LEMMA 2.12. The fppf sheaf associated to H¥  is O, that is,
H(S) =0, all SeSchk.

Proor. [5, VIII, 3.3.1], together with the fact that
H2(NxS,G,, x8) = Ext}(NxS,G,xS5).
We now give a proof of Theorem 2.1:
Combining (2.7) and (2.11) we obtain an exact sequence of functors
0 —» Hi — Pick — [Pic]y¥ - H%,.

Noticing that “taking associated fppf sheaf” is ‘an exact functor, we get an
exact sequence of fppf sheaves

0— H#y - Pic} - [Pic]y - 0.
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Since the three sheaves in question are representable ((2.8), (2.9), (2.10)), the
theorem follows from [10, III 17-7].
Moreover, our investigations show the following result:

THEOREM 2.13. If N acts on X with a fixed point x € X, then the “N-linearized
Picard functor of X relative to k”, Pic¥ (cf. 2.4) is representable by a group

scheme, locally of finite type over k. The representing object, denoted Pic%,,,, fits
into an exact sequence of commutative group schemes

0 — D(N) - Pic}, — (Picy,)" — 0.

Proor. The assumption on the action ensures
0 HY— Py > [Pic]} -0

is an exact sequence of fppf sheaves. The first and the last sheaf is representable,
hence P:cY is representable, [10, IIT 17-4].

REMARK 2.14. We may of course generalize some of the results to schemes
over an arbitrary (locally noetherian) base scheme S. E.g. a reformulation of

Theorem 2.1: Let X be a S-scheme, such that (i) the structural morphism f:
X — Sis proper and flat, (ii) f,Ox = Os, (iii) X/S has a Picard scheme Picy 5. Let
n: X/S — Y/S be a principal N/S-bundle, where N is a finite commutative S-
group scheme. If we further assume

HANXT,GpsxT) = HX(N X T,GpsxT),
then Y/S has a Picard scheme Picys, fitting into an exact sequence of S-group
schemes:
0— D(N) - PicY/s — (PicX/S)N — 0.

The reformulation of 2.13: Assume N/S acts on X/S (satisfying (i), (ii), (iii)
above) with a S'-rational fixedpoint, where S’ — S is a faithfully flat morphism.
Then “the N-linearized Picard functor of X/S relative to S” is representable,
and the representing object Picf,}’/s fits into an exact sequence
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